首页

> 期刊论文知识库

首页 期刊论文知识库 问题

运筹学方面最小化的论文

发布时间:

运筹学方面最小化的论文

现在和将来的角度,结合你所学 我可以写,比较多

给你个网站,希望能帮到你

分类: 社会民生 >> 其他社会话题 问题描述: 请大家帮帮忙 解析: 何谓“运筹学”?它的英文名称是Operations Research,直译为“作业研究”,就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。汉语是世界上最丰富的语言,中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。这就极为恰当地概括了这门学科的精髓。 在人类历史的长河中,运筹谋划的思想俯拾皆是,精典的运筹谋划案例也不鲜见。像“孙子兵法”就是我国古代战争谋略之集大成者;像诸葛亮更是家喻户晓的一代军事运筹大师。然而,把“运筹学”真正当成一门科学来研究,则还只是近几十年来的事。第二次世界大战中,英美等国抽调各方面的专家参与各种战略战术的优化研究工作,获得了显著的成功,大大推进了胜利的进程。战后,从事这些活动的许多专家转到了民用部门,使运筹学很快推广到了工业企业和 *** 工作的各个方面,从而促进了运筹学有关理论和方法的研究和实践,使得运筹学迅速发展并逐步成熟起来。 运筹学发展到现在,虽然只有五十多年的历史,但其内容已相当丰富,所涉及的领域也十分广泛。以《运筹学国际文摘》收集的各国运筹学论文的内容为例,按技术分类就有50多种。现在这门新兴学科的应用已深入到国民经济的各个领域,成为促进国民经济多快好省,健康协调发展的有效方法。 我国运筹学的应用是在1957年始于建筑业和纺织业。1958年开始在交通运输、工业、农业、水利建设、邮电等方面都有应用,尤其是运输方面,提出了“图上作业法”并从理论上证明了其科学性。在解决邮递员合理投递路线问题时,管梅谷教授提出了国外称之为“中国邮路问题”解法。从60年代起,运筹学在我国的钢铁和石油部门得到了全面和深入的应用。1965年起统筹法的应用在建筑业、大型设备维修计划等方面取得了可喜进展。从70年代起,在全国大部分省市推广优选法。70年代中期最优化方法在工程设计界得到广泛的重视。在光学设计、船舶设计、飞机设计、变压器设计、电子线路设计、建筑结构设计和化工过程设计等方面都有成果。70年代中期的排队论开始应用于研究港口、矿山、电讯和计算机设计等方面。图论曾被用于线路布置和计算机设计、化学物品的存放等。存贮论在我国应用较晚,70年代末在汽车工业和物资部门取得成功,近年来运筹学的应用已趋于研究规模大和复杂的问题,如部门计划、区域经济规划等,并已与系统工程难于分解。 关于运筹学将往哪个方向发展,从70年代起就在西方运筹学界引起过争论,至今还没有一个统一的结论,这里提出某些运筹学界的观点,供大家进一步学习和研究时参考。 美国前运筹学会主席邦德()认为,运筹学应在三个领域发展:运筹学应用、运筹科学、运筹数学,并强调在协调发展的同时重点发展前两者。这是由于运筹数学在70年代已形成一个强有力的分支,对问题的数学描述已相当完善,却忘掉了运筹学的原有特色,忽视了对多学科的横向交叉联系和解决实际问题的研究。现在,运筹学工作者面临的大量新问题是:经济、技术、社会、生态和政治因素交叉在一体的复杂系统,所以从70年代末80年代初,不少运筹学家提出“要注意研究大系统”,“要从运筹学到系统分析”。由于研究大系统的时间范围有可能很长,还必须与未来学紧密结合起来;面临的问题大多是涉及技术、经济、社会、心理等综合因素,在运筹学中除了常用的数学方法,还引入了一些非数学的方法和理论。如美国运筹学家沙旦()于70年代末期提出的层次分析法(AHP),可以看作是解决非结构问题的一个尝试。针对这种状况,切克兰特()从方法论上对此进行了划分。他把传统的运筹学方法称为硬系统思考,认为它适合解决那种结构明确的系统的战术及技术问题,而对于结构不明确的、有人参与活动的系统就要采用软系统思考的方法。借助电子计算机,研究软系统的概念和运用方法应是今后运筹学发展的一个方向。

运筹学方面的论文

去看看这本(运筹与模糊学 )里的内容吧

在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。

运筹学方面的论文题目

提供一些经济统计类的学年论文题目,供写作参考。 1. 某省各地市经济发展水平的综合评价 2. 工业企业经济效益综合评价的应用研究 3. 某省市经济发展水平分区研究 4. 某省市消费拉动第三产业增长的实证分析 5. 某省市城镇居民消费结构变化趋势研究 6. 某省普通高等教育生源变动趋势与对策研究 7. 某省城镇居民消费结构比较研究 8. 某高校学生的心理健康统计分析 9. 课堂教学评估体系与方法研究 10. 某市各区县经济综合实力评价研究 11. 基于多元统计的某省经济分区研究 12. 因子分析在某省利用外资效果评价中的应用 13. 因子分析在居民消费结构变动分析中的应用 14. 因子分析在企业竞争力评价中的应用 15. 深沪股市收益率分布特征的统计分析 16. 某省市农民收入问题的调查与思考 17. 最优加权组合法在GDP预测中的运用研究 18. 最优加权组合法在粮食产量预测中的运用研究 19. 最优加权组合法在能源消耗预测中的运用研究 20. 我国(某省)实际人均GDP的趋势分析及预测 21. 某省市工业经济效益的综合评价 22. 工业企业科技竞争力的综合评价 23. 某省市城镇居民消费结构的地区差异分析 24. 某省市各地区经济综合实力的评价 25. 基于因子分析法的上市公司财务状况评价研究 26. 某省工业化进程统计测度及实证分析 27. 某省城市化进程统计测度及实证分析 28. 某省城市规模发展水平分析与比较研究 29. 某省市工业行业结构特征的因子分析 30. 城镇居民消费的典型相关分析 31. 我国(某省)各地区人口素质差异的统计分析 32. 我国(某省)三次产业结构变动的统计分析 33. 某省农业产业化发展的实证研究 34. 某省外贸出口与经济发展关系的实证研究 35. 县域经济发展综合评价的实证研究 36. 某省各县市经济发展的聚类分析 37. 某省各县市产业结构的聚类分析 38. 某省(市)信息化实现程度实证评价 39. 某省(市)环境保护综合评价 40. 我国科技进步贡献率的测度 41. 某省(市)居民生活水平与质量实证评价 42. 某省(市)经济外向度实证研究 43. 县级政绩考核指标体系与方法研究 44. 我国城乡居民收入差距实证研究 45. 我国东西部城镇居民收入差距实证研究 46. 某省市城镇居民消费水平与结构变化趋势研究 47. 某省市投资拉动GDP增长的实证研究 48. 耐用品需求预测模型及其应用研究 49. 某省市GDP周期波动实证研究 50. 某省市工业周期波动实证研究 51. 某省市零售市场周期波动实证研究 52. 某省市农民收入周期波动实证研究 53. 某省市人口最优预测模型与应用研究 54. 某省市人口老龄化趋势与对策研究 55. 某省市财政收支变化趋势与对策研究 56. 某省市城镇居收入差距变化趋势与对策研究 57. 某省市农民收入差距变化趋势与对策研究 58. 长江水质的综合评价与预测 59. 多元统计分析方法在股票市场板块中的应用研究 60. ARCH族波动模型研究及其在我国股市中的应用研究

浅议中小企业薪酬激励问题

大三下了,学的是财务管理专业,老师要求我们写五千字的学年论文,题目自拟,但最好是写经济类的,说是从掌握的经济咨询里面总结出自己的观点就有东西可写了,而且如果这次写的好,直接可以和毕业论文相关联。 拜求各位童鞋们给点建议,或者给个思路,题目之类的 小女子不甚感激……给各位鞠躬了```3Q

你可以上网上看一下赵国庆教授写的论文,我觉得还不错。 求采纳

韩国词性分析,比如阴性词阳性词 韩国助词分析例如이/가 은/는 词尾之类的分析 还可以比如说韩国泡菜看韩国人 韩国电视剧的发展 韩国电影 韩国语汉字词分析都可以 韩国韩服 韩国韩服和中国旗袍 韩国礼仪等等 总之文化类的范围广,词性之类的引用很多~

《股票价格的影响因素》这题目比较有吸引力

运筹学知识 论我来写的 的

好像没有类似设计类的专业。 经济类的专业有:经济学、国际经济与贸易、金融学、风险管理与保险学、财政学、环境资源与发展经济学(一般的院校有前三个专业,后三个专业在重点院校才有)。 (1)经济学专业:该专业课程设置与国外大学经济学专业接轨,为有志成为经济理论研究者、宏观经济管理者和职业经理的青年学生提供一个成长和发展的舞台。毕业生既适合到 *** 经济决策部门、金融研究机构、教学研究机构和公司企业工作,也为在国内或出国继续深造打下坚实的基础。 (2)国际经济与贸易专业:该专业主要培养适应经济全球化趋势,具备国际经济基本理论与较高的外语和电子商务运用等实践技能的,能从事国际经济、贸易、金融、商务工作的高级专门人才。毕业生以深厚的理论基础与开阔的创新思维为竞争优势,有较为自由的选择空间。 (3)金融学专业:该专业在与国际上金融学专业教学接轨的同时,也提供实践应用性课程,从而全面提升学生个人的竞争能力。毕业生既有去国外名校留学深造的,也有选择到咨询管理公司、投资银行、中央银行、外资或国有商业银行、保险公司、国家部委机关等工作的。 (4)风险管理与保险学专业:该专业致力于培养"有专长、基础宽、素质高",能够胜任国内外风险管理与保险经营管理工作的复合型人才及风险管理与保险教学科研工作的学术人才。毕业生或者去国外名校留学,或者供职于各大保险公司、保险监督管理机构、金融证券机构。 (5)财政学专业:该专业顺应公共管理事务在中国的勃兴,旨在培养具有宽厚扎实的经济学理论基础,熟悉财政税务、财务会计知识,具备较高的外语和计算机运用水平、较强的研究能力、决策能力和管理能力的高级专门人才。毕业生可从事 *** 部门的公共经济研究和政策制定工作,可任职于各类大型企业、会计师事务所、律师事务所等中介机构的资产评估、税务代理等工作,还可以留在大学或是研究机构,从事研究教学工作。 (6)环境资源与发展经济学专业:该专业是一门兼有文、理、工三栖特点的综合型经济学科,侧重于环境、资源与可持续性发展的研究,毕业生将能胜任在 *** 部门、大中型企业、跨国公司、科研机构、高等院校及国际组织等的管理与研究工作。 经济学、国际经济与贸易、金融学一般大学都会有的。

与版式设计有关的

财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。

随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。

运筹学最优化研究论文

科普推广运筹学一直以来是【运筹OR帷幄】平台的初衷。本次我们邀请到了平台优化板块的责编团队的成员,结合各自独特的业界工作体会,分享他们眼中在业界发光发热的运筹学。

一、元器件行业中的运筹学

本人在一家做元器件服务的公司实习,军用元器件使用的时候有两个典型场景:替代和统型。

替代是设计师针对进口元器件找到可替代的国产型号;统型是在一个产品的BOM内确定某几个不同元器件是否可以统一使用一种,以此减少元器件品种数。

目前行业内开始从依赖专家经验(比如知道某个国产元器件就是对标某个进口元器件做的),转向从元器件性能参数的相似度出发进行判断,所以涉及到相似度和聚类方法的应用。

相比方法本身,解决问题的更大阻碍是元器件性能参数数据的复杂性和不规范性。例如不同类别的元器件性能参数不同,即使在同一类别下,不同生厂商给出的性能参数形式也不同,对此进行规范需要有元器件专业知识,所以实际中,数据清洗往往耗费最多人力,也是影响方法使用效果的一大因素。

二、电力行业中的运筹学

本人领域是电力系统最优化,可能大家没有察觉,但是现在中国的电力网络毫无争议的走在了世界的最前沿。强如美国,最近也又一次出现了大规模停电问题。(上次是1977年加州大停电)这次美国的停电持续了25个小时,约至少4万人受到了影响,经济损失至少3000万美金以上。但是中国自从普及用电后,从没发生过如此大规模的停电问题。除了电力人的辛勤奋斗外,这也离不开运筹学在电力系统中的应用。

众所周知,我们现在的电力网是交流输电网络。交流输电网络中的参数远比直流输电网络要复杂得多。最明显的不同,在交流网络中我们需要处理线路的有功功率无功功率。除此之外,线路的损耗、输电节点的电压和相角也是我们需要考虑的因素。为了保证整个电力系统的损耗最小,我们需要建立相关的数学模型进行分析计算,然后再由调度中心进行调控。但是实际问题的复杂程度远远超乎想象,单一个最优潮流问题就是一个大规模非凸非线性的问题。为了求解这类问题,相关学者提出了诸多算法和理论。诸如:半正定规划、现代内点法、凸松弛技术,模型近似技术等。这些理论已经发展了数十年,但即便如此,也没有一套成熟的理论被应用到实际中。

在电力网中,我们不单要考虑线路损耗的降低,更重要的是要保证供电的可靠性。我们常常需要提前一天或数天对电力系统进行调度安排,这类问题往往是一个多层优化问题,对于这类问题,我们常见的求解办法是Benders分解和列生成。除此之外,我们需要不定期对线路检修,发电厂的维护,而线路的通断、发电厂的启停在数学模型中又成了一个整数规划问题。整体的求解难度又上升了一个层次。另外,在国家大规模倡导新能源接入的今天,风电和光伏电站不断被接入电力网络中,而新能源不能得到普及的一个重要因素是我们不能准确预知新能源电厂在下一时刻能够发出多少电能供我们使用。为了分析这类问题,我们的模型在混合整数非线性规划上又需要考虑不确定因素带来的影响。对这类问题的求解,我们又提出了随机规划、鲁棒优化、分布鲁棒等。还有一点,我们的输电线路可能会由于雷击、树枝接触等导致出现输送功率出现扰动。系统中的这些小扰动可能会对用户供电的电压和频率产生波动,对于普通家庭来说可能影响不大,但是对于一些高精技术的产业,一次电压或频率的波动就可能导致整个生产线的崩溃。如何建立相关的数学优化模型来预防这一问题也是当前的研究热点之一。

最后,大家也十分熟知我们国家有一个西电东送的工程,这也是我认为最困难的一个点,我们国家的电力网络是连在一起的,是一个十分庞大且复杂的系统,而我们电力网络是时时波动的,我们需要在秒级做出优化,并给出方案。目前针对这种超大规模的含不确定性的多层混合整数非线性规划问题,我们没有办法在有限的时间内得到一个最优解。

但即便困难重重,在一线的电力工作者仍在尽自己最大的努力来保证电力网络的安全可靠运行,为中国电力点赞。

三、制造业中的运筹学

本人目前是某厂的算法工程师,参与过企业的排班,调度,决策优化等场景的项目,主要想结合自己的经历和大家分享一下运筹优化在企业中的一些应用,主要包括任务规划/排班和实时调度两个方面,围绕场景定义,方法论和实际中的困难三个点进行阐述。

1、任务规划/排班

(1)场景定义

首先说一下什么是任务规划,什么是排班。任务规划是基于设定好的任务输入,进行任务的排期规划,以达到资源的有效利用和工作效率的提升。任务规划主要用于传统制造业/工厂排程,建筑工程规划排程,物流运输线路任务打包等场景。任务规划后输出给虚拟人或者其它虚拟资源创建的带有时间窗的任务包,排班则基于这些任务包,把它对应到实际的人或者其它真实车辆,机械等资源中,规划出某些资源在什么时候做什么任务的结果,以及该任务需要消耗多少其它资源。

(2)方法论

主要的规划方法也是传统运筹优化使用的方法。首先了解真实的业务场景,抽象业务规则和约束,搭建数学模型,运用规划求解器(Cplex,Gurobi等)或者启发式算法(Local Search,Iterative Forward Search等以及各种变种)进行求解。启发式算法可以在现有的solver上进行基于不同场景的二次开发,也可以自行开发。业界一般采用第一种方式。

(3)实际运用困难点

在实际场景中,给不同资源的排班会有很多实际因素要考虑。给人排班要考虑人的工作班次时长,人历史的上班习惯(如习惯上晚班,晚班后不能接早班),人所拥有的技能,个人的偏好(偏好某个工种或者上班时间段),法律规定以及不同工厂因为地域有不同的差异,如香港是8小时工作制,而大陆班次时长可以是10小时等。当我们处理实际问题的时候,先要梳理实际场景,总结管理规律,构建多种配置参数,进行建模。相比于排班来说,任务规划因为是针对虚拟资源而构建,所以可以不用考虑过多的资源属性(如人习惯)等因素。

2、实时调度

(1)场景定义

基于实时数据输入,进行任务的整合和任务的分配。主要的场景有:O2O外卖即时配送,打车软件车辆实时调度,仓储叉车/AGV,分拣中心分拣机器人实时调度等场景。实时调度的场景主要集中于新业务,而非传统的制造业和实体企业。传统的制造业和实体企业骄傲于他们的规划,而前面场景定义所提到的一些新业务场景,无法采用有效地长期规划手段,更多地是依赖短期的预测和实时的规划调度。

(2)方法论

上述提到的短期预测:如外卖下单到餐品完成的时间估计,车辆调度Supply和Demand的平衡,仓储/分拣中心的任务需求预测等,一般基于不同场景搭建机器学习模型,或者各种深度学习模型的Ensemble进行训练和预测。

实时的规划调度包括:如外卖下单后分给哪个外卖小哥,车辆订单来了分给哪辆车,任务需求来了分给哪辆叉车,AGV或者机器人。主要的方法有:

● 短时间压单后进行任务分配,以牺牲一定的最优性而换来快速高效地计算,采用传统并行的多个Tabu Search,Simulated Annealing等进行TSP或者VRP的计算。

● 强化学习/动态规划方法。用收集的数据和规则搭建仿真环境,用强化学习构建任务需求(订单或者生产入库需求等)与资源(车辆,外卖效果,叉车等)的匹配价值(Value),然后分配计算。

(3)实际运用困难点

● 大规模订单/任务需求的计算,需要一定的计算资源支持,以及牺牲算法的优化性来实现快速计算。

● 实时数据的采集。有些数据无法直接有效地采集,比如真实商家做餐时间。

● 如果要搭建仿真环境,也需要了解和抽象实际的业务规则。

3、关于运筹学在业界应用的思考

我在某公司实习了三个月,主要做的是生产计划。生产计划也是属于供应链的一个环节,与调度相比生产计划的制定要更加宏观一些。生产计划就是决策什么时间,在哪家厂/哪条生产线上,加工多少工件。生产计划的问题广泛的存在于制造业中,举个例子就是是手机的制造,一部手机有上千个零件构成,每个零件都在指定的供应商处生产,例如手机屏幕,手机摄像头,手机电池,手机充电器每个零件都由不同的生产厂来生产,然后将这些零件运送到最终的组装厂拼装成一台成品的手机。如何合理的安排每个厂在什么时候该生产多少零件是一个需要决策的重要问题。这个问题的核心在于要考虑尽量满足订单的需求要降低库存水位(或者是库存的周转率),同时要考虑到物料的约束,产能的约束,运输的约束等等因素。

在小规模的排产问题中人工调度员还能应对,一旦生产规模变大,生产工艺复杂之后,人工调度的弊病会逐渐凸显出来。目前国内有意识去做供应链的决策模型与算法的并不多,据我所知其中比较有代表性的是杉数科技。

杉数科技智能计划排程系统致力于为制造业及其上下游产业提供全链条技术服务,利用运筹学与机器学习将实际问题转化为数学模型求解,实现最优化的排程。个人认为,杉数科技在运筹学应用于制造业领域做了很好的探索,在很大程度上解决了如何用更少的人,更短的时间,生产更多的产品问题。

上面提到的生产计划问题本质上是一个混合整数规划问题,零件的个数就是一个整数变量,而生产这些零件的物料可能是整数的也可能是连续变量,因此该问题构成了一个混合整数规划问题。解决方案无非以下两种:

● 采用经典的混合整数规划的方法,先对原混合整数规划进行分解和重新建模,例如拉格朗日松弛,Benders 分解或者列生成等等方法,子问题的求解可以采用Gurobi或Cplex这些商用求解器。

● 针对问题特性设计元启发式算法,启发式算法。

实际运用困难点

我想谈谈混合整数规划在业界应用的gap到底在哪里,当然说大一点的话也是探讨运筹学在业应用的gap。

(1 )实际应用问题往往是大规模的

实际的生产问题往往是大规模的,例如我实习时所面临的实际问题其决策变量维数都达到上亿级别,业务部门要求是2小时之内给出结果,这对算法的效率实际上提出了非常大的挑战。即使是求解上亿规模的线性规划问题耗时都比较巨大,更不用说是整数规划问题了。我们经常说线性规划简单,哈哈,但是从实际应用的角度来看目前求解线性规划的速度在一些场景上还是不能满足我们实际应用的需求的。

目前在学术界大家很多情况下都是在小规模问题上自娱自乐玩一下,所以真正在公司的话,大规模的问题非常非常普遍。举个例子就是读运筹学的PhD的时候是学会在游泳池里游泳,真正在公司里边面对的问题可能就是得在大海里边游。这其实还是比较好的状况,更差的情况是一些童鞋可能在学校里只是学会了在浴缸里游泳而已。

(2) 实际数据往往都是病态的

实际问题的数据往往都是病态的,例如我在公司遇到的问题就是病态问题,具体来说就是优化问题约束或者目标函数的系数数量级的差别过大,导致求解过程的病态,实际问题的数据往往是千差万别和稀奇古怪的,数量级的差异经常超过10E20以上。这一点在学术界研究的相对较少一点,因为学术界研究的问题都比较理想化,即使有从实际中抽象一些原型出来,但是已经把病态啊这些问题都基本过滤掉了,但是在实际中你就发现病态问题太多了。

(3) 业务人员没有优化的意识,运筹优化的人缺乏业务知识,沟通成本非常高

业务人员没有优化的意识,很多时候他们不清楚运筹优化能做什么,甚至当运筹优化的算法工程师问题业务人员你们有什么要求没(约束条件),你们有什么量化的指标要越大越好或者越小越好(目标函数),业务人员很多时候也不能很清晰量化的描述出来这些东西,还有很多时候业务人员嘴巴上告诉你的目标函数和心里想的不一致。就相当于你是一个大厨,什么线性规划,拉格朗日松弛,列生成,半定规划,鲁棒优化这些菜你都会做,结果来一个顾客说他不知道吃点啥。

运筹学的理论的应用必然还是要有一个实际的背景问题,而不同的问题所处的行业不一样,每个行业都有自己的习惯自己的一套语言和模式,例如航空业就有很多专业术语,如果做航空优化的话,那么就要求运筹优化的算法工程师要具备一定的业务基础,否则你是无法和业务人员交流的,人家说话你都听不懂,1次2次不懂你可以问,十次八次不懂的话,人家就不爱和你说话了。而且运筹优化算法工程师一般都是作为乙方出现的,很多时候还必须是我们得放低姿态的去主动的接触业务学习业务才行啊,否则项目就很难进行下去。

(4) 测试困难,如何验证优化算法求解结果的正确性

好不容易,经过了重重阻碍,克服千难万险,我们的优化算法出炉了,我们可以得到一个结果。如何验证这个结果是正确的呢?其实非常抱歉的告诉你,基本没啥靠谱的方法去验证。现在在公司普遍的作法是两种,1是人为的构造一些类似benchmark的东西,这些东西的最优解比较显而易见,通过这些benchmark来检测算法的正确性;2是参考以前人工的经验来看,算法给出的解是不是合理,例如要是做一个调度算法呢,就找几个有经验的调度员来看这个算法是不是接近以前人工调度的结果,如果接近那就认为OK了。很显然这两种方法有很多的不足,第一种方法只能适用问题特别简单的时候,问题稍微复杂一点,规模大点benchmark就很难构造了,第二种方法虽然适用面更宽一些,但是问题也很明显,那就是以前人工调度的结果很难说是比较好的结果,那这个结果去和算法做对比本来参考系就有问题。

四、电商行业中的运筹学

本人目前在某电商供应链计划部门实习,该电商平台有八个事业部,每个事业部每天都有一定量级的产品上新、下架。目前平台上八大事业部的总商品数量量级是十万,对接不到2000家供应商。我所在职位的主要工作内容是,根据历史销量进行各个产品的需求量预测,由于产品发货渠道有商家自发货和平台发货两种渠道,选择平台发货的厂商需要结合产品的生产周期,并且按照与平台约定的补货周期将货物运到平台的自有仓库。

因此对于平台供应链计划部门来说,需要根据货物现有库存,结合日均销量预测(分大促日销和平常日销两种)实现补货量和补货时间点预测自动化,仓库效益最大化。将预测信息反馈到计划员和事业部同事进行产品调整。存在的难题有很多,比如对于新品的日销需求预测?长期在架产品的需求预测及库存管理实现效益最大化?当某产品的补货周期是一个月时,涵盖了大促时期和平销时期,如何库存管理和日销量预测,以实现仓库效益最大化,平台收益最大,且尽可能缩短断货时长?而这些都是运筹学和优化问题。

五、机器学习行业中的运筹学

本人最近在BAT(之一)的北美研究院实习,研究院本身的运作模式算是和本地业务团队稍有不同,成员多为国内外名校毕业的计算机、统计、数学、运筹学等专业的博士。除了写paper之外,团队也需要做能“落地”的业务支持项目(通常和国内的业务部门合作):如在线视频网站的推荐算法、二手商品平台的定价算法、新零售门店的多渠道库存控制算法等。

这些问题首先的一个共性是:海量的数据规模。这些问题对应的业务部门都有专门的数据团队,每天在公司内部的数据仓库会定时更新当日的数据(每日的数据量级都是上百TB)。因此,要在此基础之上,设计实用的优化算法,实际上对经典的运筹学模型和优化算法来说,也是巨大的挑战。

因此,在目前我注意到的这些业界的实际“优化”业务中,机器学习方法和运筹学模型基本上是要一起使用的。更具体的来说,业界更需要的是“数据驱动”的决策模型。比如,现有的机器学习、深度学习方法带给我们良好的预测模型,而所谓的决策模型/优化模型便往往可以基于这些预测模型之上。当然,最理想的状态是能够将预测和决策这两个看似分离的步骤结合起来,即,动态地基于预测调整决策,再通过现阶段的决策调整之后的预测。关于这点,目前学术界有了很多不错的理论,但距离工业界的实际“落地”还是有距离的。这或许便是业界当中机器学习和运筹学的未来吧。

Operation Research原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌芽。 运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。与在他们的奠基作中给运筹学下的定义是:“运筹学是在实行管理的领域,运用数学方法,对需要进行管理的问题统筹规划,作出决策的一门应用科学。”运筹学的另一位创始人定义运筹学是:“管理系统的人为了获得关于系统运行的最优解而必须使用的一种科学方法。”它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物的组织管理、筹划调度等问题,以期发挥最大效益。 现代运筹学的起源可以追溯到几十年前,在某些组织的管理中最先试用科学手段的时候。可是,现在普遍认为,运筹学的活动是从二次世界大战初期的军事任务开始的。当时迫切需要把各项稀少的资源以有效的方式分配给各种不同的军事经营及在每一经营内的各项活动,所以美国及随后美国的军事管理当局都号召大批科学家运用科学手段来处理战略与战术问题,实际上这便是要求他们对种种(军事)经营进行研究,这些科学家小组正是最早的运筹小组。 第二次世界大战期间,“OR”成功地解决了许多重要作战问题,显示了科学的巨大物质威力,为“OR”后来的发展铺平了道路。 当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。 运筹学的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。 运筹学的研究方法有:1.从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解;2.探索求解的结构并导出系统的求解过程;3.从可行方案中寻求系统的最优解法。 运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、图论、决策论、对策论、排队论、存储论、可靠性理论等。 数学规划即上面所说的规划论,是运筹学的一个重要分支,早在1939年苏联的康托洛维奇( )和美国的希奇柯克()等人就在生产组织管理和制定交通运输方案方面首先研究和应用一线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划问题,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门都可以发挥作用。从范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,具有适应性强,应用面广,计算技术比较简便的特点。非线性规划的基础性工作则是在1951年由库恩()和达克()等人完成的,到了70年代,数学规划无论是在理论上和方法上,还是在应用的深度和广度上都得到了进一步的发展。 图论是一个古老的但又十分活跃的分支,它是网络技术的基础。图论的创始人是数学家欧拉。1736年他发表了图论方面的第一篇论文,解决了著名的哥尼斯堡七桥难题,相隔一百年后,在1847年基尔霍夫第一次应用图论的原理分析电网,从而把图论引进到工程技术领域。20世纪50年代以来,图论的理论得到了进一步发展,将复杂庞大的工程系统和管理问题用图描述,可以解决很多工程设计和管理决策的最优化问题,例如,完成工程任务的时间最少,距离最短,费用最省等等。图论受到数学、工程技术及经营管理等各方面越来越广泛的重视。 排队论又叫随机服务系统理论。1909年丹麦的电话工程师爱尔朗()排队问题,1930年以后,开始了更为一般情况的研究,取得了一些重要成果。1949年前后,开始了对机器管理、陆空交通等方面的研究,1951年以后,理论工作有了新的进展,逐渐奠定了现代随机服务系统的理论基础。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。它是研究系统随机聚散现象的理论。 可靠性理论是研究系统故障、以提高系统可靠性问题的理论。可靠性理论研究的系统一般分为两类:(1)不可修系统:如导弹等,这种系统的参数是寿命、可靠度等,(2)可修复系统:如一般的机电设备等,这种系统的重要参数是有效度,其值为系统的正常工作时间与正常工作时间加上事故修理时间之比。 决策论研究决策问题。所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地选择最优方案的过程。决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。研究决策理论与方法的科学就是决策科学。决策所要解决的问题是多种多样的,从不同角度有不同的分类方法,按决策者所面临的自然状态的确定与否可分为:确定型决策、风险型决策和不确定型决策;按决策所依据的目标个数可分为:单目标决策与多目标决策;按决策问题的性质可分为:战略决策与策略决策,以及按不同准则划分成的种种决策问题类型。不同类型的决策问题应采用不同的决策方法。决策的基本步骤为:(1)确定问题,提出决策的目标;(2)发现、探索和拟定各种可行方案;(3)从多种可行方案中,选出最满意的方案;(4)决策的执行与反馈,以寻求决策的动态最优。 如果决策者的对方也是人(一个人或一群人)双方都希望取胜,这类具有竞争性的决策称为对策或博弈型决策。构成对策问题的三个根本要素是:局中人、策略与一局对策的得失。目前对策问题一般可分为有限零和两人对策、阵地对策、连续对策、多人对策与微分对策等。 运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质,是系统工程学和现代管理科学中的一种基础理论和不可缺少的方法、手段和工具。运筹学已被应用到各种管理工程中,在现代化建设中发挥着重要作用。在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。 运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。 但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。 运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。 运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。 虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。 随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。 各分支简介 数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。 数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。 这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。 线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。 非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。 排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。 排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。 因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。 排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。 对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。 最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。 搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。 运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。

因为,蚂蚁沿途中会留下一种气味,其它蚂蚁用触角来闻对方的气味,所以就不会迷路了。

财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。

运筹学期末小论文

论文摘要:文章针对侦察无人机航路规划这一问题,分析了影响航路规划的因素,构建了航路规划的模型。结合侦察无人机航路规划的特点与模型,论证了基于蚁群算法求解的理由与优点,并对蚁群算法的初始信息素强度与启发因子进行了改进。最后以岛屿进攻战役这一特定作战任务为例。利用MATLAB实现了侦察多目标时的航路规划问题。 引言 航路规划是指在目标点与起始点之间,为运动物体寻找满足某种性能指标和某些约束的线路、路径。目前对于航路规划的研究主要用于导弹、鱼雷、飞机等飞行器的飞行线路选择上,对于无人机的侦察航路的系统研究还不多见。在文献[3]中虽然也应用蚁群算法进行了航路规划,但没有充分考虑到威胁点存在和目标点价值对航路的影响,且对蚁群算法没有进行启发因子和信息素初始强度方面的创新。在相关外文文献中,由于美军无人机航程较大,其航路规划的约束条件就相对较少,可供借鉴的内容也很有限。而针对岛屿进攻战役这一特殊作战样式的研究更是尚属空白。本文正是基于这一背景下对该问题进行研究,以实现在充分发挥无人机最大作战效能的同时,又尽可能地降低无人机被毁伤概率。 1、影响航路规划的因素分析 影响侦察无人机航路规划的主要因素有如下四个方面。 目标价值 目标价值是衡量某一时刻对某一目标实施火力突击必要程度的综合指标(用Vm表示)。可采用层次分析法获得各个目标的价值Vm,也可以再进行归一化处理,得到各目标的相对价值系数Ku,以此来衡量目标的重要程度。 对不同的目标实施侦察时,对于价值较高的目标可安排更长的有效侦察时间,而对于价值相对较低的目标,则应适当压缩有效侦察时间。 有效飞行时间(距离) 侦察的主要目的是发现对己方有价值目标并及时描述目标的状态,因此发现目标的概率是航路是否合理的一个重要指标。距离目标越近,飞机上侦察设备能够搜索目标区的时间也就越长,发现目标的概率也就越大。 在执行侦察任务时,为了获得某一目标的有效信息,无人机必需接近目标并使目标处于其机载电子、光学侦察设备的作用距离内。如果为了实时监控某一目标,侦察无人机还必需在此目标的上空盘旋、停留,以使目标长时间地处于机载设备的监控之下。因此对目标的发现概率可以用有效飞行时间来表征。它表示侦察无人机对目标总的侦察、监控时间,为处理方便,若侦察无人机以等速率飞行,则其有效侦察飞行时间也可转变为有效飞行距离表征。 生存能力 侦察无人机要完成侦察任务就必须具备一定的生存能力。而其生存能力主要与侦察无人机的隐形规避性能、敌方雷达、防空武器的性能等相关。即侦察无人机的生存能力既受本身的易感性、易损性、可靠性影响,也受敌方的侦察探测和打击能力影响。 从侦察无人机完成飞行任务过程来看,包括发射、正常飞行和突破拦截三个过程,若用概率Pf、Pl、Ps表示三个过程的完成情况。 航程(油量)限制 航程是指侦察无人机起飞后,中途不经加油所能飞越的最大水平距离,即飞行距离。是表征侦察无人机远航和持久飞行能力的指标。由于其在地面一次所加的油量是有限的,因此它的航路必然受到航程的限制,且由于无线电的作用距离受限,飞机执行任务的位置不能超过其作战半径。 2、航路规划构模 侦察无人机多数情况下执行特定的侦察监视飞行任务,指挥员期望的目标是在有限的飞行时间与航程内发现尽可能多的目标,同时付出的代价最小。 就航路规划的约束条件而言,首先是威胁量不能超过指挥员的许可范围,其二,是侦察无人机总的飞行距离不能超过侦察无人机的航程。一旦两者之一不能成立,表明要求的任务是无法完成的,即 3、蚁群算法及其改进 蚁群算法作为一种新的计算模式引入人工智能领域,被称为蚂蚁系统,该系统基于以下假设: (1)蚂蚁之间通过环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也仅对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择。在群体水平上,单只蚂蚁的行为是随机的,但蚁群通过自组织过程形成高度有序的群体行为。 基于蚁群算法进行航路规划的特点 基于蚁群算法的侦察无人机航路规划方法,能够保证在航路制订时得到一条具有较小可被探测概率及可接受航程的飞行航路,这种航路规划方法还具有以下特点:(1)在蚂蚁不断散布生物信息激素的加强作用下,新的信息会很快被加入到环境中,而由于生物信息激素的蒸发更新,旧的信息会不断被丢失,体现出一种动态特性; (2)最优路线是通过众多蚂蚁的合作被搜索得到的,并成为大多数蚂蚁所选择的路线,这一过程具有协同性; (3)由于许多蚂蚁在环境中感受散布的生物信息激素同时自身也散发生物信息激素,这使得不同的蚂蚁会有不同的选择策略,具有分布性。这些特点与未来战场的许多要求是相符的,因而采用蚁群算法对侦察无人机的航路进行规划具有可行性与前瞻性。 蚁群算法的改进 (1)ij(t)的初值 为了更好的考虑威胁,在定义在初始条件下定义轨迹强度不同,根据蚂蚁选择路线最优选择轨迹强度高的路线,而无人机的航路规划中则应该更优的选择距离威胁点较远的航路。那么可以定义轨迹的初始强度与距离成反比。即与威胁点越近的路线,信息素强度越小。对于两目标点间的每条路径,其信息素轨迹初始强度。 4、基于改进蚁群算法的侦察无人机航路规划的实现 航路规划的初始条件 蚁群算法用于航路规划主要运用在对多目标实施搜索侦察的航路规划问题,即航路规划需要得出的是飞行经过各个目标的数量和次序,以使侦察无人机经过尽可能多的目标点。 在进行初始规划的过程中,为更方便蚁群算法的实现,首先确定坐标系,将上述各目标点及威胁点用坐标系来表示,这样可以便于实际的运算。 假设在岛屿进攻战役中以某市为坐标点(100,100)的位置,以3公里为1个坐标系单位长度建立平面直角坐标系(这是在充分考虑了将主要有价值点都包括在一个(120×120)的范围内而合理构建的)。则可以确定上述各点的坐标系位置,得到各点坐标。同时各个目标点的价值系数通过层次分析法可求得到结果(具体过程略)。 蚁群算法模型的实现 蚁周系统的各初始参量的确定 为计算和表示方便,将目标点定义为向量Mi(其中i=1,2,3,…,12),威胁点定义为向量Ti(其中i=1,2,3)。采用蚁群算法实现目标点的类旅行商(TSP,Traveling Salesman Problem)问题,目前已经开发的蚁群算法包括蚁密系统、蚁量系统和蚁周系统,而实际应用多数应用后者。为模拟系统中蚂蚁行为的方便,定义标记。 蚁群算法模型分析 通过比较的方法,定性分析各个情况下的目标函数值和航路规划图。不难发现在考虑了目标点价值和威胁点威胁的情况下,航路尽可能地避开了威胁并优先选择通过目标价值较大的点。这样无人机的被毁伤概率较低,且如果发生被毁伤事件时,已经发现的总体目标价值最大。 针对四种情况进行定量分析,假设指挥员的倾向性为,即略侧重于考虑威胁代价。2000表示对每个目标的有效侦察距离均为2000m,计算目标函数的值,可见考虑完备时虽然航路总长最大但总体的目标函数值也最大,航程最优,即侦察无人机应按照依次通过这些目标点。 5、结束语 通过上述分析,在给定侦察无人机的侦察任务情况下经运算可求得最优的初始航路,它可以有效地提高无人机的侦察效能,降低无人机的被毁伤概率,它对于目前军事斗争准备中如何使用侦察无人机具有一定的指导意义。随着我军侦察无人机性能的提高及型号的不断丰富,在对未来岛屿进攻战役中如何对这些机型进行航路规划尚有待于进一步探讨。

谈关于运筹学教学的几点思考 [论文关键词]运筹学 教学研究 课程建设[论文摘要]本文对运筹学教学中存在的一些问题进行分析,并就运筹学的教学目的、教学内容、教学形式等方面进行探讨,提出相应的改革思路和措施。 运筹学作为一个学科出现以来,特别是20世纪50年代以来,运筹学的研究与实践在我国得到深入发展,在工程、管理、经济等领域都发挥了重大的作用,并作为一门课程逐渐成为管理科学、系统科学、信息技术、工程管理、物流管理、经济、金融等专业的基础课程之一。然而,由于运筹学知识的综合性及内容上的数学复杂性,使得这一课程的教学表现出强烈的自身特色。结合几年来十几次运筹学教学的体会,对运筹学的教学方法进行一个粗浅的分析,以供探讨。 一、注重其发展背景及现实意义的讲授 运筹学作为一门应用科学,既不同于数学等经典学科,又不同于普通的应用学科,这一点可以从其发展背景中略见一斑。从运筹学的早期的发展来看,它可追溯到1914年提出的军事运筹学中的兰彻斯特(Lanchester)战斗方程、1917年丹麦工程师爱尔朗(Er-lang)在哥本哈根电话公司研究电话通信系统时提出的排队论的先驱者、20世纪20年代初提出的存储论最优批量公式等等。这些发展背景的介绍有助于学生对于这一学科的重要性、学科的特点、以及其中问题的解决思路都会起到非常重要的作用。所以,作为运筹学课程的讲授人员,要把不应在课程绪论的讲授中一带而过,而是要在讲授过程中让学生有所体悟。 二、注重其“学科交叉、多分支”的特点 应该说“学科交叉、多分支”是运筹学作为一门课程的重要特色,也是教学过程中需要认真处理、仔细推敲的一个关键问题。多学科交叉使得运筹学表现出知识结构和思维方式上的复杂性——既具有数学学科的理论特性又具有应用学科的自身特性、既具有理工学科的定量特性、又具有人文学科的分析特性、既追求“完美”又注重“实用”。作为授课教师而言要始终把握运筹学的这一特点,做到对发展现状的较好跟踪,注重对学生启发性引导;做到对授课对象的仔细区分,既包括对学生学历的区分又包括对学生专业的区分,对学生学历的区分主要体现在知识内容、授课学时、授课方式、课程要求等环节,而对学生专业的区分则主要体现在理学、工学和经管专业在知识深度与广度上的差异以及在理论和应用上的差异。而多分支特性则要求授课教师在授课过程中对各个分支有针对性的选择并能够做到对该分支理论及应用的充分把握。 三、注重“案例教学、实验教学”的`综合运用 案例教学与实验教学在运筹学教学中的运用主要在于对学生综合能力的培养。“案例教学”一方面可以在课程讲授过程中起到引导的作用,既可做到由浅入深、又可在较大程度上激发学生的学习兴趣,为接下来的深入做好铺垫;另一方面,又可在知识的运用上起到较好的教学效果,既激发学生的知识运用的兴趣又加深对知识理论的理解。“实验教学”既是对理论教学和案例教学的细化又是对学生动手能力的有效引导手段,特别是对学生脚踏实地的学习态度是一个较好的锤炼,同时也对学生长期以来单纯的“分数为上”的学习方式是一个有效的冲击。正是基于上述考虑,笔者认为在运筹学的讲授过程中要充分重视“案例教学”和“实验教学”的运用,充分考虑二者在运筹学教学过程中比重和搭配问题。 四、注重教学方式的运用 随着教育技术的飞速发展,多媒体教学在课堂教学中运用越来越普遍,它在一定程度上提高了教学的质量和教学率,同时又带来相应的弊端。尤其是多年的高校扩招和运筹学课程的普遍适用性使得多数运筹学课程为大课教学,这就促使教师为了避免后排学生看不清而几乎抹去了板书的运用。所以,在大班化的背景下,板书与多媒体的矛盾始终是运筹学教学中一个难以解决的问题。 五、注重对考核方式的研究 考核作为学习过程中的一个重要环节,其设计的好坏对整个教学质量有着重要影响。在传统的考试方式中,往往过多得强调知识点的掌握情况,而在一定程度上忽视了应用能力的培养。所以,不仅要在教学过程中注重“案例教学”和“实验教学”的运用,又要注重对学生实践能力方面的考核,不仅包括学生对分析能力、动手能力的考核,还要包括对学生探索精神和探索能力的考核。基于此,笔者认为在运筹学考核过程中“专题考核”和“研究论文”都可作为传统考核方式的重要补充。 总之,教学内容、教学方式、教学媒介、考核方式都是运筹学授课教师始终需要认真思考的问题。不仅如此,还要综合考虑自身高校的教学特点,特别是该课程在专业体系中作用的考虑以及该校教学管理部门的课程管理特点。该文仅仅是笔者一点粗浅体会,不足深论,仅供参考。 [参考文献] [1]杨茂盛,孔凡楼,张炜.对运筹学课程教学改革的看法和建议[J].西安建筑科技大学学报(社会科学版),2006(12),108-110 [2]张润红.从整体角度对工程管理专业《运筹学》教学的探索[J].理工高教研究,2005(2),94-95 [3]胡发胜,刘桂真.国家精品课程运筹学的教学改革与实践[J].中国大学教学,2006(7),9-10 论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;

现在和将来的角度,结合你所学 我可以写,比较多

在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。

相关百科

热门百科

首页
发表服务