首页

> 期刊论文知识库

首页 期刊论文知识库 问题

怎么做除碳脱氮方案研究论文

发布时间:

怎么做除碳脱氮方案研究论文

由臭氧氧化、活性炭吸附结合的新工艺。在生物活性炭滤池前加臭氧O3,充分利用O3强氧化剂的氧化作用,将废水中难降解的溶解和胶体状的有机物质转化为易生物降解的物质。将废水中的大分子量的腐殖质氧化为低分子量的易降解的物质,如腐殖质氧化为草酸、甲酸、对苯二酸、二氧化碳和酚类等生化性能良好的化合物。随着水资源的紧张和人们环保意思的增强,污水再生利用是解决水资源短缺和水环境污染问题的重要策略之一。厌氧/好氧(A/O)工艺是在普通的活性污泥法基础上研究开发的,该工艺具有适应能力强,耐冲击负荷高,在去除有机物的同时可以取得良好的脱氮效果。

工业企业氮氧化物废气的治理方式分析论文

1 氮氧化物废气的介绍

氮氧化物是指一系列由氮元索和氧元素组成的化合物, 通常用分子式NOx 进行统一表示,它主要包括N2O、NO、N2O3、NO2、N2O4、N2O5 等几种。大气中NOx 主要以NO、NO2 的形式存在。

氮氧化物在自然界存在具有广泛性,任何燃烧过程都可以使空气中的O2 与N2 相互作用生成NO,经过进一步氧化形成NO2,而许多工业上使用硝酸进行表面处理以及进行硝化的作业都会产生大量的NO2。

2 氮氧化物废气的危害

对生物的危害

氮氧化物(NOx) 中的N0 对人类身体内的血红蛋白有很强的亲和力,NO 进入血液中后,取代将氧在血红蛋白里的位置,与血红蛋白牢固地结合在一起,从而臭氧层形成致癌物,引起支气管炎和肺气肿等病变,对人类的呼吸道系统造成损伤。还会对植物或动物造成损伤甚至死亡。

形成化学烟雾

氮氧化物(NOx) 在阳光的催化作用下,容易与碳氢化合物发生复杂的化学反应形成O3,产生光化学烟雾。造成对大气的严重污染,甚至导致人们出现眼睛红肿、咳嗽、喉痛、皮肤潮红等症状,严重者心肺衰竭。

破坏臭氧层

氮氧化物(NOx) 中的N2O 能转化为NO,破坏臭氧层,其产生过程可以用方程式表示:NO+O3=NO2+O2,O+NO2=NO+O2总的反应方程式为O+O3=O2( 其中NO 起催化作用)。上述反应不断循环,使得其中的活性O 原子被光照分解,从而造成对臭氧层的破坏。

氮氧化物(NOx) 中的NO,遇水生成HNO3、HNO2,并随雨水到达地面,形成酸雨或者酸雾;使慢性咽炎、支气管哮喘发病率增加,使儿童免疫功能下降,同时可使老人眼部、呼吸道患病率增加。受酸雨的影响使农作物大幅度减产,大豆、蔬菜中的产量和蛋白质含量下降。

3 氮氧化物废气的治理方法

3..1 气相反应法

还原法

还原法分为选择性催化还原法和选择性非催化还原法。选择性催化还原法是在一定温度和催化作用下,利用NH3、C 等做还原剂,选择性地将NOX 还原为无害的N2 和H3O。因为这种方法对大气的影响不大,所以是目前脱硝效率较高,最成熟且应用最广的脱硝技术。

而选择性非催化还原法是指在一定的温度范围内,在无催化剂的作用下,通过注入NH3、C 等还原剂选择性地NOX 还原为无害的N2 和H3O。二者的主要区别在于温度的控制和有无催化剂的作用。由于选择性非催化还原法对温度的控制较为严格,目前常用尿素代替NH3 作原剂,可使NOX 降低50% ~ 60%。

低温等离子分解法

低温等离子分解技术是利用电子束法和脉冲电晕的方法,放电产生的高能活性粒子撞击NOX 分子,产生自由基并同时脱除NOX 和SO2,化学键断裂分解为O2 和N2 的方法。采用低温等离子体技术不仅容易实现,而且处理范围广、效果好,还能节约能源和设备,还不会造成二次污染。因此在氮氧化物(NOX)的治理方面已逐渐引起人们的重视,具有广阔的发展前景。

电子束照射法

电子束照射法是在烟气中加入少量氨气或甲烷气的情况下,利用电子加速器产生的高能电子束辐照烟气,将烟气中的NOX和SO2 转化成硫酸铵和硝酸铵的`一种烟气脱硫脱硝技术。电子束照射工艺是工业烟气中去除NOX 的有效方法之一。它的优点是脱除SO2 和NOX,还能回收副产物(H4NO3)加以利用,而且不产生废水,具较高的脱除率。

液体吸收法

液体吸收NOX 的方法有很多,应用也比较广泛,常用的有水、碱溶液、稀硝酸、浓硫酸等。

由于NOX 极难溶于水,所以用水作吸收剂,吸收效率低。此方法仅可用于气量小、净化要求不高的场所,不能应用于工业企业氮氧化物废气的治理。用稀硝酸作吸收剂对NOX 进行物理吸收和化学吸收,可以回收NOX,有一定的经济效益,但耗能较高,在工业企业中使用率也不高。用NaOH 作吸收液是效果最好的,但由于受价格、来源、操作难易等因素的影响,所以,工业上用Na2CO3 代替NaOH 作吸收液。

与其他方法相比,液体吸收法具有操作工艺及设备简单,而且投资少等优点,且具有一定的经济效益,但它的净化效果差。

吸附法

吸附法是利用吸附剂对NOX 的吸附量随温度或压力的变化而变化的原理, 通过改变反应器内的温度或压力, 来控制NOX 的吸附和解吸反应, 以达到将NOX 从气源中分离出来的目的。常见的吸附剂有分子筛、活性碳、天然沸石、硅胶及泥煤等。

根据再生方式的不同, 吸附法可分为变温吸附法和变压吸附法两种。其中有些吸附如硅胶、分子筛、活性碳等,兼有催化的性能,能将废气中的NO 催化氧化为NO2,然后可用水或碱吸收而得以回收,对NO 的去除有促进作用。但因吸附容量小,吸附剂用量多,设备庞大,再生频繁等原因,应用不广泛。

微生物法

微生物净化氮氧化物是近年来国际上研究的一种新烟气脱硝技术,包含有硝化和反硝化两种机理。废气的生物化净化过程是利用脱氮菌的生命活动来除废气中的NOX。适宜的脱氮菌在有外加碳源的情况下, 以氮氧化物为氮源, 将氮氧化物同化为有机氮化合物, 成为菌体的一部分( 合成代谢), 也能使脱氮菌本身获得生长繁殖。而通过异化反硝化作用,则会使最终NOX 转化为N2。

4 结语

中国已经进入节能减排的新时期, 为了减少工业企业氮氧化物废气对大气的污染, 烟气脱硝新技术的研究与开发为进一步治理NOX 的污染提供了许多新的途径,各种经济有效的高技术烟气脱硝方法将会不断出现。但目前,还需要针对我国国情,考虑经济承受能力以及当地的资源等因素,选择最佳的治理方法。这些方法的发展和完善将会对工业企业氮氧化物废气的治理作出极大的贡献。

生活污水三段A/O处理工艺的流程图。希望对你有用,原水—集水井—厌氧池—好氧池—厌氧池—好氧池—厌氧池—好氧池—沉淀池(污泥回流到第一个厌氧池)(如果污泥过多,则排到污泥浓缩池在到压滤机进行污泥压缩,上清液回流到集水井)—出水水中脱氮是生活污水中的有机氮,蛋白氮在氨化菌的作用下转化为氨氮,在再好样条件下被硝化菌转化为硝酸盐氮。在厌氧的条件下,硝酸盐氮被反硝化菌,以碳为能源(提供能源),硝酸盐氮被转化为氨气排出。

废水中总氮主要由氨氮、有机氮、硝态氮、亚硝态氮组成,其中氨氮主要来自于氨水以及诸如氯化铵等无机物,要去除水中的总氮,首先要明确哪一组分是导致总氮超标的原因,再进行针对性解决。

(1)氨氮的去除:折点加氯氧化法、生物法。

(2)有机氮的去除:生物法、化学法。

(3)硝态氮的去除:生物法、HDN-FT高效脱氮设备、IDN-BMP总氮处理富增集成装备。

氮化碳研究现状论文

聚合物氮化碳(CNs)被认为是最可持续的太阳能光催化转化材料。然而,第一代CNs存在电荷分离不完全和CO2吸附不足的问题。

有鉴于此, 马普学会胶体与界面研究所的Markus Antonietti、武汉理工大学的Jiaguo Yu和Shaowen Cao 联合报道了在石墨烯上具有有序排列的高结晶CN-纳米棒的异质结材料的结构,它改善了光收集、CO2捕获和界面电荷转移。

本文要点

要点1. 石墨烯负载的一维纳米晶CNs具有较高的CO2/N2选择性,最高可达44,对CO2的吸附热为 kJ/mol。

要点2. 这种异质结材料还可以在气相中驱动简单而有效的CO2光还原反应,而无需添加任何助催化剂或牺牲剂,即使在更相关的低浓度CO2的情况下也是如此。

Xi a, Y.; Tian, Z.; Heil, T.; Meng, A.; Cheng, B.; Cao, S.; Yu, J.; Antonietti, M., Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. Joule 2019.

DOI:

https:// www .sciencedirect .com /science/article/pii/S2542435119304 143

在理论的预言下,人们采用各种手段试图在实验室合成出这种新的低密度高硬度的非极性共价键化合物,常用的制备方法有震荡波压缩、高压热解、离子注入、反应溅射、等离子体化学气相沉积、电化学沉积、离子束沉积、低能离子辐射、脉冲电弧放电和脉冲激光诱导等,但这种超硬材料的合成结果并不理想,主要表现在沉积物多为非晶CN薄膜,少数实验得到纳米级尺寸的C3N4晶粒镶嵌于非晶薄膜中,很少得到大颗粒的晶体。另外,目前又没有天然存在的标样,而且由于氮化碳几种相态的能量相近,在制备的薄膜中很难得到单一相的氮化碳化合物,使得对这种材料的准确表征存在很多困难,如对IR光谱吸收峰位置的确切解释,X射线衍射(XRD)或透射电镜(TEM)结果与预言值之间的较大差别,Raman光谱仅表现为石墨或无定形碳膜的特征光谱等,这些困难使得目前的氮化碳的合成研究进展缓慢。但一些研究结果表明非晶CN薄膜也具有很高的硬度、耐磨性、储氢性能以及优异的场发射性能,值得人们深入研究。 在氮化碳晶体的合成研究中,相对于其他的合成方法,物理或化学气相沉积方法取得了较好的研究结果。通过在反应体系中引入高活性的氮、碳原子或离子,从而在基片上沉积氮化碳薄膜。首次关于β-C3N4晶体的人工合成实验结果的报道是将高浓度的氮原子引入到脉冲激光烧蚀石墨靶产生的碳原子中,TEM数据与理论计算值相当吻合,分析证实了β-C3N4晶体的存在。但由于该方法制备的C—N膜的结晶仍然较差,且β-C3N4晶体的晶粒尺寸小于10nm,在该研究报道中并未给出氮化碳晶体直观的SEM形貌图。最早的β-C3N4晶体形貌照片是KMYU在氮气氛下利用射频溅射石墨靶分别研究Si和Ge基片上沉积时得到的氮化碳薄膜,并在Si基片上观察到~1μm大小的单晶体。由于该单晶体只是在硅基片与C—N薄膜的界面出现,在C—N薄膜中很难发现,同时在Ge基片上不出现,且由于Si基片的影响,研究报道中未给出晶体组成原子的定量比,考虑到这些因素,该晶体很难排除Si原子的影响,而可能是在其他研究中发现的C3-xSixNy晶体。为了排除Si的影响,王恩哥等人利用偏压辅助热丝化学沉积方法在Ni衬底上首次制得了晶体形貌清晰的C3N4六棱体。但是由于在化学气相沉积条件下更容易生成C—H和N—H产物,使得采用等离子体化学气相沉积或物理气相沉积方法制备的氮化碳薄膜大多是非晶态的,很多研究工作集中在薄膜的力学性能、场发射性能等方面,而关于氮化碳晶体的合成与结构研究进展缓慢。 近年来,液相电沉积技术也被用于氮化碳薄膜的合成研究中。目前在电沉积研究中,大多采用有机溶液作为电解液,合成的氮化碳薄膜多为非晶膜。红外光谱分析(FT-IR)表明薄膜中存在C—N和C═N键。改变电极结构和提高工作电压导致电极间出现火花放电的实验证实薄膜中有C3N4晶体出现,分析表明含氮的有机物在强电场的作用下分子发生断裂,生成了碳氮直接相连的分子碎片,有利于氮化碳晶体的生成,但XRD的结果分析中仍然存在不确定的衍射峰。电化学沉积氮化碳薄膜的机理也有待于进一步的研究。在氮化碳晶体的合成研究中,采用相同的合成技术,不同的研究者在晶体形貌的直观观察、结构测定和光谱分析等方面很少有可以相互验证的研究结果,这一点与上世纪80年代末发现另一种超硬材料金刚石可以用化学气相沉积法来低压合成后所面临的研究状况完全不相同,从这个角度来看,氮化碳晶体的合成尚有待寻求新的合成技术。 由于实验中很难得到大的高质量的氮化碳单晶,氮化碳的结构表征也存在着很大的不确定性。在氮化碳的晶体结构表征中,早期的研究多是对所制得的主要由氮、碳组成的薄膜作X射线衍射分析,然后将衍射结果与理论预言值相比较,以此来分析氮碳薄膜的结晶情况。但由于理论预言的几种氮化碳晶体的结合能非常接近,在生长过程中容易竞相生长,不同相的XRD谱线可能重叠,同时薄膜的结晶度很低,X射线衍射的强度又比较低,使得衍射峰的归宿存在很大的不确定性,从而降低了这种表征方法的可信度。利用透射电镜对单个的微小晶体进行观察测试可以得到较为准确的结果,但由于样品的制备困难,这方面的研究报道较少。由于采用多种方法所合成的氮化碳薄膜中氮碳原子比一般均比氮化碳晶体的理论配比小,因此氮在氮碳薄膜中的含量成为评价薄膜质量的一个重要因素。在关于氮碳薄膜的氮碳原子的含量和化学键的分析研究中,X射线光电子能谱(XPS)、能量色散X射线分析(EDXA)以及Auger电子谱(AES)等技术被广泛应用。薄膜中氮的含量随反应等离子体中氮分压的增加而增加,但通常是在氮分压较小时,薄膜中氮原子的含量随氮分压的增加而快速增加,当氮分压较高后,薄膜中氮原子含量趋于饱和。在利用氮、碳离子束沉积中,薄膜中的氮含量在氮离子含量较低时,薄膜中氮的含量随离子束中氮离子的含量的增加而增加,但当氮离子含量太高时,由于溅射效应,在Si基体上除了氮化硅薄膜的生成外,观察不到氮化碳薄膜的生成。脉冲激光沉积中也有类似的规律。在薄膜结构的分析中,XPS分析技术被广泛使用。通过对C1s、N1s谱线的拟合来确定薄膜中氮碳原子的含量和成键状态。由于氮碳薄膜中杂质原子的影响,XPS谱的拟合分析结果也不一致。在一些研究中,将XPS、Raman光谱和红外光谱结果结合起来分析,得到可相互验证的结果。通过对氮碳键的分析,寻找有利于sp3碳键C—N键形成的合成方法和条件,是合成β-C3N4晶体的关键。Raman光谱由于对石墨碳的灵敏度较高广泛用于炭基材料的表征。各种氮化碳晶体的Raman光谱的特征峰位置已有理论计算值,但是目前在绝大多数关于氮化碳薄膜样品的Raman光谱分析中,除了与碳有关的D峰和G峰外,很少有其他的与氮化碳晶体的理论计算的特征峰相吻合的报道。 从目前的研究来看,氮化碳晶体的合成结果并不是很理想,主要表现在:(1)各种合成方法很难得到单一相的氮化碳晶体,多晶薄膜或非晶薄膜样品给结构分析带来很大困难;(2)合成产物的形貌、结构和光谱分析至今没有出现相互支持、相互验证的实验结果。基于氮化碳单晶体合成的困难,且由于高N含量的非晶态氮化碳薄膜也具有很多优异的物理性质,目前很多研究工作转向氮化碳薄膜的结构和性能研究,包括化学气相沉积条件对薄膜组成成分、光学性能的影响,氮化碳薄膜的力学性能的测定,掺杂对薄膜力学和光学性能的影响等。因此,回避氮化碳晶体结构的表征,寻求性能优异的氮化碳薄膜的制备方法和应用途径可能是近期关于氮化碳研究的一个主要方向。

氮化碳研究现状论文范文

化工类毕业论文范文辉光放电在减压反应器中进行,在直流、低频交流、射频,或者微波电场或磁场的作用下产生。反应装置有内极式、外极式和无极感应式等3种。低温等离子体化学反应的优点在于:在常规下不能进行或难以进行的反应,在等离子体状态下能够顺利进行,如全氟苯的聚合、氮化硅的淀积等。等离子体表面轰击力强,穿透力弱,适合于表面改性。等离子体表面改性时,主要是利用各种能量粒子与固体表面作用,达到改变表面化学结构的目的。它包括3方面内容: 在A r、He、N2、O2和NH3等气体的辉光放电中对聚合物表面进行等离子体处理;进行等离子体接枝;在聚合物表面淀积超薄等离子体聚合膜。与常规化学改性方法相比,等离子法具有干法、不破坏材质、低温、快速、污染小和效率高等优点。 低温等离子体的特点 低温等离子体含有大量的电子、激发态原子和分子以及自由基等活性粒子,这些活性粒子使材料表面引起蚀刻、氧化、还原、袭解、交联和聚合等物理和化学反应,对材料表面进行改性。由于低温等离子体中粒子的能量一般为几个至几十个电子伏特,大于高分子材料的结合键能(几个至十几个电子伏特),完全可以使有机大分子材料的结合键断裂而形成新键;但其健能远低于高能放射线的能量,故表面等离子体处理只发生在材料的表面,在不损伤基体的前提下,赋予材料表面新的性能。 低温等离子体在高分子材料上的应用,大致可以分为两类:一是等离子体聚合,另一是等离子体改性。等离子体聚合是利用聚合性气体,在基底表面生成具有特殊功能(如防水、防腐蚀、结构致密具有特殊物理性能等)的聚合物;等离子体改性是利用各种等离子体系作用于物质表面,在物质表面发生各种物理和化学的作用,如架桥、降解、交联、刻蚀、极性基团的引入及接枝共聚等,从而达到对物质表面改性的目的。用高分子膜作为等离子体聚合物的沉积基质会引起材料表面的交联、化学物理性质以及形态的改变,从而起到了对原高分子膜改性的作用。 机理分析 等离子体处理橡胶表面是利用气体(空气或氧气)电离产生氧等离子体,氧等离子体中大量的 O+、O-、O+2、O-2、O、O3、臭氧离子、亚稳态 O2 和自由电子等粒子与橡胶表面发生物理和化学反应,在橡胶表面产生大量的极性基团,使碳原于从C—H结合变为 、 、 等,从而提高橡胶表面的亲水性,改善橡胶与金属的粘合性能。 等离子体粒子的能量一般约为几个到几十个电子伏特,如电子的能量为0—20eV,离子为0—2eV,亚稳态粒子为0—20eV,紫外光/可见光为3—40eV。而橡胶中常见化学键的键能为:C—H ;C=0 ;C—C ;C=C 。由此可见,等离子体中绝大部分粒子的能量均略高于这些化学键能,这表明等离子体是完全有足够的能量引起橡胶内的各种化学键发生断裂或重新组合的。以聚丁二 烯 橡胶为例来说明: 尽管反应仅在表面几个单分子层发生(只限于橡胶表面最外层10—1000的范围内,不会改变橡胶的整体特性),但是其密度和强度的增加却说明表面能的改变。 低温等离子体处理的过程 对聚合物的低温等离子体处理包括以下4个过程:脱离(Ablaton);交联(Cross-linking);活化(Activation)和沉积(Deposition)。 (1)脱离:等离子体处理过程中,利用高能粒子轰击聚合物,使弱的共价键断裂,称为脱离。脱离使得暴露在等离子体中基质的最外分子层离开基体,由真空装置除去。由于基质表面污染层的化学键一般由较弱的C-H键构成,故等离子体处理可以除去像油薄膜一样的污染物,使基质表面清洁,并留下活性的聚合物表面。

新近一种世界上最硬的新材料——氮化碳(β—C3N4)问世,迅速引起全世界科学界和工程技术界的强烈反响和巨大震动。1993年7月,美国哈佛大学传出轰动性的科技新闻:利用激光溅射技术研制成功氮化碳薄膜。分析表明,新材料具有β—C3N4结构,而具有这种结构的晶体硬度将超过目前世界上最硬的金刚石晶体,成为首屈一指的超硬新材料。制备氮化碳的实验是在1989年首先从理论上预言4年之后获得成功的。在分析一系列超硬材料结构,如最硬的材料金刚石,体积弹性模量B高达435GPa(吉帕),立方氮化硼B=369GPa,以及硬度相对较低的碳化硅(SiC)、碳化硼(B4C)和氮化硅(Si3N4)等超硬材料后,发现其中β—Si3N4已经有大量的研究结果,于是提出以C取代Si会产生怎样的结果?计算表明,得到的数据令人振奋,β—C3N4晶体的体积弹性模量B=483GPa!而材料的体积弹性模量B的大小正是表征材料硬度高低的宏观物理量。这就从理论上首次预言了氮化碳的硬度可能比以往世界上最硬的金刚石还要高。在自然界,至今还没有发现天然存在的氮化碳晶体,而1993年竟然在实验室人工合成硬度超过金刚石的这种新材料。这一轰动性的事件一经在美国《科学》和《纽约时报》上报道,成为轰动性科技新闻后,立即引起全世界材料界的关注。于是世界上许多实验室开展了这项研究,一时间形成热潮。在研究机构、国防部门和公司企业的共同协作下,一些实验室很快取得很好的成果。这有力地说明,学者与企业家携手合作在高新技术发展过程中的重要性。经实验证明,在可见光条件下,C3N4表现出很好的光催化性能,能够降解甲基蓝等有机化合物。

氮化碳研究现状论文题目

氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。 氮在自然界中的循环转化过程。是生物圈内基本的物质循环之一。如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反覆循环,以至无穷。 基本概念 空气中含有大约78%的氮气,占有绝大部分的氮元素。氮是许多生物过程的基本元素;它存在于所有组成蛋白质的氨基酸中,是构成诸如DNA等的核酸的四种基本元素之一。在植物中,大量的氮素被用于制造可进行光合作用供植物生长的叶绿素分子。 加工,或者固定,是将气态的游离态氮转变为可被有机体吸收的化合态氮的必经过程。一部分氮素由闪电所固定,同时绝大部分的氮素被非共生或共生的固氮细菌所固定。这些细菌拥有可促进氮气和氢化和成为氨的固氮酶,生成的氨再被这种细菌通过一系列的转化以形成自身组织的一部分。某一些固氮细菌,例如根瘤菌,寄生在豆科植物(例如豌豆或蚕豆)的根瘤中。这些细菌和植物建立了一种互利共生的关系,为植物生产氨以换取糖类。因此可通过栽种豆科植物使氮素贫瘠的土地变得肥沃。还有一些其它的植物可供建立这种共生关系。 其它植物利用根系从土壤中吸收硝酸根离子或铵离子以获取氮素。动物体内的所有氮素则均由在食物链中进食植物所获得。 氨 氨来源于腐生生物对死亡动植物器官的分解,被用作制造铵离子(NH4+)。在富含氧气的土壤中,这些离子将会首先被亚硝化细菌转化为亚硝酸根离子(NO2-),然后被硝化细菌转化为硝酸根离子(NO3-)。铵的两步转化过程被叫做氨化作用。 铵对于鱼类来说有剧毒,因此必须对废水处理植物排放到水中的铵的浓度进行严密的监控。为避免鱼类死亡的损失,应在排放前对水中的铵进行硝化处理,在陆地上为硝化细菌通风提供氧气进行硝化作用成为一个充满吸引力的解决办法。 铵离子很容易被固定在土壤尤其是腐殖质和粘土中。而硝酸根离子和亚硝酸根离子则因它们自身的负电性而更不容易被固定在正离子的交换点(主要是腐殖质)多于负离子的土壤中。在雨后或灌溉后,流失(可溶性离子譬如硝酸根和亚硝酸根的移动)到地下水的情况经常会发生。地下水中硝酸盐含量的提高关系到饮用水的安全,因为水中过量的硝酸根离子会影响婴幼儿血液中的氧浓度并导致高铁血红蛋白症或蓝婴综合征(Blue-baby Syndrome)。如果地下水流向溪川,富硝酸盐的地下水会导致地面水体的富营养作用,使得蓝藻菌和其它藻类大量繁殖,导致水生生物因缺氧而大量死亡。虽然不像铵一样对鱼类有毒,硝酸盐可通过富营养作用间接影响鱼类的生存。氮素已经导致了一些水体的富营养化问题。从2006年起,在英国和美国使用氮肥将受到更严厉的限制,磷肥的使用也将受到了同样的限制。这些措施被普遍认为是为了治理恢复被富营养化的水体而采取的。 在无氧(低氧)条件下,厌氧细菌的“反硝化作用”将会发生。最终将硝酸中氮的成分还原成氮气归还到大气中去。 氮气(N2)的转化 有三种将游离态的N2(大气中的氮气)转化为化合态氮的方法: 生物固定 – 一些共生细菌(主要与豆科植物共生)和一些非共生细菌能进行固氮作用并以有机氮的形式吸收。 工业固氮 – 在哈伯-博施法中,N2与氢气被化合生成氨(NH3)肥。 化石燃料燃烧 – 主要由交通工具的引擎和热电站以NOx的形式产生。 另外,闪电亦可使N2和O2化合形成NO,是大气化学的一个重要过程,但对陆地和水域的氮含量影响不大。 由于豆科植物(特别是大豆、紫苜蓿和苜蓿)的广泛栽种、使用哈伯-博施法生产化学肥料以及交通工具和热电站释放的含氮污染成分,人类使得每年进入生物利用形态的氮素提高了不止一倍。这所导致的富营养作用已经对湿地生态系统产生了破坏。 全球人工固氮所产生活化氮数量的增加,虽然有助于农产品产量的提高,但也会给全球生态环境带来压力.,使与氮循环有关的温室效应、水体污染和酸雨等生态环境问题进一步加剧. [思路分析] 氮素是构成生物体的另一种必需元素,自然界中的氮素循环包括许多转化作用。空气中的氮气被固氮微生物及植物与微生物的共生体固定成氨态氮,经过硝化微生物的作用转化成硝态氮,后者被植物或微生物同化成有机氮化物。动物食用含氮的植物,又转变成动物体内的蛋白质。动物、植物、微生物的尸体及排泄物被微生物分解后,又以氨的形式释放出来,这种过程叫做氨化作用。由硝化菌产生的硝酸盐在无氧条件下被一些微生物还原成为氮气,重新回到大气中,开始新的氮素循环。微生物在氮素循环中的几种作用归纳为:固氮作用、硝化作用、同化作用、氨化作用和反硝化作用。 [解题过程] 氮素在自然界中有多种存在形式.其中数量最多的是大气中的氮气,总量约×1015t.除了少数原核生物以外,其他所有的生物都不能直接利用氮气,必须通过以生物固氮为主的固氮作用才能被植物吸收利用,动物直接或间接以植物为食获取氮. 构成氮循环的主要环节是:生物体内有机氨的合成,氨化作用,硝化作用,反硝化作用和固氮作用. 植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮. 动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮.这一过程叫做生物体内有机氮的合成. 动植物的遗体,排泄物的残落物中的有机氮被微生物分解后形成氨,这一过程叫做氨化作用. 氨化作用和硝化作用产生的无机盐,都能被植物吸收利用.在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程叫做反硝化作用. 大气中的分子态氮被还原成氨,这一过程叫做固氮作用.没有固氮作用,大气中的分子态氮就不能被植物吸收利用. 地球上固氮作用的途径有三种:生物固氮,工业固氮和大气固氮.据科学家估算,每年生物固氮的总量占地球上固氮总量的90%左右,可见,生物固氮在地球的氮循环中具有十分重要的作用. 氮素是农作物从土壤中吸收的一种大量元素,土壤每年因此要失去大量的氮素.大量施用氮素化肥能保证植物的生长需要,使粮食增产,但同时又造成土壤板结和环境污染.所以人们研究生物固氮,通过生物固氮这条途径使土壤中的氮素得到补充,有利于环保和可持续发展.

新近一种世界上最硬的新材料——氮化碳(β—C3N4)问世,迅速引起全世界科学界和工程技术界的强烈反响和巨大震动。1993年7月,美国哈佛大学传出轰动性的科技新闻:利用激光溅射技术研制成功氮化碳薄膜。分析表明,新材料具有β—C3N4结构,而具有这种结构的晶体硬度将超过目前世界上最硬的金刚石晶体,成为首屈一指的超硬新材料。制备氮化碳的实验是在1989年首先从理论上预言4年之后获得成功的。在分析一系列超硬材料结构,如最硬的材料金刚石,体积弹性模量B高达435GPa(吉帕),立方氮化硼B=369GPa,以及硬度相对较低的碳化硅(SiC)、碳化硼(B4C)和氮化硅(Si3N4)等超硬材料后,发现其中β—Si3N4已经有大量的研究结果,于是提出以C取代Si会产生怎样的结果?计算表明,得到的数据令人振奋,β—C3N4晶体的体积弹性模量B=483GPa!而材料的体积弹性模量B的大小正是表征材料硬度高低的宏观物理量。这就从理论上首次预言了氮化碳的硬度可能比以往世界上最硬的金刚石还要高。在自然界,至今还没有发现天然存在的氮化碳晶体,而1993年竟然在实验室人工合成硬度超过金刚石的这种新材料。这一轰动性的事件一经在美国《科学》和《纽约时报》上报道,成为轰动性科技新闻后,立即引起全世界材料界的关注。于是世界上许多实验室开展了这项研究,一时间形成热潮。在研究机构、国防部门和公司企业的共同协作下,一些实验室很快取得很好的成果。这有力地说明,学者与企业家携手合作在高新技术发展过程中的重要性。经实验证明,在可见光条件下,C3N4表现出很好的光催化性能,能够降解甲基蓝等有机化合物。

除尘脱硫工艺设计论文研究方法

属不需要脱硫的燃煤。含硫量小于,不需要脱硫。如果希望脱硫,可以在除尘水中加生石灰。其他一切不动。

现有水膜除尘器阻力 Pa 1100 提供值还有就是在煤的含哩量大于时,应该使用石灰石脱硫,其脱硫效果可达到98%

袋式除尘器由含尘气体入口至净化烟气出口,本体结构由进气管路、进气室、袋室、灰斗、排灰阀、出口管道及反吹风系统和清灰控制系统所组成。

袋式除尘器本体为全钢结构,并设计由防热膨胀机构措施,外壳采用轻质岩棉板双层保温,外表用镀锌板防护,并采用抽拉铆钉新工艺安装,花板用冷冲压压延滚压成型工艺,既增加强度又保证设备质量。

袋式除尘器采用的是经特殊处理的耐高温玻纤布袋,其抗折性、耐磨性、强度及热冲击性能均较好,并可根据不同的烟气特性,对玻纤进行相应的处理,达到需方使用要求和排放标准。

脱硫除尘器是通过控制二氧化硫排放的技术,除尘器不仅能脱除烟气中的二氧化硫,并能生产出高附加值的硫酸氨化肥产品。该锅炉除尘设备利用一定浓度(此处以28%为例)的氨水作为脱硫剂,生成的硫酸氨浆液,输送到化肥厂处理系统。脱硫过程中使用的氨水需要量,由预设PH控制阀来自动调节,并由流量计进行测定。硫酸氨结晶体在脱硫除尘器中被饱和的硫酸氨浆液结晶出来,生成35%重量比左右的悬浮粒子。这些浆液被子泵送到处理场,经过初级和二级脱水,然后,再送到化肥厂进行进一步脱水、干燥、冷凝和存储,通过锅炉除尘设备对烟气脱硫的同时,锅炉除尘器还生成了可观的副产品,达到一定的经济效益。

袋式除尘器

项目概况:为了加强企业竞争实力,树立良好企业形象和保证企业的可持续发展,XX有限公司(以下简称甲方)现有二台35T/h抛煤机链条炉,根据甲方单位对烟气排放浓度的要求,决定对厂区原有二台35T/h除尘设备进行脱硫除尘改造,使二氧化硫和烟尘排放浓度达到辽宁省有关环保排放及总量控制的要求,尽可能的减少对环境的影响。
设计参数:
序号 项 目 单 位 参 数 备 注
1 脱硫系统设备 台套 2
2 35t/h锅炉烟气量 m3/h·台 61000 提供值
3 锅

相关百科

热门百科

首页
发表服务