首页

> 期刊论文知识库

首页 期刊论文知识库 问题

泰勒公式论文答辩

发布时间:

泰勒公式论文答辩

泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:

【摘要】In this paper, leads to Fermat's theorem Rolle Mean Value Theorem, and then constructing auxiliary function of the Lagrange mean value theorem and Cauchy's Mean Value Theorem to prove that. The use of Differential Mean Value Theorem (Rolle theorem, Lagrange's theorem, Cauchy's theorem) to solve a number of derivative and limit the problem. Through the polynomial approximation to function, resulting in more than a Peano-type and Lagrange remainder of the Taylor formula, using elementary functions Maclaurin expansions to address the limits and the approximate evaluation of the problem. Through the study of this article requires proficiency in differential intermediate value theorem and Taylor's formula to prove, using theorem to solve a number of conclusions related questions, so can a clear understanding of this kind of problem solving ideas.【关键词】Differential intermediate value theorem Taylor formula Derivative More than最后一个我不怎么会,所以。。。。别介意哦

This article draws out through the fima theorem rolls the theorem of mean, constructs the auxiliary function again the theorem of mean carries on the proof to west the Lagrange theorem of mean and the tan oak. (Rolls theorem using the differential theorem of mean, the Lagrange theorem, Cauchy's theorem) solves some derivatives and the limit question. Through multinomial approximating function, thus obtains has wears the Asian error term and Lagrange the error term Taylor formula, the use elementary function's Maclaurin expansion solves the limit and the approximate evaluation question. Through this article study, the request grasps the differential theorem of mean and the Taylor formula proof skilled, solves some using the theorem conclusion with it related question, enables to understand this kind of question explicitly the problem solving mentality. Differential theorem of mean Taylor formula derivative error term

推荐到OA图书馆查询。输入相应的关键词的英语即可。

泰勒公式提问论文答辩

Taylor formula 双语例句如下: As we know,in the n-th order Taylor formula with Lagrangeremainder term,the θ is between 0 and this paper,we derivethe result of θ tend to 1/(n+1)under some conditions. 众所周知,在拉格朗日余项的n阶泰勒公式中,θ介于0与1之间。 本文导出了在一定条件下θ趋于1/(n+1)的结果。 出处:

泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:

其实啊,函数的凹凸性,只需要考虑该函数的二阶导数就可!

不过,你若非要把简单问题复杂化,请看下面的两篇论文:

泰勒公式的论文答辩问题

这篇文章我们来介绍一下答辩的主要问题,方便同学做到心中有数不至于上台的时候一问三不知。论文提问主要是以下几个,随小编一起来阅读1、为什么会选择这个题目?在选择论文题目的时候,一般会选择自己平时研究的方向,如果并没有明确研究方向,也可以是自己感兴趣的想通过毕业论文的方式来研究探讨,这两个过程都需要去翻阅一些相关学术资料以及实验的论证来阐述自己的观点可行性。2、论文价值是什么?有关这个问题主要考察的我们同学思考能力以及对现实问题方面的关注。在做论文阐述的时候可以针对于论文中的观点以及论证做详细的解答。3、论文的理论基础是什么?这个是考察学生的专业能力,还有技术掌握的情况。在回答问题的时候一定要注意逻辑清晰,并且要突出自身的专业性和知识点。可以采用专业的理论知识来阐述自己的观点,和解释论文的内容,不要太过口语化。4、论文的研究方法是什么?研究也方法也是在答辩的时候常遇到的问题,这些问题主要考察的是学生对于论文所提出来的观点是否熟悉,以及对于论文中的一些研究方法是否了解,想要流畅的回答得到导师的认可,一定要提前做好相关的功课。论文答辩的注意事项1.论文打印成纸质的这样方便我们阅读,熟悉自己的论文,做到心中有数,答辩老师现场提问的时候就不至于一问三不知能做到对答如流那就会加分了;2.在答辩之前,我们熟悉好自己的论文以及老师常问的几个问题可以找几个同学进行模拟答辩,熟悉答辩的流程上台的时候就不会那么慌张应对自如了;3.在模拟和正式答辩都要控制好答辩的时间,每个同学答辩的时间浮动不能太大要不然会影响到下一个同学的答辩时间;4.常见的答辩问题自己可以先用小本子做好回答,同学间模拟答辩的时候就可以用上;5.答辩的PPT也是必不可少的,可以借鉴知道老师平时的ppt样式和风格,不要做得花里胡哨的逼近我们是做的学术研究要简单明了,能美观就更能加分了。更多资讯敬请关注papertime官网,方便论文查重和在线改重降重,感谢与你相遇!

答辩申请报告

答辩的目的是进一步考察论文作者对专业知识掌握的深度和广度;审查论文是否由学员自己独立完成等情况。下文是申请书网整理收集的答辩申请报告,供大家参考。

尊敬的毕业设计(论文)审核小组的领导和老师你们好:

在微积分学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习微积分的关键一环.本文主要研究泰勒公式及其在求极限方面的应用.它是通过几个典型的例题,说明几个类型的问题,也即是从特殊到一般的推理过程.我们又称之为研究式学习(归纳).这种研究对培养学生分析问题、解决问题的能力是一种有效的途径.推理过程的研究式学习也是训练严密逻辑思维的有效方式.

本文通过对利用泰勒公式求极限的探讨,尤其是给出了泰勒公式在其它方面的应用,显现出泰勒公式的应用之广泛.其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导.

本人论文自2009年2月开始至本年5月完成,主要进度情况如下:20XX年2月:构思论文的大致结构;20XX年3月:查阅相关国内外文献;

20XX年4月:根据前量步的准备工作,完成初稿;

20XX年5月:在老师的指导下,对初稿进行修改,使其完善和严密,定稿打印装订,并进行答辩.

经过反复仔细修改和严格审查,并经过导师的指导认定,本论文按时完成,特申请本论文按时答辩,请批准.

申请人(签字):

年月日

尊敬的毕业设计(论文)审核小组的领导和老师你们好:

经过近14周的努力,通过对螺旋棒零件的调研、翻阅相关的参考文献和资料,进行需求分析、系统研究、系统设计,最终完成了螺旋棒零件工艺规程设计及钻夹具的研究和设计。在翻阅相关参考文献的阶段,通过查阅相关的机床夹具设计、切削用量手册等书籍,掌握了本系统研究设计的基本方法,基本掌握了如何操作该夹具对零件进行正常加工。同时查阅外文资料并完成了对外文资料的翻译工作。在需求分析和系统设计阶段,通过对可行性和系统进行分析,在确定设计确实可行的基础上进行进一步的研究。

在这次毕业设计中我认真学习螺旋棒零件工艺规程设计以及钻夹具设计的相关知识,严格遵循,老师的指导,按时完成任务,虚心的向同学请教和学习。目前,毕业设计(论文)、中英文翻译、调研报告、3张A0图及相关资料文档均已完成,在此向老师提出答辩申请进入下一阶段的论文答辩,希望老师同意。

注意:论文答辩申请书范文的写作主要是写自己完成论文进程和完成论文的工作情况,并写自己是否可以按时答辩或者延期答辩。

此致

敬礼!

申请人:

20**年**月**日

尊敬的学校及院系领导:

我在2007年3月至2008年8月期间,进修中国人民大学公共管理学院公共管理硕士(MPA),专业方向为公共卫生与医疗政策研究。在学习期间,我不仅学到了本专业的各项专业知识和方法工具,而且也获得了导师及授课老师们孜孜不倦的教诲,使我得以顺利完成学业。并根据所学知识,结合自己的工作实践,写成了毕业学位论文——《浅析我国采供血管理体系中存在的问题及改善建议》。该论文虽因个人学识的不足,难免挂一漏万,存在不少缺憾;但毕竟是对前段学习和工作的总结,并以此作为日后进一步学习和研究的起点。

在论文成稿之时,我除了要感谢学校和领导给予我深造的机会,以及导师和其他老师们的倾囊相授外,也向学校及院系领导申请答辩,望学校及院系领导批准。

学位论文选题的理论意义和实践意义在于:

一方面,新中国解放后,我国血液管理工作获得了较大发展。从血液来源上看,由以往主要为有偿献血变为现阶段主要为无偿献血,献血的人道主义精神得到较好的体现。据卫生部2005年公示的我国各省无偿献血占临床用血比例及排序的数据显示,自1998年我国出台无偿献血法以来,自愿无偿献血占采集临床用血比例由1998年的5%增长到2005年的,计划无偿献血占采集临床用血比例由1999年的减少到2005年的,无偿献血占采集临床用血比例由1998年的22%上升到2005年的;从法制建设上看,国家对血液的管理也逐步进入法治轨道,卫生部于1993年2、3月相继颁布了(93)第29号部长令《采供血机构和血液管理办法》和卫医发(93)第2号文《血站基本标准》,并于1993年7月1日起在全国实施,2006年又颁布了《血站管理办法》。一系列法律、法规的出台使得用血安全得到较好保障,能够较好维持血液的安全、有效供给。

另一方面,我国的血液管理在取得巨大发展的同时也存在着很大问题。从献血方面来看,部分地区存在的有偿供血仍在严重威胁血液安全。根据2004年10月卫生部公布的数据,我国内地仍有百分之十五的临床用血来自于有偿供血,尤其在部分偏远农村地区,无偿献血工作严重滞后;有些地区依然存在有偿供血、频繁采血现象,“血头”、“血霸”组织非法卖血时有发生,血源性传播艾滋病、肝炎等重大传染病直接威胁着供血者和用血者的身体健康。同时,各地在献血工作的实际开展过程中也出现了许多问题,事业单位、企业、高校等部门往往为了完成献血的行政任务而被迫采取一些非正规的操作手段,结果导致更多问题的出现,这许多的问题彰显了我国的献血制度存在着很大的.弊端。从供血方面来看,血液管理机构(主要为血站)的管理存在混乱、低效的情况,不能形成与血液使用部门(医院)的有效对接,血液供给的正常性、有效性得不到充分的保障,导致部分地区经常出现“血荒”现象。因此,对我国采供血管理体系中存在的问题进行剖析,并在此基础上提出相应的改善建议,无疑具有重要的现实意义。

论文的基本内容:

首先,回顾和总结了采供血管理的基础理论。在该章中,明晰了采供血行业的相关概念,并运用公共产品理论和政府管制理论对血液物品的性质和我国采供血管理体系进行了的必要的理论分析。

接着,分析了我国采供血管理体系的现状,即:回顾了我国血液管理体制的历史沿革;分析了我国采供血管理体系中存在的主要问题和成因。

最后,在吸取发达国家供血管理体制的经验及启示的基础上,提出了我国采供血管理体系改善方案。这些主要措施有:加强采供血的法制建设;进一步强化政府管制的主导作用;构建政府与市场和非营利组织的多方合作机制;进一步完善公众参与的无偿献血机制。

创新见解

(1)本论文在前人研究成果的基础上,遵循“提出问题→分析问题→解决问题”的研究范式,对我国采供血管理体系中存在的问题及改善建议进行研究,具有一定的理论和现实意义。

(2)采用了系统分析方法。我国采供血管理体系中存在的问题及改善建议研究是一个系统性工程,不仅关系到供血系统内部的诸多要素,更涉及到政治、经济和文化等各个社会层面,因此,只有运用系统分析的观点,才可能得出相对科学而体系化的结论。

(3)采用了理论与实践相结合的研究方法。本论文力求在对我国采供血管理体系中存在的问题及改善建议展开研究时,将其实践操作与理论指导相结合,做到理论联系实际,以使我国采供血管理体系的改善方案能在理论的指导下,开拓创新,实现实践中的突破。

(4)采用了宏观分析与微观分析研究相结合的方法。所谓宏观分析,即是回顾和总结采供血管理的相关理论,以在宏观上确立一个大的指导范式;而微观分析,则是在前述指导范式下,分析我国采供血管理体系中存在的问题,进而提出我国采供血管理体系的改善建议。通过将上述二者的有机结合,达到点面兼顾,从而全面把握新形势下我国采供血管理体系构建的走向。

此致

敬礼!

申请人:

20**年**月**日

推荐到OA图书馆查询。输入相应的关键词的英语即可。

泰勒公式及其应用论文答辩

泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:

推荐到OA图书馆查询。输入相应的关键词的英语即可。

在微积分学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习微积分的关键一环.本文主要研究泰勒公式及其在求极限方面的应用.它是通过几个典型的例题,说明几个类型的问题,也即是从特殊到一般的推理过程.我们又称之为研究式学习(归纳).这种研究对培养学生分析问题、解决问题的能力是一种有效的途径.推理过程的研究式学习也是训练严密逻辑思维的有效方式.本文通过对利用泰勒公式求极限的探讨,尤其是给出了泰勒公式在其它方面的应用,显现出泰勒公式的应用之广泛.其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导.本人论文自20xx年2月开始至本年5月完成,主要进度情况如下:20xx年2月:构思论文的大致结构;20xx年3月:查阅相关国内外文献;20xx年4月:根据前量步的准备工作,完成初稿;20xx年5月:在老师的指导下,对初稿进行修改,使其完善和严密,定稿打印装订,并进行答辩.经过反复仔细修改和严格审查,并经过导师的指导认定,本论文按时完成,特申请本论文按时答辩,请批准.注意:论文答辩申请书范文的写作主要是写自己完成论文进程和完成论文的工作情况,并写自己是否可以按时答辩或者延期答辩。答辩申请书3本文在比较广泛地搜索、整理并系统地归纳总结出静电能3种计算方法的联系和区别,明确地认识了静电能的定义。本文主要研究发现:首先,通过分析电容器并联过程中静电能损失的计算,得出静电能损失与电容器的始末状态有关,与过程无关;其次,了解到带电体的静电能是组成该带电体的电荷元之间的互能的总和;最后,通过分析资料,整理对比了两个例题,得到3种方法的相同和不同处,得出用储能方式计算静电能,仅适用于带电导体。本人保证:所提交论文内容全部为个人工作成果。经过长时间的准备,所有的论文资料都已经准备齐全,在经过第一稿的初步,第二稿的进步,第三稿已经完成毕业论文的要求内容。现已向答辩组提交的内容有:1、毕业论文设计书。2、毕业论文开题报告。3、毕业论文第一稿。4、指导教师对毕业论文第一稿的指导意见书和毕业论文第二稿。5、指导教师对毕业论文第二稿的指导意见书和毕业答辩第3稿。6、毕业论文答辩申请。通过指导教师的悉心指导,我在写这3稿毕业论文的期间认真学习了静电能的知识,我已具备参加答辩的能力,现向答辩组提出正式申请,望批准!申请人(签字):xx年xx月xx日答辩申请书4申请报告:通过论文的编写工作,让我们对国家如今的外贸专利权方面的工作有深刻了解,对目前的形势展开了全面的概括、总结,主要针对国际贸易专利权方面进行一定程度的挖掘的深层次的探讨,基于我国目前的国情,认真剖析各种案例,通读各学者的学术研究,加深对专利权保护的理解,最后也相对地提出了一定的应对方案,促使我们以后对专利权方面的贸易工作提高警惕,避免不必要的贸易争端和法律纠纷,保证我们在不触犯法律的前提下,保证自身的利益不受侵害。尽管文章内容涉及面不多,但是在探讨专利权方面知识后,对专利权方面的只是和条款的`敏感程度得到大幅度提高,在了解我们国情前提下,我们懂得了如何通过法律来保护自身的研发成果,其次是知晓我们现在面临的情况在法律面上存在的缺点,通过一系列的研究,得出如何应对专利权保护的措施和政策,并且对此提出自身的建议,收获了一系列在社会实践不能得到的知识,指导我能够更好地进行拓展和为我以后的职业生涯打下了殷实的基础铺垫,在我原有的学习基础上实行了进一步的挖掘、学习和巩固。在整个论文写作的过程中,我对自身的态度还是比较满意,虽然指导老师因为格式问题对我的文献检索部分非常不悦,但是我一直在努力一直在改正,现在已经有一定的好转。加上整个行文布置都是由我自己来布置,其布置的效果也可圈可点,直至成功定稿。但是由于学术知识的不足和经验的匮乏,我的论文尚有许多值得改进之处,希望日后能够更好地修改,为我的学士生涯交出一份完整完美的答卷。本人对论文(设计)和成果的真实性郑重承诺:申请人签名(手签)

泰勒公式与其应用论文的开题报告

泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:

数学硕士论文开题报告

导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!

一、数学文化的内涵

数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。

受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。

19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。

他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。

二、数学文化研究的意义

区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。

数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。

数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。

数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。

如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。

数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。

三、数学的文化特征

1.数学的抽象性

在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫()说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”

数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。

2.数学的确定性

数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。

然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”

3.数学的继承性

科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。

从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。

四、提纲

目录

第1章 概述

文化的内涵

文明的内涵

数学文化的内涵

数学文化研究的意义与现状

第2章 数学的文化特征

数学的文化特征

数学的抽象性

数学的确定性

数学的继承性

数学的简洁性

数学的统一性

数学的功能特征

数学的渗透性

数学的传播性

数学的工具性

数学的预见性

数学的艺术特征

数学的艺术性

数学与音乐

数学与美术

数学与文学

第3章 数学与人类文明

数学是人类逻辑能力的来源

数学唤醒人类理性精神

数学促进人类思想解放

数学改善人类生活

数学完善人类品格

数学提高人类文化素质

第4章 数学与社会文明

数学促进社会进步

数学推动知识发展

第5章 我国数学文化与数学教育的研究进展

数学文化与数学教育研究综述

数学文化与数学教育活动进展

第6章 对数学教育的若干思考

数学素养是国民文化素质的重要构成.

数学教育现状

数学文化教育亟需解决的问题与建议

结束语

参考文献

致谢

五、亟需解决的问题与建议

1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。

2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学

六、进度安排

20XX年11月01日-11月07日 论文选题。

20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。

20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。

20XX年12月10日-12月19日 确定并上交开题报告。

20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。

20XX年02月16日-02月20日 完成论文修改工作。

20XX年02月21日-03月20日 定稿、打印、装订。

20XX年03月21日-04月10日 论文答辩。

七、参考文献

[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.

[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.

[3]范森林.中国政治思想的起源[M/OL].

[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.

[5]郑毓信.数学哲学的内容和意义[J/OL].

[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.

[7]顾沛.数学文化[M],北京:高等教育出版社,2008.

[8]南开大学数学文化课程简介.

[9]吉林大学本科生数学文化课程教学大纲--数学文化.

[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.

[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.

[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).

[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.

[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.

[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.

[16]数学地质四川省高校重点实验室.

[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.

相关百科

热门百科

首页
发表服务