首页

> 期刊论文知识库

首页 期刊论文知识库 问题

定积分在物理中的应用毕业论文

发布时间:

定积分在物理中的应用毕业论文

举例说明定积分在物理学中的应用如下:

在学习一元函数定积分的定义时,相信很多同学仍然记得定积分在几何上的意义是指图形面积的代数和,但当涉及到物理上的意义及其在物理上的应用时,同学们大多说不出一个所以然,接下来,我将为同学们简单介绍一下定积分在物理学中的意义及其一些简单应用。

首先,定积分在物理学中的意义,我们可以理解成是一个物理变量沿另一个变量(大多是时间又或者是位移)的累计量,比如,物体的速度沿一段时间的定积分可以理解为位移,物体受力沿位移的定积分可以理解为该力所做的功等。而我们定积分在物理上的应用也就是在计算一个物理变量的时候运用了定积分的方法。

当然,这一类型的题目主要考察的是我们对定积分定义中微元法的运用,因为,在这些题目中,难点往往不是求解定积分的过程,而是列出定积分的式子(即物理建模),而这个建模过程用到的就是我们微元法中阐述的九字“箴言”:分割、近似、求和、取极限,最终很可能我们可以将其转变为定积分在几何上的应用或直接给出答案。

肯定要用定积分啊,又不是简单地数学推导,因为它是包含物理意义的,例如要对杆长0到L积分,如果不标明上下限,那么杆长不成无限长了,它是有实际意义的。

可以用不定积分 ,唯一的区别就是要考虑积分的上下限,同时要考虑初始值。这样的话才算比较真实的描述了 速度的变化规律

定积分在物理中应用毕业论文

1、这个问题不太严谨,如果用虹吸原理来把水全部吸出,是可以不做功甚至水对外做功的。如果不考虑虹吸原理,把所有水提升到桶上沿高度,则根据重心由距离桶底,提升到2m,则需要做功mgΔH=ρπr²hgΔH=1000π*²*1***10^4焦耳用积分形式则为:W=∫(1,2)ρπr²HgdH结果是一样的。2、以液面处,即圆心所在平面为参考面,深度为h处的液体压强为p=ρgh,在h深度处,油液水面截面的宽度为√(R²-h²),则端面上的压力为:F=∫pds=∫(0,R)ρgh√(R²-h²)dh=ρgR³/33、平均速度V=Δs/ΔtΔs=∫(0,3)vdt=∫(0,3)(3t²+2t)dt=t³+t² |(0,3)=36V=Δs/Δt=36/3=12m/s

举例说明定积分在物理学中的应用如下:

在学习一元函数定积分的定义时,相信很多同学仍然记得定积分在几何上的意义是指图形面积的代数和,但当涉及到物理上的意义及其在物理上的应用时,同学们大多说不出一个所以然,接下来,我将为同学们简单介绍一下定积分在物理学中的意义及其一些简单应用。

首先,定积分在物理学中的意义,我们可以理解成是一个物理变量沿另一个变量(大多是时间又或者是位移)的累计量,比如,物体的速度沿一段时间的定积分可以理解为位移,物体受力沿位移的定积分可以理解为该力所做的功等。而我们定积分在物理上的应用也就是在计算一个物理变量的时候运用了定积分的方法。

当然,这一类型的题目主要考察的是我们对定积分定义中微元法的运用,因为,在这些题目中,难点往往不是求解定积分的过程,而是列出定积分的式子(即物理建模),而这个建模过程用到的就是我们微元法中阐述的九字“箴言”:分割、近似、求和、取极限,最终很可能我们可以将其转变为定积分在几何上的应用或直接给出答案。

求解不规则图形面积、物体做功等。

实际生活中许多问题都可以用定积分来解决,例如求解不规则图形面积、物体做功等。本文给出了定积分在经济中以及几何方面的几个简单的应用。定积分在经济中的一个应用工厂定期订购原材料,存入仓库以备生产所用等。

由定积分定义知道,它的本质是连续函数的求和。在解决物理问题中适当地渗透定积分的“分割、近似、求和、取极限”的方法,将物理问题化成求定积分的问题,有助于提高物理问题计算的精确度,以变力做功和液体压力等问题为例,介绍定积分在物理中的应用。

扩展资料:

定积分的分析:

1、若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式。

2、函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

3、求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。

参考资料来源:中国知网-例析定积分在生活中的重要作用

参考资料来源:中国知网-浅谈定积分近似计算在生活中的应用

对称性在定积分中的应用毕业论文

定积分的奇偶性对称性法则是如下:

在[-a,a]上,若f(x)为奇函数,∫(-a,a)f(x)dx=0;若f(x)为偶函数,∫(-a,a)f(x)dx = 2∫(0,a)f(x)dx。

利用函数奇偶性求定积分,先确认积分区间是否关于远点对称,在来判断积分函数的奇偶性,如果积分函数为奇函数,则其在积分区间上定积分为0;如果积分函数为偶函数,则其在积分区间上的定积分为2倍的积分区间一半的定积分值。

相关定义:

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

主要看积分区域 如果积分区域关于xoy平面对称,则被积函数如果是f(-z)=-f(z),则积分为0被积函数如果是f(-z)=f(z),则积分为2倍积分正z区间 如果积分区域关于xoz平面对称,则被积函数如果是f(-y)=-f(y),则积分为0被积函数如果是f(-y)=f(y),则积分为2倍积分正y区间 如果积分区域关于yoz平面对称,则被积函数如果是f(-x)=-f(x),则积分为0被积函数如果是f(-x)=f(x),则积分为2倍积分正x区间

给你举个例子:∫xe^x²dx,积分区间[-2,2],一看积分区间关于原点对称,马上考擦被积函数的奇偶性。一看为奇函数,不用算结果为0。再举一例:∫∫(x+y)^2dxdy积分区域D为x^2+y^2=1首先化解一下∫∫(x^2+y^2+2xy)dxdy=∫∫x^2dxdy+∫∫y^2dxdy+2∫∫xydxdy我们一看区域D关于x对称,马上考查被积函数y的奇偶性,2∫∫xydxdy项直接为0。下面给你总结一下:一元积分若区间关于原点对称考查被积函数的奇偶性,若为奇函数,结果为0。二元积分若区域关于x轴对称,马上考查被积函数y的奇偶性;若为奇函数则结果为0。关于偶函数我没说,因为它还是涉及了计算,不像奇函数那样直接为0。若是感兴趣的话可以看一下相关的资料。

主要看积分区域:

如果积分区域关于xoy平面对称,则被积函数如果是f(-z)=-f(z),则积分为0,被积函数如果是f(-z)=f(z),则积分为2倍积分正z区间。

如果积分区域关于xoz平面对称,则被积函数如果是f(-y)=-f(y),则积分为0,被积函数如果是f(-y)=f(y),则积分为2倍积分正y区间。

如果积分区域关于yoz平面对称,则被积函数如果是f(-x)=-f(x),则积分为0,被积函数如果是f(-x)=f(x),则积分为2倍积分正x区间。

扩展资料:

三重积分计算方法

直角坐标系法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法

⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

①区域条件:对积分区域Ω无限制;

②函数条件:对f(x,y,z)无限制。

⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

②函数条件:f(x,y)仅为一个变量的函数。

柱面坐标法

适用被积区域Ω的投影为圆时,依具体函数设定,如设①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;②函数条件:f(x,y,z)为含有与其(或另两种形式)相关的项。

球面坐标系法

适用于被积区域Ω包含球的一部分。

①区域条件:积分区域为球形或球形的一部分,锥面也可以;

②函数条件:f(x,y,z)含有与

相关的项。

参考资料来源:百度百科--高等数学

参考资料来源:百度百科--三重积分

柯西积分定理的应用毕业论文

∮cf(z)/z-Zodz在z=Zo点不是解析的,不能用柯西积分定理,只能用柯西积分公式;当被积函数在积分曲线C所围成区域内解析时,才能应用柯西积分定理,且积分为零;而被当积函数在积分曲线C所围成区域内不解析,且被积函数为f(z)/z-Zo的形式时,就应用柯西积分公式

柯西中值定理的应用:用来判断函数的增减性、用来计算不定式的极限。

1、用来判断函数的增减性

若函数在某区间上单调增(或减),则在此区间内函数图形上切线的斜率均为正(或负),也就是函数的导数在此区间上均取正值(或负值)。因此可通过判定函数导数的正负来判定函数的增减性。

2、用来计算不定式的极限

柯西中值定理的一个极其重要的应用就是可以用来计算未定型的极限。两个无穷小量或两个无穷大量的比的极限统称为不定式极限。

柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式。

柯西中值定理粗略地表明,对于两个端点之间的给定平面弧,至少有一个点,使曲线在该点的切线平行于两端点所在的弦。

柯西古萨基本定理:如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0。

微积分在经济中的应用毕业论文

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):

下(B):

左(L):2cm

右(R):2cm

装订线(T):

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……、……、…………的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

微积分在经济学中的应用是我为大家带来的论文范文,欢迎阅读。

【摘要】微积分是高等数学伟大的成就之一,在日常生活的各个领域都有着广泛的应用。利用高等数学微积分的数学定量来分析和解决各领域方面的理由己成为经济学中的一个重要部分,它使经济学由定性走向定量化,这使得微积分在经济领域中的作用越来越明显。

【关键词】微积分;经济学;边际分析

微积分是高等数学的伟大成就。微积分产生于生产技术和理论科学,同时又影响着科技的发展。

在经济学的领域内,将一些经济理由利用相关模型转化为数学理由,用数学的策略对经济学理由进行研究和分析,把经济活动中的实际理由利用微积分的策略进行量化,在此基础上得到的结果具有科学的量化依据。

1.微积分在经济学中的应用

边际分析

经济学中的边际理由,是指每一个自变量的变动导致因变量变动多少的理由,所以边际函数就是对一个经济函数 的因变量求导,得出 ,其中在某一点的值就是该点的边际值。

例1:已知某工厂某种产品的收益 (元)与销售量 (吨)的函数关系是 ,求销售60吨该产品时的边际收益,并说明其经济含义。

解:根据题意得,销售这种产品 吨的总收益函数为 。因而,销售60吨该产品的边际收益是 元。其经济学含义是:当该产品的销售量为60吨时,销售量再增加一吨(即 =1)所增加的总收益是188元。这个理由看起来很简单,但是在实际生活中的应用作用很大。又如:

例2:某工厂生产某种机械产品,每月的总成本C(千元)与产量x(件)之间的函数关系为 ,若每件产品的销售价为2万元,求每月生产6件、9件、156件、24件时的边际利润,并说明其经济含义。

解:根据题意得,该厂每月生产x件机械产品的总收入函数为 。因此,该厂生产的x件产品的利润函数为: ,由此可得边际利润函数为 ,那么每月该厂生产6件、9件、15件、24件时的边际利润分别是: (千元/件), (千元/件), (千元/件), (千元/件)。

这个经济学的含义是:当该厂月产量为6件时,若再增产1件,此时的利润将会增加18000元;当该厂的月产量为9件时,若再增产1件,利润将增加12000元,有所降低;当月产量增加到15件时,再增产1件,利润反而不会增加;当月产量为24件时,若再增产1件,此时的利润反而会相应的减少18000元。

由此我们可以得出结论,产品的利润最大,并不是出现在最大量的时候,也就是说多增加产量必定能够增加利润,只有合理统筹安排工厂的生产量,这样才能取得最大的利润。

由此可得结论,当产品的边际收益等于产品的边际成本时,此时就已经达到了最大利润,如果再进行扩大生产了,产品反而会亏本。

弹性分析

在经济学中,某变量对另一个变量变化的反映程度称为弹性或弹性系数[2]。

在经济工作中有很多种的弹性,研究的理由不同,弹性的种类也不同。如果是价格的变化与需求之间的反映,这个反映我们称为需求弹性。由于消费需求的不同以及商品自身属性的差异,同样的价格变化给不同的商品的需求带来不同的影响。有些商品反应很灵敏,弹性大,价格的变动会造成很大的销售变动;有的商品反应较缓慢,弹性小,价格的变动对其没什么影响。

①需求弹性。对于需求函数 ,由于价格上涨时,商品的需求函数 为具有一定单调性,是一个单调减函数, 与 异号,所以定义需求对价格的弹性函数为 。

例3:设某种商品的需求函数为 ,求需求的弹性函数; , , 的需求弹性。

解: , ,说明当 时,价格上涨1%,需求减少,需求变动的幅度小于价格变动的幅度; ,说明当 时,价格上涨1%,需求也减少1%,需求变动的幅度与价格变动的幅度是相同的; ,说明当 时,价格上涨1%,需求减少,需求变动的幅度大于价格变动的幅度。

②收益弹性。收益R是商品的价格 与其销售量Q的乘积。在任何的价格水平条件下,收益弹性与需求弹性之和总是等于1。若 时,商品的价格上涨(或下降)1%,收益增加(或减少) ;若 时,价格变动1%,收益不变;若 时,价格上涨(或下降)1%,收益减少(或增加) 。

最值分析

在生产理论中,研究长期生产理由通常主要是以两种可变生产要素的生产函数来表示[3]。假如企业利用劳动和资本这两种可变的生产要求来生产一种产品,那么可变生产要求的生产函数是:

公式中L为可变要求劳动的投入量多少,K为可变要求资本的投入量的多少,Q为产品的产量。生产的产品厂商可以通过对两个投入的可变生产要素的'不断调整来实现一定成本条件下的最大产量的最佳生产要素组合。

假定生产要素市场上核定的劳动的价格即工资率为ω,核定的资本的价格即利息率为r,产品厂商核定的成本支出为C,则依据相关函数可得成本方程为: ,C 在一定的条件限制下,即: ,由此建立的拉格朗日方程:

产品产量最大化的一阶条件为: ,

由以上两式可得: ,由此得出核定条件下要想实现最大产量的要素组合原则是:即产品的厂商不断通过对劳动和资本这两种可变要素投入量的调整,使得最后一单位的成本支出不管用来购买哪种生产要素所获得的边际产量都是最高的,从而实现核定成本条件下的产量最大化。

最优化分析

边际分析研究的是函数边际点上的极值[4]。也就是来研究变量在边际点是递增变为递减,还是由递减变为递增,像这种边际点的函数值就是函数的极大值或极小值。经济研究的重点就是研究边际点是的最佳点,因为这是做出最优决策的最合理的边际点。因此,微积分法是研究最优化理由是必不可少的策略。

最优化理论是经济学中经济分析的基础,也是进行经济决策的依据。实现经济学的最优化,就是要求经济学中的一切经济活动都处于最佳的顶峰位置,任何一点偏离都要从顶峰向下倾斜,这个必定会用到微分的思想。

例4:设生产 个产品的边际成本 ,其固定成本为 元,产品的单价规定为500元.假设产销平衡,问生产量为多少时利润最大,并求出最大利润。

解:总成本函数为,总收益函数为 ,总利润 , ,令 ,得 。因为 ,所以当生产量为200个时,利润最大,最大利润为L(200)=400 200-=39000(元)。

2.总结

微积分在经济学中的地位是非常重要的。现如今在经济学领域,很多经济学研究均需要量化研究,所以越来越多地运用到了微积分的知识,这不但有利于微积分的发展,还能够帮助经济学更加的定量化、精密化和准确化。

微积分在经济学中的应用使得经济学得到重大发展,并最终导致了微观经济学的形成。

参考文献:

[1]陈朝斌.微积分在经济学最优化理由中的应用[J].保山师专学报,2009(5):34-36.

[2]张丽玲.微积分在经济学中的应用[J].百色学院学,2009(5):49-52.

[3]蔡洪新.微积分在经济学中的应用分析[J].数学学习与研究,2010(9):99-100.

[4]向菊敏.微积分在经济分析活动中的应用[J].科技信息,2011(26):57-82.

微积分的基本思想及其在经济学中的应用

摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的不断发展,微积分的地位也与日俱增,本文着重研究微分在经济活动中边际分析、弹性分析、最值分析的应用,以及积分在最优化问题、资金流量的现值问题中的应用。

关键词:微分   积分   基本思想   应用

微积分是人类智慧最伟大的成就之一,局部求近似、极限求精确的基本思想是进一步学习高等数学的基础。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,运用微分和积分可以对经济活动中的实际问题进行量化分析,从而为企业经营者的科学决策提供依据。

1. 微积分的产生、发展及其作用

微积分思想的萌发出现的比较早,中国战国时代的《庄子·天下》篇中的“一尺之锤,日取其半,万事不竭”就蕴涵了无穷小的思想。经查阅文献《晏能中.微积分——数学发展的里程牌》得知:到了十七世纪,欧洲许多数学家也开始运用微积分的思想来写极大值与极小值,以及曲线的长度等等。帕斯卡在求曲边形面积时,用到“无穷小矩形”的思想,并把无穷小概念引入数学,为后来莱布尼兹的微积分的产生奠定了基础。

随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的《无穷小分析引论》、《微分学》、《积分学》三部著作对微积分的进一步丰富和发展起了重要的作用。之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。

微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。

2. 微积分的基本思想———局部求近似、极限求精确

微积分是微分学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。

微分学的基本思想

微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线──该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。

积分学的基本思想

积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:a.微小局部求近似值;b.利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。

3.微分在经济学中的应用

随着经济的发展及数学理论的完善,数学与经济学的关系越来越密切,应用越来越广泛.微积分作为数学知识的基础,介绍微积分与经济学的书也越来越多,然而大部分书或者着重介绍经济学概念或者着重介绍数学理论,很少有主要介绍微积分在经济学中的应用的书.本文将通过对一些简单的微积分知识在经济学中的应用,以使人们意识到理论与实际结合的重要性.

弹性分析

在文献《蔡芷.财会数学》中,某个变量对另一个变量变化的反映程度称为弹性或弹性系数。在经济工作中有多种多样的弹性,这决定于所考察和研究的内容,如果是价格的变化与需求反映之间有关系,那么这个反映就称为需求弹性。由于具体商品本身属性的不同以及消费需求的差异,同样的价格变化给不同商品的需求带来的影响是不同的。有的商品反应灵敏,弹性大,涨价降价会造成剧烈的销售变动;有的商品则反应呆滞,弹性小,价格变化对其没什么影响。

4.积分在经济学中的应用

积分学是微分学的逆问题,利用积分学来研究经济变量的变化问题是经济学中的一个重要方法,不定积分是求全体原函数,定积分是求和式的极限。由边际函数求原函数,或求一个变上限的定积分,一般都采用不定积分来解决;如果求原函数在某个范围的改变量,则采用定积分来解决。对企业经营者来说,对其经济环节进行定量分析是非常必要的,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角。

5.总结:

微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中,在经济日益发展的今天,微积分的地位也与日俱增,贷款、养老金、医疗保险、企业分配、市场需求等等金融问题越来越多地进入普通人的生活,利用微积分的知识有利于我们去解决各种相关的问题。

参考文献:

[1] 祁卫红,罗彩玲.微积分学的产生和发展[J].山西广播电视大学学报,2003,(02). [2] 晏能中.微积分——数学发展的里程牌[J].达县师范高等专科学校学报,2002,(04). [3] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1993. [4] [美]托·道林.数学在经济中的应用[M].福州:福建科学技术出版社,1983,4. [5] 蔡芷.财会数学[M].上海:知识出版社,1982,12.

[6] 赵树嫄.经济应用数学基础(一).微积分.中国人民大学出版社,2002. [7] 杨学忠.微积分[M].中国商业出版社,2001.

[8] 向菊敏.微积分在经济分析活动中的应用[J].科技信息,2009(26). [9] 髙哲.浅谈微积分在经济中的应用[J].中国科技博览,2009(7). [10] 王志平.高等数学大讲堂[M].大连:大连理工大学出版社,2004. [11] 吴赣昌.微积分[M].中国人民大学出版社,2004.

[12] 谭瑞林,刘月芬.微积分在经济分析中的应用浅析[J].商场现代化,2008(4). [13] 张先荣.谈微积分在经济分析中的应用[J].濮阳职业技术学院学报,2009,22(4) [14] 明清河.数学分析的思想与方法[M].山东大学出版社,2004.

[15] Elizabeth George State University Analysis of Diagram Modification and Construction in Students’Solutions to Applied calculus for Research in Mathematics Education,.

[16]Sandra Nicol(2006).Challenging Pre-serviceteachers’Mathematical Understanding:The case of Division by .

相关百科

热门百科

首页
发表服务