首页

> 期刊论文知识库

首页 期刊论文知识库 问题

七年级上册数学小论文200字

发布时间:

七年级上册数学小论文200字

不吧~~~初中还有论文不懂耶~~~~~·!

可以来找我!

初一数学小论文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。

老师给你的题目是什么?有什么要求?是写一篇200字的《数学小论文的秘诀》吗?另外,你是几年级的学生呢?明天是指9月1日吗?

七年级上册生物论文200字

甲鱼的生活习性鳖是变形动物水陆两栖,用肺呼吸,鳖无鳃,出水爬行用肺呼吸,有鼻孔、气管、支气管和肺等完善的呼吸系统。肺大而多泡,海绵状,对水中生活十分适应。鳖的咽壁粘膜上也布满了用于水中气体交换的毛细血管,随着水流从口中的吞吐,也可进行水中气体交换。所以,鳖在冬眠期潜栖水底泥沙中,只把嘴尖和管状鼻孔伸到贴近水底的泥沙表面,即可吸收水中的溶氧以维持生命。由于鳖具有以上特殊器官,所以它能较长时间潜栖水底。在温暖地区的水系,鳖的生长期很长;在北方地区,每逢北风呼啸霜铺地、草衰苇败绿水寒的季节,鳖潜伏水底泥沙中冬眠,不吃也不动。鳖平时潜栖在水底泥沙上,头颈藏在体内,双目炯炯窥视水底世界,当鱼虾等游到它的身边时,则突然伸颈袭击,一口咬住不放。在晚春、炎夏和初秋季节,波平浪暖,绿菌铺地,它们常常爬到岸边晒太阳。在风平浪静的炎夏中午前后,常浮到水面,把管状的鼻子伸到水外呼吸空气。稍有风吹草动,立即潜入水中。在温暖季节,每到气压低的阴雨天,鳖也纷纷游到水面呼吸,有时全身露出水面。尤其在阴云密布、大雨滂沱、江河涨水、惊涛拍岸时,常有几十公斤的老鳖探颈张望。鳖的生活习性可归纳为“三喜三怕”即喜静怕惊,喜阳怕风,喜洁怕脏。对周围环境的声响反应灵敏,只要周围稍有动静,鳖即可迅速潜入水底淤泥中,所以养鳖场或养鳖池地环境一定要保持安静。鳖如果经常受到惊吓,对其生长繁植都是很不利的。鳖是以肉食为主的杂食性动物。主要食物为小鱼、小虾、螺、蚌、水生昆虫、蚯蚓、动物内赃等。同时也兼食蔬菜、草类、瓜果等。在食物不足时,同类可互相残食。所以在饲养时一定要大小分类,切不可不同规格的鳖混养在同一池中,以免互相残杀,造成损失。鳖既贪食又耐饿,一次吃后很长时间不吃东西,也不会死亡。当然,这是靠它自身积蓄的营养来维持生命活动的,在人工养殖时一定要供给它充足的食物,以加快它的长生。鳖是一种变温动物,对周围温度的变化非常敏感。当外界温度降至15℃以下时,鳖就开始停食,潜伏在水底泥沙中冬眠(一般为10月至翌年4月),冬眠期长达半年之久。因此,在自然条件下养鳖,生长缓慢,一般一年只长100克左右。为了加快鳖的生长速度,在人工养殖中常采用加温措施,打破鳖的冬眠习性,加快生长速度。:树干为什么是圆的 在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。

篇二:观察动物作文 全身黑色,有六只细小的脚,这是蚂蚁的外形。 一天,我的饼干不小心掉到了地上,我灵机一动:“可以用它来喂蚂蚁”,于是我拿看饼干来到了室外,发现地上正好有一只蚂蚁在爬来爬去,就把饼干放了下去,在放下去的时候,饼干碎成了两片,那只蚂蚁马上就发现了,它自己先试着搬,无奈对它而言,饼干实在是一个庞然大物,没办法,它只好放弃,匆匆离去,不一会儿,我发现在它回去的路上一下子出现了几十只蚂蚁,它们浩浩荡荡向放饼干的地方进攻,大家你拖我拉,抬起饼干就往来时的方向一毫米一毫米的移,要到达它们的洞穴,必须经过一个“隧道”,那可不是一件容易的事,“隧道”口太小,它们虽是费了九牛二虎之力,还是没法进去,但是它们不气馁,一直齐心协力,没有一只蚂蚁临阵脱逃,最后,通过将饼干化整为零,它们终于将饼干全部搬入了洞穴内。看着它们的不停忙碌的样子,我的兴趣越来越浓,最后,我把打死的蚊子、苍蝇,吃剩的饼干都放在一起,发现越来越多的蚂蚁源源不断地向这堆“食物”赶来,食物上的蚂蚁越聚越多……,最后,地上的食物被蚂蚁搬得一点不剩,连饼干屑也难看到。同时,我还发现了一个秘密,蚂蚁搬东西也不是死拼的,碰到困难它们也会想办法,改变策略,而在搬运的过程中,它们始终团结一致,持之以恒,不会有一只蚂蚁会当逃兵,而最后它们也一定能成功。 这就是蚂蚁—可爱的小精灵。 篇三:观察动物作文 我从小到大都是没有改变过对小动物们的喜爱。我喜欢小兔、小狗、小猫等一些小动物。有一次我想和小猫玩耍,差点儿被抓伤手呢!这些小动物中,数我最喜欢小兔了。 那时,我还小,真想要一只可爱的小白兔啊!梦寐以求的这一天终于到来了,我央求妈妈在泾县给我买一只小白兔,没想到妈妈同意了,当时的我高兴的都跳了起来。第二天,妈妈买了一只雪一样白的兔子回来了,我让妈妈把笼子放下后,用手伸进兔笼里摸着兔子雪一样的绒毛,兔子地绒毛是多么的柔软啊!当天夜里,听见妈妈说明天小姨要来我家做客,真想炫耀一下自己的小白兔呢!到了第三天的中午,小姨来到了我家,我连忙连笼带兔的拎了出来,小姨父说:“这真可爱。”于是,小姨父在妈妈洗过的青菜里拿了一片菜叶放进兔笼里,小白兔一见就把它吃了。这时,我正想到说:“小白兔吃了沾水的菜叶就会死的,但现在已经太迟了”到了晚上,我的心里有些不安,每隔十几分钟看看小白兔。早晨,爸爸大声说:“小白兔不动了。”我和妈妈走了过去,把笼子打开,拎着不能动弹的小白兔放在了外面,我焦急地对妈妈说:“这该怎么办?是不是生病了?”妈妈在抽屉里拿出一袋感冒药,倒进杯子里,用开水冲服给小白兔,但小白兔的嘴巴始终不张开,没办法,我央求妈妈去找兽医,过了一会儿,妈妈回来了,他说:“兽医不在家,当我摸在小白兔的身上时,身体已经冻僵了。小白兔,希望你在天堂过得更快乐。

初中生物小论文范文1:树干为什么是圆的 在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。 在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。 经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。 以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。范文2:醋对花卉有什么影响醋是生活中常用的调味品,花卉则能净化生态环境,并美化我们的生活。 你是否想到过,醋和花卉有什么关系呢?我们怀着好奇心,开展了这个课题的探究。据富有种花经验的人告诉我们,对盆栽花卉施些醋溶液,可改善盆花的生长,增加花朵,而且花艳叶茂。这一点我们在实验中很快就证实了。 浓度不同的醋溶液,对花卉有不同的影响吗?这是我们第二阶段的实验。我们选取长势相同的满天星、报春花、月亮花各四盆,分为四组,每组(三盆)各有三种花卉,分别编号、贴上标签。同时,我们取食用白醋配制成1%(pH值为2~3)、0.01%(pH值≈4)、0.0001%(pH值≈6)三种浓度不同的溶液,每天分别给三组盆花固定喷洒一种醋液,第四组盆花洒不含醋的清水。每五天观察记录花卉的生长情况。 这项实验的结果是:喷洒低浓度醋液(pH值≈6)对这几种花卉没有明显影响;喷洒中等浓度醋液(pH值≈4)的花卉明显长得比其他几组好,花苞多,开花期提前,而且花色较浓艳,花期也延长了;喷洒pH值2-3的高浓度醋液后,反而使花朵过早凋萎。 通过这次实验,我们可以告诉你:种花时适当喷洒一些醋液,可使花卉长得更好。不过要掌握好醋液的浓度,醋酸过浓则会伤害花卉。 烟,抽烟有害健康,但大家明明知道,却还有有这么多人抽烟呢?有人抽烟觉得有几分帅气,有人是为了消愁.看见别人抽烟那种陶醉 的样子啊!最近我也心情不好!也抽烟啊!好象抽烟能消除我的伤感,少一分惆怅.但我发现自己更伤感了啊!不但没有消去我的伤感,反而进一部恶化啊!朋友,为了自己的身体,为了关心你的人,请不要抽烟啊! 吸烟的害处很多,它不但吞噬吸咽者的健康和生命,还会污染空气,危害他人。 一 、 肺部疾病:香烟燃烧时释放38种有毒化学物质,其中有害成份主要有焦油、一氧化碳、尼古丁、二恶英和刺激性烟雾等。焦油对口腔、喉部、气管、肺部均有损害。烟草烟雾中的焦油沉积在肺部绒毛上,破坏了绒毛的功能,使痰增加,使支气管发生慢性病变,气管炎、肺气肿、肺心病肺癌便会产生。据统计吸咽的人60岁以后患肺部疾病的比例为74%,而不吸烟的人60岁以后患肺部疾病的比例仅为4%,这是一个触目惊心的数字。 二 、心血管疾病:香烟中的一氧化碳使血液中的氧气含量减少,造成相关的高血压等疾病。吸烟使冠状动脉血管收缩,使供备量减少或阻塞,造成心肌梗塞。吸烟可肾上腺素增加,引起心跳加快,心脏负荷加重,影响血液循环而导致心脑血管疾病、糖尿病、猝死综合症,呼吸功能下降、中风等共20多种疾病. 三、 吸烟致癌:研究发现,吸烟是产生自由基最快最多的方式,每吸一口烟至少会产生10万个自由基,从而导致癌症和许多慢性病。最近,英国牛津提德克里夫医院对万名吸烟者进行长达50年的研究得出了结论,结果显示,肺癌、胃癌、胰腺癌、膀胱癌、肝癌、口腔癌、鼻窦癌等到11种癌症与吸烟“显著相关”。为什么吸烟的人容易感冒,是因为人体的淋巴细胞活性降低,导致癌症。鉴于吸烟致烟致癌的三大因素,戒烟要越早越好。 四、 吸烟还会导致骨质疏松,更年期提早来临。吸烟可使男性丧失性功能和生育功能。孕妇吸烟可导致胎儿早产及体重不足,流产机率增高。吸烟使牙齿变黄容易口臭。吸烟害人害已,被动吸烟的人受到危害是吸烟人的五倍。为了你和家人的健康,不让自已成为烟的奴隶,应尽早戒烟。 五、 吸烟对智力的危害。吸烟可使人的注意力受到影响。有人认为,吸烟可以提神,消除疲劳、触发灵感,这都是毫无科学道理的。实验证明,吸烟严重影响人的智力,记忆力,从而降低工作和学习的效率。 吸烟有百害而无一利,中国53%的儿童被动吸烟,危害更大,容易患肺炎,支气管炎,重症哮喘和其它疾病。如果目前吸烟的情况持续下去,儿童的智力发育、吸烟的家庭,个人将会付出极大的代价。校园节能环保论文:节能与环境保护论文(提示:100字的话刚够写论据啊!) 地球的环境变化让我们想起了什么?地球日,是人类对地球母亲的忏悔日。让我们想一想,人类过度地消耗资源和污染环境,已经给地球造成了怎样的灾难; 让我们想一想,我们每个人在这样的灾难中负有怎样不可推卸的责任。当脆弱的生态难以维系,人类的消费将如何持续;当地球患了绝症,人类又能生存多久? 地球日,也是人类自身的拯救日。人类既是环境灾难的制造者,也是环境灾难的受害者,更是环境灾难的治理者。我们每个人都可以通过选择绿色的生活方式来参与环保:节约资源,减少污染;绿色消费,环保选购;重复使用,多次利用;垃圾分类,循环回收;救助物种,保护自然。 绿色生活是新世纪的信息,它引导着企业界去发展绿色技术和清洁生产;绿色生活是新世纪的要求,它鼓励政治家去承担人类可持续发展的责任;绿色生活是新世纪的时尚,它体现着一个人的文明与素养,也标志着一个民族的素质和力量。 中国,正以历史上最脆弱的生态系统,承受着历史上最多的人口和最大的发展压力。爱国的人们,让我们首先爱护这个民族赖以生存的根基,让我们从一点一滴的环保行为做起。

写...草履虫、、、你们应该学了吧

数学小论文七年级上册角

这个是我得市2等奖的论文:关于三阶魔方变换概率的问题成都与林中学高2012级10班 王维祎一、 引言:魔方(Rubik's Cube),也称鲁比克方块。是匈牙利布达佩斯建筑学院厄尔诺�6�1鲁比克教授在1974年发明的。魔方发明后不久就风靡世界,人们发现这个小方块组成的玩意实在是奥妙无穷。当大立方体的某一面平动旋转时,其相邻的各面单一颜色便被破坏,而组成新图案立方体,再转再变化,形成每一面都由不同颜色的小方块拼成。据专家估计三阶魔方的总变化数约等于�6�11019。二、三阶魔方变换的限制条件因为在转动魔方时,转动一次会破环一层,即21个色块,所以需要考虑很多限制情况。也就是魔方永远不会出现的情况。一、魔方不能单独翻转一个棱色块。想象我们对6个中心色块定好了我们喜爱的方向,我们就定好了一个坐标系,这个坐标系的原点就是魔方的体中心。坐标有明确的正负方向。我们可以看见魔方的每一个棱色块都是有一条棱的、,对应于水平、前后、竖直x,y,z三个轴,分别有4条棱和他们每一个平行,我们把这4条棱都标上一个箭头,指向正的方向。现在如果你有一个魔方可以这样做一下。我们现在想象空间中有了这样一个坐标系,和12个箭头。考虑任意面的旋转,(我这里不考虑3个中面的旋转,(因为,1,这样动了坐标系,2,中面的旋转可以等效两个侧面的旋转。),这时我们不考虑魔方,和魔方的花色,把他看成透明的,我们只考虑箭头,每次任意面旋转90度,我们都会让2个箭头改变方向(由正变负),我们只看结果,不考虑转的过程,不区分箭头哪来的。 翻转一个面90度是魔方的原子操作,他只能同时改变2个箭头的方向。所以我们最后不可能得到其他块不变只有1个箭头被翻转,也就是不可能只有一个棱色块被翻转。 二、不能单独翻转一个角色块。首先我们考虑1234四个数的排列问题。1234变成4123,是所有数向右推移一位的变换。大家联想一下魔方,每转一个面90度,4个角,4个棱都是这种变换是吧。 1234变4123 我以后简称(1234),其实也好记,就是1到2,2到3, 3到4,4到1, 要是(1432)就是1到4,4到3,3到2,2到1,就是向左推移。 (1234)是由几个“交换两个数”的变换组成的呢。这里直接给出答案(1234)=(12)(13)(14),(12)的意思就是1到2,2到1。 具体说,我们看 1234变化的过程是这样: �6�1 (12) 2134 �6�1 (13) 3124 �6�1 (14) 4123 正好就是变换(1234)。 这样我们知道(1234)是经过奇数个交换得到的。 任何一个变换都可以由若干个两两交换得到。因为对于一个目标排列如2413,我怎么做呢, 这里面内在的道理就涉及群论的初步。这可能叫做循环群,我不确定,因为我没看过书。 1234全排列有4!=24个,而对1234的变换也有24种。他们构成一个群即一堆元素。 首先需要知道角色块的方向是如何定义的。因为角色块会处在8个不同的位置,他的方向却只有3种,我怎么定义一个移动的坐标,又能准确标示出这3种方向变化呢? 首先让你的视线穿过一个角色块的顶点和整个魔方的体中心,你会看到一个Y,以你的视线为轴,这个角色块可以旋转,有3个位置。如下:0° 120° 240°试试转一个侧面,看看色块在新的位置朝向是怎样的?如果你转一个魔方的右侧面90度,你会发现最靠近你眼睛的那个角色块的朝向转过了120度。盯住这个色块,再转一下,他转到下面来了,为了仍然呈现一个Y,我们这时可以将 魔方底面翻上来,这时我们发现这个角色块又转回了0如此等等。重点是,你观察任何一面的90度旋转,4个角色块,他们的朝向 旋转过的角度总和 一定是360度的整数倍 ,准确的说就是120+240+240+120。 因为,转一个面是最小的原子操作,所以无论经过怎样多少步的操作,我们所有角色块角度变化和都是360*n,所以我们不可能只将一个色块旋转120度或者240,而让其他色块不变化,也因此我们证明了为什么不能单独翻转一个角色块。 三、不能只对调一对色块。1. 封闭性:a和b是群里的元素,那么a*b也是。 2. 存在元素e(其实就是类比乘法里的1)。a*e=e*a=a 3. 每个元素a 都有唯一逆元a-1, a*a-1=a-1*a=e 4. 结合律 (a*b)*c=a*(b*c) �6�1 首先1234是一个排列,他对应了一种变换,就是不变,我用(1)来表示,他就是满足定义第二条的元素e。 �6�1 封闭性,这是显然的,因为只有24种排列,和对应的变换,跑不出去。 �6�1 逆元都是有的,就是把每步逆序然后取反,肯定都在这24个变换当中。 �6�1 结合律看似挺麻烦,其实是显然的,因为(a*b)*c,a*(b*c)的意思都是先a再b再c。 这样他们构成了一个群, 为什么呢?其实我现在也不好说构成了一个群就怎么样。我只是说我可以用群的一些性质。知道这个结构的一些特点了。也可以用分析群的一些视角,一些想法来分析这个系统。 首先我们看这24个变换。 �6�1 (1), 偶 �6�1 (12), (13), (14), (23), (24), (34), 奇 �6�1 (123),(132), (124),(142),(134),(143),(234),(243)偶 这是15个,还剩9个,如果不明白什么意思,看前面,我说一个(243)意思是2到4,4到3,3到2,他把1234的1不动,234三个数字轮换的向左推移一位变成1342。 还有显然的 �6�1 (1234),(1432),奇 �6�1 (14)(23), (13)(24),(12)(34)偶 还剩4个 他们是 �6�1 (13)(12)(24), (12)(14)(13), (14)(23)(12), (13)(24)(12) 奇 我们叫有奇数个 两两交换 组成的变换为奇变换,反之为偶变换,其实就是把群元素标出奇偶性。 我们看到两个奇变换运算得到偶变换,而两个偶变换运算永远得不到奇数变换。 这样偶变换事实上构成了一个子群。 也就是说他们做运算是封闭的。他们是 �6�1 (1), 偶 �6�1 (123),(132), (124),(142),(134),(143),(234),(243)偶 �6�1 (14)(23), (13)(24),(12)(34)偶 这12个元素构成了一个子群。 我好像想错了一些事情,呵呵。 不过前面写出的都是正确的。我可能以后会用到 回到为什么不能只对调一对色块。 为什么?因为一个原子操作,将一个面旋转90度,将4个角做了(1234)或(1432)是一个3个交换的奇变换,4个棱同样是3个交换的奇变换,这样他对所有的色块做的变换总的效果是一个偶变换。 所以对于所有色块的排列,我们能够达成的都是偶变换,而只对调一对色块是一个奇变换。不可能达成。 因此,我们证明了为什么不能只对调一对色块。(至此我们终于完成了魔方总变化数的完整证明,充分而又必要:)一、 计算魔方有多少种变化情况二、 由上局限性证明,得三阶魔方总变化数计算公式: 四、总结。三阶魔方总变化数的道理是这样:六个中心块定好朝向后,我们就不可以翻转魔方了,而他们也正好构成了一个坐标系,在这个坐标系里,8个角色块全排列8!,而每个角色块又有3种朝向,所以是8!*38,12个棱色块全排列每个有2种朝向是12!*212,这样相乘就是分子,而分母上3*2*2的意义是,保持其他色块不动,不可以单独改变一个角色块朝向,改变一个棱色块朝向,和单独交换一对棱色块或一对角色块的位置。

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。

今天,我们来介绍一下数学家的故事与名言第一位是高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。 高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。 高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。 她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。 高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。 一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。” 熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。 从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。 第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。 几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。” 华罗庚没有拿到博士学位。在剑桥的两年内,他写了 20 篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。 华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。最终,他的事业成功了。 华罗庚把科学研究与实际应用紧密结合起来。华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献 在这里还介绍一些名言:数统治着宇宙。 ——毕达哥拉斯数学,科学的女皇;数论,数学的女皇。 ——C•F•高斯上帝创造了整数,所有其余的数都是人造的。 ——L•克隆内克上帝是一位算术家 ——雅克比一个没有几分诗人气的数学家永远成不了一个完全的数学家。——维尔斯特拉斯纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。——怀德海可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。——麦克斯韦数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。——史密斯无限!再也没有其他问题如此深刻地打动过人类的心灵。——D•希尔伯特发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。——C•G•达尔文宇宙的伟大建筑是现在开始以纯数学家的面目出现了。——J•H•京斯这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。——A•N•怀德海给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——A•L•柯西纯数学是魔术家真正的魔杖。——诺瓦列斯如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。——柏拉图整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——G•D•伯克霍夫一个数学家越超脱越好。——无名氏数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。——A•埃博

数学小论文的几种具体写法数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性.现谈谈数学小论文的几种具体写法1.一道数学题的解答.主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解).例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等.学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力.2.用数学的眼光去分析现实问题.主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考.比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身.3.生活中的数学问题.主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录.写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯.这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学.4.课堂上的数学问题.主要指学生在课堂数学学习过程中自己的一些思考和发现.这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高.她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文.5.数学实践活动中遇到的问题.主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等.比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇心得体会,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷.6.数学童话.主要指学生发挥丰富的想象力,用童话的形式(其中包含着数学论述)来记录看到的数学世界.这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新.

数学论文五年级上册200字

我 每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。 今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。做了这道题,我知道做数奥不能求快,要求懂它的方法。

[专题介绍]最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。 最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。 [经典例题] 例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?[分析] 一个10尺长的竹竿应有三种截法:(1) 3尺两根和4尺一根,最省;(2) 3尺三根,余一尺;(3) 4尺两根,余2尺。为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。例4: 把25拆成若干个正整数的和,使它们的积最大。[分析] 先从较小数形开始实验,发现其规律:把6拆成3+3,其积为3×3=9最大;把7拆成3+2+2,其积为3×2×2=12最大;把8拆成3+3+2,其积为3×3×2=18最大;把9拆成3+3+3,其积为3×3×3=27最大;……这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?[分析] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用 的时间生产上衣, 的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?[分析] 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产 月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服(2100+60)-(900+1200)=60套例7 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?[分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。[解] 乙有必胜的策略。由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;(2)我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。例8 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?[分析] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。

写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。

今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。

我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。

1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”

通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。

最佳答案 五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

七年级上册数学论文

初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要意义。下面是我为大家整理的,供大家参考。

摘要:对刚进入七年级的学生来说,这个时段是适应中学数学教学、缩短小学学习与中学学习距离的过渡期。如果一开始学生就对数学不感兴趣,甚至害怕数学,那么会直接影响到今后的学习。要让七年级新生爱上数学课,就要求教师做学生喜欢的教师,要教给学生正确的学习方法,课堂教学要有更高的艺术性,在课堂上能吸引学生,让学生产生浓厚的兴趣,才能达到预期的教学效果。

关键词:生活教育;喜欢;第一节数学课;学习乐园

中图分类号: 文献标识码:A 文章编号:1992-7711***2014***01-0007

著名的人民教育家陶行知说:“治学以兴趣为主,兴趣愈多,则从事弥力,从事弥力则成效愈著。”《数学课程标准》也明确指出,数学教学要重视激发和培养学生学习数学的兴趣,学生一旦对数学产生浓厚的兴趣,就乐于接触它,变“苦学”为“乐学”。下面,结合工作实践,笔者就如何让七年级新生喜欢上数学课问题谈点浅见。

一、做一名学生喜欢的数学教师

陶行知先生说:“真教育是心心相印的活动,唯独从心里发出来,才能打动心灵的深处。”只有师生情感融洽,学生才会敢想、敢问、敢说,才会愿学,才会学有所成。在课堂教学中,笔者总是微笑地面对学生,从不板著脸上课,更不对学生大声训斥,把他们当成自己的朋友或孩子来看待,力求做到尊重每一位学生。

在数学教学中,笔者十分强调理论联络实际。例如,学习有理数加减混合运算,笔者举这样的例子:现在老师存摺上有100元,下午存入300元,明天取出50元,后天取出100元后,存摺上还有多少元?通过这道题的计算,你知道存摺上的余额是如何计算吗?若余额为负数说明什么?让学生去计算、去思考,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感受到生活中处处有数学知识,学习数学知识充满著无穷的乐趣。

陶行知先生说:“待学生如亲子弟”。教师要得到学生的爱,她必须爱她所教的每一位学生,将其当作自己的孩子;教师要有宽广的胸怀、积极的情绪、平易近人的态度、笑容可掬的表情,要善于营造一种和谐、愉快、亲切、友好的气氛;要爱学生成长过程中的每一微小“闪光点”,要爱他们具有极大的可塑性,要爱他们在教育过程中的主体能动性,要爱他们成长过程中孕育出来的一串串教育劳动成果。教师的爱要一视同仁,持之以恒;爱要以爱动其心,以严导其行;爱要以理解、尊重、信任为基础。只有这样的爱,才能爱出师生间的“师生谊”,才真正得到学生的喜爱。

二、上好开学的第一节数学课

俗话说:“良好的开端是成功的一半。”小学生进入中学后,数学不再是单纯的计算,而是数学进一步内容拓宽、知识更一步深化,加上部分学生还未脱离教师的“哺乳”时期,没有自觉“摄取”的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,因此设计好开学第一节数学课非常重要。

第一,课前,教师最好是修饰一下自己,着装大方得体,有亲和力。第一节课最好不要多讲正课,可以讲一些和正课相关联的知识及其生活实用性,让学生产生一种急切求知的欲望。若教师进入课堂就讲课,因为学生还不熟悉教师,对教师还有很多的神秘感,上来就讲课,学生也会因为对教师感兴趣的程度大于对教学内容的程度,导致教学效果不佳。上第一节课要做自我介绍,要有一个漂亮的出彩的亮相,可以介绍自己的过人之处和自认为是闪光点和值得骄傲的地方。这个开场白是最吸引学生的,有助于学生了解教师的过去、教师的长处,促进师生友谊的建立。让学生在你的自我介绍里,感受智慧之美,拼搏之美,进取之美。要让学生感觉教师是一个博学的教师,聪慧的教师,从心里敬佩的教师。

第二,要让学生掌握初中数学学习方法,首先,七年级学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。笔者要求学生预习时应做到:一粗读,先粗略浏览教材的有关内容,知道本节所要讲的内容。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作标记,以便带着问题去听课。三做练习,通过练习检验预习效果。

其次,在小学,教师一般采用直观形象到抽象概括的教学方法,通过讲解、演示、操作等过程建构新知,节奏慢、坡度小。很多学生认为学数学就是做作业,多做练习,课本成了“习题集”。到初中后,由于学科的增加和学习内容的抽象,课堂知识容量增大,教学进度较快,演示、操作减少,抽象的思维活动增加,很多学生深感不适应。因此,要教会学生处理好课堂“听”、“思”、“记”的关系。“听”每节重点、难点剖析***尤其是预习中的问题***,“听”例题解法的思路和数学思想方法的体现。“思”是指多思、勤思,随听随思,并善于大胆提出问题。“记”就是记要点、记疑问、记解题思路和方法;记小结、记课后思考题。可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习,“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。

三、让数学课堂变成学生学习的乐园

陶行知曾以《假如我重新做一个小孩》为题,阐明儿童教育应该包括的内容,其中有句发人深思的话,“我要多玩玩”。七年级学生活泼好动,不喜欢单调的重复和机械的练习。我们要传承陶行知先生的教育思想,尊重学生的年龄特点、心理特点,灵活地运用教法,把枯燥的数学学习变成了学生学习的乐园。

1. 在“做数学”中体验数学学习的乐趣。练习是使学生掌握知识,形成技能、发展智力的重要手段。课堂练习设计得好,不仅巩固新知识而且可以增添学生学习数学的兴趣。因此,在设计练习时,笔者力求设计各种情节有趣、形式新颖的练习形式。例如:引入负数后,七年级新生的计算出错,很多是符号出错,笔者就设计了如下快速抢答题,1×***-5***= ;1÷***-5***= ;1+***-5***= ;1-***-5*** = ;-1+***-5*** = ;-1-***-5*** = ;-1×***-5*** = ;-1÷***-5*** = ;***-3***= ;***-2***= -2= -2= 。要求回答对的,就通过。回答错的,教师点拨后,出题再做,对了,就编题给同学做,大受学生喜欢,学习的热情非常高涨。平时笔者还根据不同的教学内容设计不同型别、不同层次的练习题,满足学生不同层次的需求,照顾不同层次的学生,使学生始终保持高昂的学习热情。 2. 在合作交流中体验数学学习的乐趣。充满活力的数学课堂,应该是对学生具有吸引力、亲和力的“磁性”课堂。合作学习的情景来源于教师有目的地创造,在数学课堂教学中教师若能自然地创设合作学习的情境,不仅能让学生产生合作的冲动和交流的愿望,还能激发学生的学习兴趣。例如:在教学“数轴”时,让学生以小组为单位,讨论学校要在校门公路旁植树,每隔3米植一棵树,问在21米长的公路旁植树最多可植几棵树?有学生可能会得出:21÷3=7,可植树7棵;有学生结合数轴就很直观了,可植树8棵。经过大家讨论得到结论为:这类题要结合数轴,要注意考虑线段的端点,否则容易出错。再如,为让学生能找到正方体展开图的相对面,笔者让同桌合作将展开图折起来。在这个过程中,学生始终处于积极的探究性活动中,让同学们感到合作的力量,得到成功体验的机会。感受到学习过程的快乐,同时获得了数学思想和方法,产生学习数学的兴趣,树立学好数学的自信心。

3. 合理评价,让学生体验成功的乐趣。苏霍姆林斯基说过“你在任何时候也不要给学生打不及格的分数,请记住:成功的欢乐是一种巨大的情绪力量。”这启示我们教师在教学中应改变以往的评价方式,以鼓励性评价为主,让每一个学生都能抬起头来学习。例如,有一次笔者出示口算“3+***-6***”,一个学生,回答说:3+***-6***=3。笔者没有直接“宣判”对或错,而是说:“非常接近标准答案,你能再想一想吗?”这位学生放松地想了想,答:“3+***-6***=-3。”“你再编一编类似的题目,考考其他同学。”该生自己改正了自己的错误,体面地坐下了,自尊心得到了保护。每个孩子都有被人赏识的渴望,都希望得到别人的赞扬,宽容和鼓励。在教学中,要多鼓励表扬,让学生尝到成功的喜悦。教师的眼神、笑容、一个手势等对学生都是一种鼓励,让学生感受到自己被尊重,被信任。所以,每次学生回答后,笔者常用“你很聪明,你的回答对了!”“你真了不起,发现了同学出错的地方!”等这些充满 *** 、充满鼓励的语言来评价学生,保护了学生学习的积极性,使他们觉得学数学是快乐的,从而喜爱上数学课。

此外,教师还可以运用故事、比赛、表演等活动形式,保持学生学习数学的兴趣,陶冶学生情操,使学生愉快学习,从而形成稳定而持久的学习乐趣。

七年级数学是中学数学的基础,如果七年级新生能爱上数学课,就可以提高中学数学教学质量。为了使七年级学生尽快适应中学数学教学、顺利完成学习任务,必须从七年级学生的特点出发,让七年级学生对数学感兴趣,为以后学习奠定基础。

参考文献:

[1] 普天明,黄永明.数学教学方法的更新探索[J].课程教材教学研究***中教研究***,2005***Z1***.

[2] 陈芝红.初中数学教学方法新探[J].浙江教育科学,2007***6***.

【摘 要】常听家长说我的小孩小学数学都要考八十几分九十几分,现在上了初中孩子连及格都成问题。究其原因,学生没能适应初中阶段的学习.有些知识在成人看来很简单,在学生眼里却很难理解,所以我们做教师的,走进孩子的内心,从学生的角度思考问题,帮助孩子们搞好六七年级的衔接,以适应初中阶段的学习

【关键词】适应;衔接;策略

有关策略的含义,目前在学界有着多种不同的表述,其中“策略是旨在达到某种目的而对步骤与方法、技巧等所作的优化组合、精巧安排”。它点出了策略的本质属性,为帮助孩子们顺利度过六七年级的过渡期,根据个人经验,以生为本从孩子的角度出发展开教学,有利于帮助孩子们尽快适应初中阶段的学习.

一、上课适当放慢速度,帮助孩子们适应“课堂容量小到课堂容量大”的过渡

小学阶段教学内容较少,初中阶段教学内容较多,课堂容量显然加大.一般来说,小学老师教态较亲切,课内提问次数较多,有时一堂课内每位学生都可能有被问一次的机会,问题多半讲得较细,有时还可反复讲,反复练.,所以大部分的小学生在老师的帮助下是基本可以掌握好小学的有关知识的.,而初中阶段学习科目和每节课的授课内容都比小学多,课内外的时间都比较紧,课内提问,练习,辅导,讲解都不可能像小学那样频繁,那么细,初一新生基本上还具有小学生的学习心理,跟不上老师的步伐,导致学习掉队,所以我们初一教师开始一段时间不能操之过急,应顺应小学教师的教法,教学的内容少一些,进度慢一些,在具体讲授每节课知识时,做到形象、直观、对比、有趣等,课堂上尽可能多提问,但要提到要害处,,多启发、多表扬、多练习,引导学生逐步进入初中学习轨道。

二、做好翻译工作,帮助孩子们“学会对符号语言的理解认识”

由小学具体的数到初中用字母表示数这一飞跃,也是学生感到困难的地方。学生对表示数的字母作用产生片面认识,老师在教学中必须设法使学生真正理解用字母表示数的意义及目的,让学生知道字母表示数最本质的东西。由于负数的引入引出了绝对值等概念,数的运算出现了符号法则。成为学生学习的又一难点,如何让学生很自然地把有理数的运算与非负有理数的运算统一起来,是老师在教学中必须着力解决的。比如a>0,对七年级的学生不明白是什么意思,老师要具体翻译为字母a表示的是正数,a=a这个式子在七年级学生眼里有些茫然,老师要具体翻译为一个数的绝对值等于它的相反数,这样学生才明确原来这个数可以是0也可以是负数,诸如这样的符号语言式子较多,老师要不厌其烦的将他们翻译成中文语言让学生逐步学会认识理解,从而学会数学符号语言的认识与表述。

三、用数形结合思想帮助孩子适应“形象思维到抽象思维的过渡”

小学几何中对图形的性质和位置关系没有深入的研究,而初中几何就是通过研究几何图形的性质来研究物体的形状、大小和位置的,几何图形是研究几何命题的必需的直观工具,对于初中生来说,图形的形象思维比抽象思维更容易接受。因此,在几何教学中,要充分利用图形帮助学生克服抽象思维的困难。例如:已知a>0,b<0,a>b,比较a,-a,b. -b的大小。学生认为没告诉具体数值无法比较,聪明一点的孩子可以用特值法,但对结论的正确与否自己没把握,这是一个代数问题,数形结合仍然适用。教师指导学生画出数轴,在数轴上根据a、b的位置标出-a、-b的位置,再根据“数轴上的数从左往右越来越大”进行比较,在直观图形下,学生一目了然,进一步加深了对相反数和有理数比较大小的理解,同时通过具体的例子感受数形结合思想可以转化问题的难度。

刚进入七年级学习的学生,对知识的理解更多地停留在感性认识的层面上,因此,更要重视学生由感性认识向理性认识的过渡。在数学知识的形成与应用上,不要对学生的理解持较高的要求,要尽可能地让学生经历整个知识的发生过程,理解知识的形成过程。有时要动手画图,有时还要让孩子们动手操作拼图,苏霍姆林斯基说“儿童的智慧在他们的手指尖上。”通过动手操作把抽象的东西转化为具体的,学生就理解了,这样就能使学生学习变得自然、轻松、高效。

四、教师规范书写的展示帮助孩子们适应“单纯的数字运算到规范书写”要求的过渡.

小学数学多是单纯的数字运算,对学生的书写格式要求不高,而重庆市近些年的数学中考150分的题目,有80分需要过程表述,可见随着年级的增高对书写格式的要求也在不断增加。初一学生很多时候做解答题只写答案,要么就是几个数字摆在那儿,没有必要的叙述和步骤,只满足于写对答案,而不苛求于解题过程的合理性与逻辑性。所以教师要一步一步把过程详细的展示给学生看,让学生在观摩中逐步学会规范的过程书写。从学生的实际出发,加强对学习困难生的个别辅导,作业的检查和批改做到及时评价,及时矫正。讲课时要有意放慢进度,概念应从学生的生活实际引入,深入浅出地讲,同时,针对七年级学生的注意力不能长时间集中,不适应单一的教学法的特点,方法上要讲练结合,严格统一书写格式。让学生通过感知―---概括―---应用的思维过程加强对知识的理解,从而引导学生发现真理,掌握规律,学会运用,学会书写。

五、进行学法指导,引导学生逐步学会自主学习,帮助孩子们适应“知识难度加大”的过渡

初中生活对七年级新生具有新鲜感,在心理上普遍存在着一种上进的愿望,教师应抓住这个契机,激发学生的学习热情。在学习能力方面,他们的记忆力较强,但理解力较差,习惯于具体思维而不习惯于抽象思维,不善于独立思考,对老师有依赖心理。教师要根据学生的实际认识水平,尽量做到按基本知识、基本技能和基本思想方法三个方面考察学生,使大多数学生学习数学能变被动为主动。首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,逐步在较高的层次上学会知识概括等等。通过实际例子的思维过程引导,让学生感悟转化思想。让学生感悟在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等。

作为教师从学生实际出发,了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,在中、小学数学知识间架起衔接的桥梁,以生为本从学生的角度展开教学,帮助学生顺利过渡。

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

我去 初一的论文就要2000字?

相关百科

热门百科

首页
发表服务