ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......
柠檬酸与正丁醇在催化剂和挟水剂存在下作用生成柠檬酸三丁酯,经脱醇、中和、水洗、汽提、脱色、压滤等工序得产品。常用的催化剂为无机或有机酸,挟水剂为正丁醇本身。
柠檬酸三丁酯常见问题列表 【概述】柠檬酸三丁酯(TBC)是一种良好的环保增塑剂、润滑剂。常温下为无毒、有果香味、无色透明油状液体。沸点170℃(),闪点(开杯)185℃。溶于多数有机溶剂。挥发性小,与树脂的相容性好,增塑效率高,在欧美等国家允许用于食品包装和医疗卫生制品,以及儿童软质玩具、制药、医用制品、香精香料、化妆品制造等行业。可赋于制品良好的耐寒性、耐水性和抗霉性。树脂经本品增塑后呈现良好的透明性和低温绕曲性能,并在不同介质中具有低挥发性和低抽出性,热稳定性好,遇热不变色。用本品制备的润滑油具有良好的润滑性能。【新型无毒塑料增塑剂】工业上常用的增塑剂是邻苯二甲酸酯类,因其可诱发致癌,国外已严格控制使用,我国也制定了相关法规,将逐步淘汰其在食品包装材料、医药器具玩具中的使用。柠檬酸三丁酯(TBC)是一种新型无毒塑料增塑剂,因具有相溶性好、增塑效率高、无毒不易挥发、耐侯性强等特点而广受关注,成为首选替代邻苯二甲酸酯类的绿色环保产品。随着人们环保意识的增强以及环保法规的日益完善,开发生产柠檬酸三丁酯具有极好的的发展前景。柠檬酸三丁酯通常是由柠檬酸和正丁醇在催化剂作用下酯化而成,传统的催化剂是浓硫酸,虽然它价格低、催化活性高,但存在设备腐蚀严重、后处理工艺复杂、反应选择差、环境污染严重等弊端,因而寻求可替代浓硫酸的催化剂研究相当活跃,已经发现了很多催化效果较好的催化剂:【硫酸氢钠催化合成柠檬酸三丁酯】一水合硫酸氢钠是强离子型化合物,经研究发现,它易溶于水,水溶液呈强酸性,但不溶于有机酸和醇反应体系,可作为酯化反应的催化剂,研究表明该催化剂具有催化活性高、稳定性好、收率高、易于分离、合成方法简便、无腐蚀、无污染等优点。 【固体超强酸催化合成】强酸是酸强度比100%硫酸更强的酸。研究表明用它作为酯化反应的催化剂具有选择性好,反应速度快,收率高,易分离,操作方便,催化剂稳定,能重复使用,不腐蚀设备,无污染,是一种具有发展前途的催化剂。【对甲苯磺酸催化合成】甲苯磺酸是一种强有机酸,用它代替浓硫酸作为酯化反应的催化剂对设备的腐蚀和三废污染要比硫酸小得多,活性高、选择性好、价廉易得、用量少、产品色泽好,是一种适合工业生产的催化剂。【杂多酸催化合成柠檬酸三丁酯】杂多酸是多元质子强酸,其酸性越强,越有利于盐的形成,为其他亲核基团的进攻提供了更有利的条件,从而加快酯化反应速度.它具有不挥发、热稳定性好、污染小并能减轻对设备的腐蚀,是比较理想的酯化反应催化剂。
问的是三丁酯的生产方法吗?如下:查询无锡双象化学工业有限公司的发明专利“增塑剂柠檬酸三丁酯的生产方法”显示,步骤为:1、先将柠檬酸、正丁醇和第一催化剂氨基磺酸加入反应釜中,在105到115度下进行反应。2、接着搅拌加入第二催化剂钛酸四丁酯,继续升温至160到165度下反应,反应结束后,用硅藻土、活性炭传统脱色过滤得到柠檬酸三丁酯。3、该方法以氨基磺酸和钛酸四丁酯双催化剂制备柠檬酸三丁酯,产率高,催化剂用量小,反应时间短,工艺简单,无环境污染。
海洋生物来源药物先导化合物的研究进展【摘要】 海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并对其研究趋势进行了展望。这些新发现的萜类化合物广泛分布于海藻、珊瑚、海绵以及一些海洋真菌等海洋生物中,主要以单萜、倍半萜、二萜、三萜结构型式存在;而糖苷类化合物在海藻、海绵、海参、海星等海洋生物中发现大部分以糖苷脂、甾体糖苷、萜类糖苷型式存在。【关键词】 海洋生物 萜类化合物 糖苷类 生物活性【Abstract】 Marine organism show some important biological activities. This paper reviews terpenoids and glycosides from marine organism at home and abroad since 2005, and provides scientific evidence for reasonable exploitation and application. Terpenoids are mainly occurred on marine algae, coral, sponge and some fungi by monoterpene, sesquiterpene, diterpene and triterpene. And glycosides with structures of lipid, steroid and terpenoid are distributed to marine algae, sponge, sea cucumber and starfish.【Key words】 Marine organism; terpenoid; glycoside; bioactivity海洋是生命之源,由于海洋环境的特殊性,具有高压、低营养、低温(特别是深海)、无光照以及局部高温、高盐等生命极限环境,海洋生物适应了海洋独特的生活环境,必然造就了海洋生物具有独特的代谢途径和遗传背景,必定也会有新的、在许多陆地生物中未曾发现过的新结构类型和特殊生物活性的化合物。萜类物质是一类天然的烃类物质,其分子中具有异戊二烯(C5H8)的基本单位。故凡由异戊二烯衍生的化合物,其分子式符合(C5H8)n通式的均称萜类化合物(terpenoids)或异戊二烯类化合物(isopenoids)。但有些情况下,在分子合成过程中由于正碳离子引起的甲基迁移或碳架重排以及烷基化、降解等原因,分子的某一片断会不完全遵照异戊二烯规律产生出一些变形碳架,它们仍属于萜类化合物。海洋生物中萜类化合物主要以单萜、倍半萜、二萜、二倍半萜为主,三萜和四萜种类和数量都较少,且大部分以糖苷形式存在。萜类化合物是海洋生物活性物质的重要组成部分,广泛分布于海藻、珊瑚、海绵、软体动物等海洋生物中,具有细胞毒性、抗肿瘤活性、杀菌止痛等活性作用。糖苷的分类有多种方法,按照在生物体内是原生的还是次生的可将其分为原生糖苷和次生糖苷(从原生糖苷中脱掉一个以上的苷称为次生苷或次级苷);按照糖苷中含有的单糖基的个数可将糖苷分为单糖苷、双糖苷、三糖苷等;按照糖苷的某些特殊化学性质或生理活性可将糖苷分为皂苷、强心苷等;按照苷元化学结构类型可分为黄酮糖苷、蒽醌糖苷、生物碱糖苷、三萜糖苷等,海洋类的糖苷大部分是按照此特点分类的,主要包括鞘脂类糖苷、甾体糖苷、萜类糖苷和大环内酯糖苷等,在很多海洋生物如海藻、珊瑚、海参、海绵等中均发现有糖苷类化合物存在。已有的研究表明海洋糖苷类成分大都具有抗肿瘤、抗病毒、抗炎、抗菌、增强免疫力等生物活性。抗白血病和艾氏癌药物阿糖胞苷Ara-C(D-arabinosyl cytosine) 1、抗病毒药物的Ara - A 2以及Ara-C的N4-C16-19饱和脂肪酰基化衍生物3是海洋糖苷类药物成功开发的典范〔1〕。本篇文章对国内外自2005年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了总结。1 萜类化合物 单萜 2005年M. G. Knott等人〔2〕对从红藻Plocamium corallorhiza中分离得到的三种多卤代单萜化合物plocoralides A-C(1~3)〔3,4〕进行了活性研究,发现化合物Plocaralides B(2), C(3)对食管癌细胞WHCOI具有中等强度的细胞毒作用,这些化合物具有卤素取代基。 倍半萜 从海泥来源的真菌Emericella variecolor GF10的发酵液中分离得到两个新型的倍半萜化合物6-epi-ophiobolin G(4)和6-epi-ophiobolin N(5),化合物在1~3μM浓度时能使神经癌细胞Neuro 2A凋亡,同时伴随细胞萎缩和染色体聚集〔5〕。这一类ophiobolins是天然的三环或四环的倍半萜化合物,对线虫、真菌、细菌以及肿瘤细胞有着普遍的抑制活性。Willam Fenical等人从海洋沉积物分离得到一株放线菌CNH-099,在该菌的代谢产物中分离到具有细胞毒作用的新颖的 marinonc 衍生物 neomarinone(6)、isomarinone(7)、hydroxydebromomarinone(8)和methoxydeuromomarinonc(9),它们均是倍半萜萘醌类抗生素。Neomarinone(6)和marinones(7~9)对HCrll6结肠癌细胞显示中等程度的体外细胞毒作用(IC50=8μg/ml),而且,neomarinone(6)对NCI-s60癌细胞也具有中等程度细胞毒作用(IC50=10μg/ml)〔6〕。化合物花侧柏烯倍半萜(10~12)从希腊北爱情海希俄斯岛采集的红藻 L. microcladia中分离得到〔7〕。红藻 L. microcladia 经有机溶剂CH2Cl2/MeOH (3:1)提取,以Cyclohexane/EtOAc(9:1)为洗脱液进行硅胶柱层析,最后经HPLC纯化得到化合物(10-12)。该试验并对化合物活性进行了研究,发现三种化合物均对肺癌细胞NSCLC-N6 和 A-549有抑制作用,化合物(10):IC50= μM (NSCLC-N6)和 μM (A-549),化合物(11):IC50 = μM (NSCLC-N6) 和 μM (A-549) ,化合物(12):IC50= μM (NSCLC-N6)和 μM (A-549)。后两个化合物对肺癌细胞毒活性作用明显高于第一个化合物,推测可能由于后两个化合物结构中酚羟基以及五环内双键的存在提高了化合物活性,而化合物中溴原子的存在并没有对其活性构成影响。从中国南京采集的红藻L. okamurai也分离出四种衍生的花侧柏烯倍半萜化合物,分别是Laureperoxide (13), 10-bromoisoaplysin (14), isodebromolaurinterol (15)和10-hydroxyisolaurene (16)〔8〕。5种snyderane倍半萜(17~21)化合物从红藻L. luzonensis中分离得到〔9〕。从一个软海绵种属Halichondria sp中分离得到四种具有抗微生物活性的含氮桉烷倍半萜化合物halichonadins A-D(22~25)〔10〕。该海绵采集于日本冲绳运天港, kg样品溶于4L MeOH,所得的115g MeOH提取物分别用1200ml EtOAc和400MlH2O萃取, EtOAc萃取物经硅胶柱层析后,洗脱液为MeOH/CHCl3(95:5)和石油醚/乙醚(9:1),得到化合物halichonadins A-D(22~25)和已知化合物acanthenes B、C。活性检测实验显示:化合物halichonadins A-D均具有抗细菌活性,同时halichonadins B和C也具有抗真菌活性,化合物halichonadins C对新型隐球菌(Cryptococcus neoformans)的半致死浓度(IC50)达到μg/ml。三个部分环化的倍半萜(26~28)化合物具有抑制磷酸酶Cdc25B活性,从海绵Thorectandra sp.中分离得到〔11〕。冷冻的海绵样品经4℃去离子水浸泡冷冻干燥后得到的干涸物, 随后用MeOH/CH2Cl2(1:1)和MeOH/H2O(9:1)的有机溶剂提取获得粗提物。采用活性追踪的方式,对粗提物(IC50=8μg/ml)进一步分离,将其溶于100mlMeOH/H2O(9:1)有机溶剂中,得到的粗提物加入300ml正己烷,获得水相部分溶于MeOH/H2O(7:3)的溶剂中,再用300ml CH2Cl2提取得到的部分经活性测定显示对磷酸酯酶抑制活性最强(IC50=6μg/ml),之后采用反相C-18柱HPLC分离,得到部分环化的倍半萜化合物(26)16-oxo-luffariellolide(12mg, tR=18min),化合物(27) 16-hydroxy-luffariellolide ( mg, tR=19min)以及化合物(28) luffariellolide (, tR=38min)。五种属于倍半萜类的化合物hyrtiosins A-E (29~33),从中国海南两个不同地方的海绵Hyrtios erecta种属中分离得到〔12〕。氧化的倍半萜化合物gibberodione(34), peroxygibberol(35) 和 sinugibberodiol(36)从台湾软珊瑚Sinularia gibberosa分离得到〔13〕,化合物(35)具有较温和的细胞毒性〔14〕。从珊瑚Eunicea sp.中提取的七种倍半萜代谢产物(37~43)〔15〕,含有榄烷,桉烷和吉玛烷骨架结构,研究显示对Eunicea 种属的疟原虫具有轻度的抑制作用。 二萜 以前很少有从绿藻中分离得到萜类化合物的报道,但是与2004年相比,提取的代谢产物数量有所增加〔16〕。从澳大利亚塔斯马尼亚采集的绿藻Caulerpa brownii中分离出许多新型二萜类化合物,其中化合物(44~48)在没有分支的绿藻中提取得到〔17〕,而类酯萜化合物(49)是从分支的绿藻中获得,该研究同时显示提取的类酯萜化合物对细胞、鱼类、微生物均有不同程度的毒性作用〔18〕。日本Koyama K等人从褐藻Ishige okamurae来源的未知海洋真菌(MPUC 046)中分离到一种新型的二萜类化合物phomactin H(50)〔19〕。真菌(MPUC 046)经含150g小麦的400ml海水25℃发酵培养31天后,采用CHCl3溶剂提取、硅胶层析及HPLC纯化得到phomactin H。该化合物同已发现的phomactin A-G化合物一样,均属于血小板活化因子(PAF)拮抗剂,能抑制PAF诱导的血小板凝聚,同时推测此活性与化合物的某个特定骨架结构有关。从法国南部大西洋海滨采集的褐藻Bifurcaria bifurcata中分离得到(51~55)五种新型的极性非环状二萜类化合物〔20〕。该褐藻经CHCl3/MeOH(1:1)提取,硅胶层析(洗脱液为不同比例的Hexane,EtOAc,MeOH),经反相C-18柱HPLC纯化获得十二种化合物,其中五种为新型二萜类化合物。化合物(51~53)在Hexane: EtOAc(2:3)洗脱液中发现,而化合物(54)和(55)则从Hexane: EtOAc(1:4)洗脱液中获得。6种新型的Dactylomelane二萜类化合物 (56~61)从西班牙特纳里夫南部家那利群岛采集的红藻Laurencia中分离得到〔21〕,其结构具有C-6到C-11环化的单环碳新型结构。采集的红藻经CH2Cl2/MeOH(1:1)有机溶剂提取后,用洗脱液Hexane/CHCl3/MeOH(2:1:1)进行Sephadex LH-20反相色谱分离,结合TLC点样筛选的部分用洗脱液EtOAc/hexane(1:4)进行硅胶柱层析,最后采用硅胶柱进行HPLC纯化得到六种新型的单环碳二萜类化合物Dactylomelans。从红藻L. luzonensis中也分离得到二萜类化合物luzodiol (62)〔9〕。一个溴代二萜类化合物 (63)从日本其他红藻Laurencia物种中分离得到 〔22〕。Xenicane二萜类化合物(64~71)从台湾珊瑚Xenia blumi分离出来,而化合物xeniolactones A-C (72~74)则是从台湾Xenia florida中分离出来的〔23〕。化合物 (64~67), (69), (70) 和 (72)具有轻微的细胞毒性作用。非Xenicane代谢产物xenibellal (75)对Xenia umbellata也具有轻微的细胞毒性作用〔24〕。化合物Confertdiate (76)是一个四环的二萜类物质,从中国珊瑚Sinularia conferta中分离得到〔25〕。从史密森尼博物院癌症研究所收集的海葵中分离得到的二萜类化合物actiniarins A-C (77~79)能适度抑制人cdc25B磷酸酶重组〔26〕。 Periconicins A,B (80~81)〔27〕是从内生红树林真菌Periconia sp.分离得到的二萜类的新化合物,能抑制不同微生物的生长活性,诸如bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6358p, Staphylococcus epidermis ATCC 12228等等。南海真菌2492#是从采自香港红树林植物Phiagmites austrah样品中分离得到的,从2492#菌株的发酵液中分离得到的两种二萜类化合物 (82~83)有很好的生理活性〔28〕,如抗肿瘤、降压、调整心率失常,同时降压调整心率失常的作用在相同的条件下优于临床现用的阳性对照物。从中国红树林植物Bruguiera gymnorrhiza分离出二萜类化合物 (84~86),化合物(86)对小鼠成纤维细胞具有适当的细胞毒活性〔29〕。也从中国红树林另一物种Bruguiera sexangula var. rhynchopetala分离出三种二萜类化合物 (87~89) 〔30〕。与之结构相似的二萜类化合物 (90~93)从中国Bruguiera gymnorrhiza中分离得到,其中化合物 (92)和 (93)有轻微的细胞毒活性〔31〕。 二倍半萜 Willam Fenical研究小组从曲霉属Aspergillus海洋真菌(菌株编号CNM-713)分离到一个新的二倍半萜化合物aspergilloxide (94),该化合物为含有25个碳原子的新骨架,对人的结肠癌细胞HCT-116有微弱的细胞毒活性〔32〕。在此之前,Willam Fenical等人从巴哈马的红树林中的漂浮木中也分离到一株真菌Fusarium heterosporum CNC-477, 并从中分离得到一系列多羟基二倍半萜类化合物neomangicols A-C(95~97)〔33〕和mangicols A-G (98~104)〔6〕,它们的结构如下图所示。Neomangicols的骨架为25个碳的二倍半萜,是首次从天然物中分离得到。药理实验显示化合物 (96)具有和庆大霉素大致相当的对革兰阳性细菌的抑制能力,化合物 (98)和 (99)对MPA(phorbol myristate acetate)诱导的鼠类耳朵水肿有抗炎症活性。 三萜 从海洋生物中提取得到的三萜类化合物主要以三萜皂苷、三萜烯类、三萜糖苷等形式存在。四环三萜皂苷类化合物nobilisidenol (105) 和 (106)是从中国黑乳海参Holothuria nobilis分离得到的〔34〕。采集于福建东山的黑乳海参洗净切碎后用85%的EtOH冷浸提取,得到的流浸膏均匀分散于水中,依次用石油醚、二氯甲烷、n-BuOH萃取,研究发现n-BuOH提取物经大孔吸附树脂、正相硅胶层析、反相C-18硅胶柱层析以及反相C-18 柱HPLC分离得到三萜皂苷类化合物nobilisidenol (105)和(106)。易杨华等同时从海参中提取到了其它的三萜糖苷类化合物以及三萜皂苷脱硫衍生物〔35,36〕。三萜烯类化合物intercedensides D-I(107-112)从中国海参Mensamaria intercedens中分离得到,具有细胞毒功能〔37〕。新西兰海参Australostichopus mollis是单硫酸酯三萜糖甙化合物mollisosides A(113), B1(114) 和 B2(115)的来源〔38〕。具有细胞溶解作用的三萜类化合物sodwanone S (116)是从印度洋多毛岛采集的海绵Axinella weltneri中分离得到的〔39〕。三萜苷类化合物sarasinosides J-M (117-120)分离自印尼苏拉威西岛采集的海绵Melophlus sarassinorum,对B. subtilis和S. cerevisae的细菌具有抗微生物活性作用〔40〕。2 糖苷类化合物从中国海南采集的甲藻A. carterae中分离得到一种不饱和的糖基甘油酯化合物(121)〔41〕。甲藻采集于中国海南三亚,经分离筛选得到的A. carterae大规模培养后用甲苯/MeOH(1:3)的有机溶剂提取,所得干涸物分别用甲苯、1N NaCl 水溶液提取。研究发现有机相提取物经硅胶柱(洗脱液为不同比例的MeOH/CHCl3)、反相C-18硅胶柱层析(洗脱液为MeOH/H2O=9:1),最后经反相C-18柱制备型HPLC(流动相为MeOH/H2O =95:5)分离纯化得到25mg不饱和的糖基甘油酯化合物(121)。从多米尼克普次矛斯采集的绿藻Avrainvillea nigricans中可以分离出一个甘油酯avrainvilloside(122),该化合物含有6-脱氧-6-氨基糖苷部分〔42〕。两个甘油一酯化合物homaxinolin(123)和(124),磷脂酰胆碱homaxinolin(125)以及能抑制细胞生长的脂肪酸(126)是从韩国海绵Homaxinella sp.中分离得到的〔43〕。从红海采集的海绵Erylus lendenfeldi分离得到的两个甾体糖苷类化合物erylosides K(127)和L(128)能选择性的抑制酵母菌株的rad50芽体,rad50能修复协调受损的双链DNA〔44〕。海参Stichopus japonicus是五种糖苷化合物SJC-1(129),SJC-2(130), SJC-3(131), SJC-4(132) 和 SJC-5(133)的主要来源〔45〕。五种化合物均从弱极性CHCl3/MeOH部分分离出来,其中SJC-1(129), SJC-2(130), SJC-3(131)是典型的鞘甘醇或植物型鞘甘醇葡萄糖脑苷脂类化合物,含有羟基化或非羟基化的脂肪酰基结构。SJC-4(132) 和 SJC-5(133)也含有羟基化的脂肪酰基结构,但是含有独特的鞘甘醇基团,是两种新型的葡萄糖脑苷脂类化合物。Linckiacerebroside A(134)是从日本海星Linckia laevigata分离出的一种新型糖苷脂化合物〔46〕。甾体糖苷孕甾-5, 20-二烯-3β-醇-3-O-α-L-吡喃岩藻糖苷(135) 和 孕甾-5, 20-二烯-3β-醇-3-O-β-D-吡喃木糖苷(136)从中国短足软珊瑚Cladiella sp.中分离得到〔47〕。将新鲜的软珊瑚干质量 kg用乙醇在室温下浸泡 3 次, 合并提取液, 减压浓缩后得到深褐色浸膏 用30%的甲醇溶解后, 依次用石油醚、乙酸乙酯、正丁醇萃取, 石油醚提取液经减压浓缩后得棕黑色胶状物 ,将此提取物硅胶柱减压层析, 用石油醚乙酸乙酯溶剂体系梯度洗脱, 从石油醚/乙酸乙酯(20:80)洗脱液中所得的洗脱部分在反相C-18柱上进行HPLC分离, 用MeOH洗脱得到化合物60mg(135)和3mg(136),该类化合物具有抗早孕和抑制肿瘤细胞生长活性。四种甾体糖苷化合物(137-140)是从中国珊瑚Junceella juncea EtOH/CH2Cl2提取液中分离得到〔48〕。3 结语目前,从海洋生物中发现的萜类和糖苷类天然化合物的数量近几年呈现逐渐增加的趋势,有些化合物的活性确切而且活性作用强烈是很有希望的一些药物先导化合物,但是用于临床研究的化合物还相对较少,因此开发更多新的天然化合物是有必要的。其次,从海洋生物中发现的活性化合物也存在着活性较低或毒性较大等问题,可以通过对其结构进行修饰,使其活性达到最佳效果。此外,从海洋生物中提取的活性化合物含量通常较低,而且化合物在提取过程中受到提取试剂、方法等外界因素的影响,所以采用化学合成的方法进行化合物的半合成或者全合成解决化合物在提取过程中结构易变、试剂耗量大等缺点。例如从海洋真菌中发现的结构新颖,有抗菌、抗癌和神经心血管活性的物质头孢菌素C,就是从海洋真菌中分离得到的,这是一大类半合成的广为人知的抗生素,它已广泛用于临床〔49〕。所以采用合成或半合成的方法解决活性化合物作为药源的大量生产方式是通行的。我们期待着这些药物先导化合物在药物开发方面发挥重要作用。
·《手性药物右雷佐生合成工艺的改进及质量控制》 ·《硅烷偶联剂及一种新型非依赖性镇痛药物的合成研究》 ·《两类药物目标分子的合成及分析》 ·《两种药物目标分子的合成及分析》 ·《生物数据库搜索和可视化的研究》 ·《金雀异黄素合成工艺优化研究》 ·《阿魏酸及其类似物的合成与抗氧化活性研究》 ·《功能化离子液体的制备及在药物合成中的应用研究》 ·《新的苯茚胺类似物的设计合成及抗抑郁活性研究》 ·《头孢西丁钠的合成》 ·《盐酸他利克索合成工艺研究》 ·《新呋咱氮氧化物类NO供体药物合成及体外NO释放测试》 ·《钌(Ⅱ)-卟啉催化卡宾C-H插入反应的基础研究及其在药物合成中的应用 》 ·《微波辐射在杂环药物合成中应用的研究 》 ·《不对称二羟基化反应中新型可回收和重复使用的手性配体研究》
医药论文这个要定制!
海洋生物来源药物先导化合物的研究进展【摘要】海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并对其研究趋势进行了展望。这些新发现的萜类化合物广泛分布于海藻、珊瑚、海绵以及一些海洋真菌等海洋生物中,主要以单萜、倍半萜、二萜、三萜结构型式存在;而糖苷类化合物在海藻、海绵、海参、海星等海洋生物中发现大部分以糖苷脂、甾体糖苷、萜类糖苷型式存在。【关键词】海洋生物萜类化合物糖苷类生物活性【Abstract】.【Keywords】Marineorganism;terpenoid;glycoside;bioactivity海洋是生命之源,由于海洋环境的特殊性,具有高压、低营养、低温(特别是深海)、无光照以及局部高温、高盐等生命极限环境,海洋生物适应了海洋独特的生活环境,必然造就了海洋生物具有独特的代谢途径和遗传背景,必定也会有新的、在许多陆地生物中未曾发现过的新结构类型和特殊生物活性的化合物。萜类物质是一类天然的烃类物质,其分子中具有异戊二烯(C5H8)的基本单位。故凡由异戊二烯衍生的化合物,其分子式符合(C5H8)n通式的均称萜类化合物(terpenoids)或异戊二烯类化合物(isopenoids)。但有些情况下,在分子合成过程中由于正碳离子引起的甲基迁移或碳架重排以及烷基化、降解等原因,分子的某一片断会不完全遵照异戊二烯规律产生出一些变形碳架,它们仍属于萜类化合物。海洋生物中萜类化合物主要以单萜、倍半萜、二萜、二倍半萜为主,三萜和四萜种类和数量都较少,且大部分以糖苷形式存在。萜类化合物是海洋生物活性物质的重要组成部分,广泛分布于海藻、珊瑚、海绵、软体动物等海洋生物中,具有细胞毒性、抗肿瘤活性、杀菌止痛等活性作用。糖苷的分类有多种方法,按照在生物体内是原生的还是次生的可将其分为原生糖苷和次生糖苷(从原生糖苷中脱掉一个以上的苷称为次生苷或次级苷);按照糖苷中含有的单糖基的个数可将糖苷分为单糖苷、双糖苷、三糖苷等;按照糖苷的某些特殊化学性质或生理活性可将糖苷分为皂苷、强心苷等;按照苷元化学结构类型可分为黄酮糖苷、蒽醌糖苷、生物碱糖苷、三萜糖苷等,海洋类的糖苷大部分是按照此特点分类的,主要包括鞘脂类糖苷、甾体糖苷、萜类糖苷和大环内酯糖苷等,在很多海洋生物如海藻、珊瑚、海参、海绵等中均发现有糖苷类化合物存在。已有的研究表明海洋糖苷类成分大都具有抗肿瘤、抗病毒、抗炎、抗菌、增强免疫力等生物活性。抗白血病和艾氏癌药物阿糖胞苷Ara-C(D-arabinosylcytosine)1、抗病毒药物的Ara-A2以及Ara-C的N4-C16-19饱和脂肪酰基化衍生物3是海洋糖苷类药物成功开发的典范〔1〕。本篇文章对国内外自2005年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了总结。1萜类化合物单萜2005年等人〔2〕对从红藻Plo
两者实际算下来都是按实际成本进行结算,只是劳动强度、科目设置和账务处理多少有些不同。存货按实际成本核算的特点是:从存货的收发凭证到明细分类账和总分类账均按其实际成本计价。实际成本法一般适用于规模较小、存货品种简单、采购业务不多的企业原材料按计划成本的核算方法适用于存货品种繁多、收发频繁的企业。如果企业的自制半成品、产成品品种繁多的,或者在管理上需要分别核算其计划成本和成本差异的,也可采用计划成本法核算下面仅用材料取得和入库这一过程为例,用简单的分录来加以说明:实际成本法下:取得材料:借:物资采购(实际成本)×××。××应交税金-应交增值税(进项税额)×××。××贷:银行存款等×××。××材料入库:借:原材料(实际成本)×××。××贷:物资采购×××。××实际成本法下原材料均是以实际成本反映,所以月末不需加以调整。计划成本法下:取得材料:借:物资采购(实际成本)×××。××应交税金-应交增值税(进项税额)×××。××贷:银行存款等×××。××材料入库:借:原材料(计划成本)×××。××贷:物资采购×××。××计划成本法下,要在月末进行汇总,计算材料成本差异,具体分录如下:借:材料成本差异(超支差)×××。××贷:物资采购×××。××或借:物资采购×××。××贷:材料成本差异(节约差)×××。××从以上对实际成本法和计划成本法的描述,可以得出如下的结论: 在计划成本法下,材料明细账可以只记录收入、发出和结存的数量,将数量乘以计划单位成本,随时求得材料收、发、存的金额,通过“材料成本差异”科目计算和调整发出和结存材料的实际成本,简便易行。而在实际成本法下,对存货的数量、单位成本和总金额都要详细记录,增加了一些不必要的麻烦。计划成本法虽然强调的是“计划”下的成本,但它仍是适时地关注实际成本,与实际成本保持着密切的联系。在取得存货时,将实际成本与计划成本相对比得出存货的“材料成本差异”,表面上看只是一个简单的计算过程,其实质是控制和决策过程。通过两种成本的比较,使得采购部门不断关注其计划成本,结合更多的影响因素,不断降低其采购成本,节约支出,也为制定更完善的计划成本做准备。希望对你有帮助~!
成本核算是一项较为系统性的工作,它涉及到一系列的问题,对此我们必须做好相关的核算,有效的进行组织,有条不紊的开展相关核算工作。下面是我为大家精心推荐的成本核算与管理论文,希望能够对您有所帮助。
企业会计核算中成本核算的应用
在市场经济快速发展的现代化社会,几乎所有的企业已经并不满足于短期间内的利润最大化,相反,他们已经开始看重企业的能力,企业更希望的是能够在长时间内实现竞争力的最大优势,只有拥有竞争力才有实例争取更大的利润,实现企业价值和利润的最大化。想要完成这一长期目标,就要有长久的坚持和合理的计划,我们要找到适合的策略来实现这个目标。但是,无论我们作何选择,成本的核算以及管理都是所有核算的内在中心,是一个最基本的内核。
一、成本核算的概念以及其在企业中的地位
在现代企业中,成本核算就是指一系列应用会计学公式和原理,借助现代化的信息化设备来搜集信息和做一些企业的销售分析。从而带动一系列企业的经营活动,以及这些活动所用的所有花费,对这些经济性的分析。在经济构架上找到企业的基本构成、经营水准、成本组成等等企业的基本状况。在了解了这些之后,就能够更加明确清晰的定制企业将来发展的策略。因此,可以说会计核算是企业的核心核算,而成本核算,正是重中之重。
一个好的管理体系,就是实现成本核算的良好环境。一个好的发展策略,能够带动企业向前发展,实现长期利益最大化,从而更快的发展,拥有十分惊人的竞争力。
二、企业会计核算中的成本核算的应用原则
成本核算在应用的过程中,主要有以下几点原则:
1、成本核算的合法性。所有的计算都要符合法律法规,不合乎规则和法律的不能够计入成本,要求原始的记录是合理合法的,并且保存完整,记录细致。
2、相关性原则。就是说我们所计算的成本价格应当与我们所生产的产品有直接关系,与之相关的才能算作成本。无关的不要记入成本,以免影响企业的核算和预见性错误,出现管理漏洞,从而做出不利于发展的决策。
3、可靠性的原则。顾名思义,就是值得信赖的数据信息,可以及时核实,并且真是存在。他的成本信息是与客观的市场经济相吻合的,不要存在任何欺性,要按照一定的原则进行,保证其真实可靠。
4、可利用性。我们做出的成本核算最终是要给管理者分析利用的,这样的数据就要求我们提供有利信息,而非不可用信息。
5、及时性的原则。信息数据具有时效性。在信息化的今天,更新速度之快是我们不能想象的,及时掌握有利信息,有可能关乎一个企业的生死存亡。及时的核算结果,能够恰当具体的体现出当前企业的经营效果。根据这些分析做出最精准的发展决策。
6、分期核算的原则。为了更加准确的信息,我们需要在大量的数据中分批次的利用,这样不仅有利于发展可持续,更不易混淆,井然有序。按照年月日核算,也便于日后查找。
三、要点
除此之外,成本核算还有几大应用要点值得我们注意。
1、确认核算的最终目的。有目标的核算即避免盲目又有利于分析,能够很好的为管理服务。其所核算出的成本能够满足日常管理的需要,又能够为企业的发展决策提供良好的基础数据。成本的核算有着各种各样的目的,比如为了计算存货、成本的多少计算、收益多少的计算、成本的决策及控制、为产品制定价格、签订合同需要的数据等等。根据核算目的的不同,寻找不同的对象,决定核算的不同内容,制定本次核算的不同 方法 。
2、确定该成本核算的对象。成本对象是个集合体,它包括所有项目中需要归拢的各个成本个体的对象,就是我们所说的成本承担者。他可以使一个项目、一种产品、一纸订单、一个部门、一个个人、或者是一个作业。他以一个目标为中心,集合所有围绕这个中心的对象,逐一计算成本。不同的目标有不同的对象,我们要准确找到这些对象,然后在计算。
3、确定该成本核算的内容。一般的成本核算都包含有两方面的内容,一是产品的成本,二是归集的分配所用成本。费用的归集分配要求我们首先要控制成本开支范围。明确每一笔开支的界限,过滤不应该计入成本的各项开支。然后记录并且测定积累各项数据。按照不同的对象进行和核算,然后汇总,分别核算出个体和单位的成本。在一个企业之中,往往有着多种多样的产品,直至月末可能还有滞销的部分,因此要准确计算和剔除真正的成本量,这是一项艰巨的任务。
四、企业会计核算中成本核算的基本方法
企业的产品生产过程其实就是企业资产的消耗过程,因此,我们可以用产品经营的方法来区别对待其经济成分。主要分为三大类:1、劳动对象。2、活动耗费。3、劳动方法。根据不同的分类,建立一个可行使用的数据表,计算各项费用。分出每一科级科目的花费,然后细致分出各种项目。然后在当月或者一
定的时间段范围内计算成本。将表格建 立在实际的基础之上,使之 联系紧密而且准确。
建立完相关的表格,下一步当然是根据现有的分析开始对成本进行控制。根据一定的条例和规定进行控制,不盲目不重复,有一定的道理,既符合可持续又不会干扰企业的 发展。但是,有的企业内部会有一定程度的不合理的 管理漏洞,这就需要允许相关管理人员或者相关人员能够修改报表和提出合理化意见。但是一定要透明并且符合企业的 规章制度 ,不要盲目处理,以免使企业蒙受损失。
只有更好的建立管理机制,才能够合理的安排管理,统筹各项成本,帮助企业发展。
五、以 建筑施工企业为例谈成本核算的现状
在现在的施工企业中,很多不同问题影响、制约着他的发展:
1、数据 统计不够具体,不明晰,为核算整理数据带来困难。 会计核算最主要的就是数字与数字的累计,这是最基础的方法。通常,为了保证所计算的项目成本准确而有条例,我们要根据其前期的整理数据和计算来确定,因而前期的准备 工作就显的尤为重要。这些数据的准确与否,直接关系到一个工程项目的前期准备,需要耗费的资金,需要的人员统计,以及设备所需量等等,还有就是成本的比重与需要的消耗。另外,一个合格的成本预算包括预算时的总体价格和分解出来的各个项目的价格。财会部门需要对这些信息进行准确分类和整理,然后拿给有关部门分析,哪些属于必要支出,哪些属于机动支出,找到浪费的原因,处理不必要的花费,保证成本准确有用和合理。
2、报表的信息不够准确,会计搜集信息不健全。编辑会计的报表,是成本计算部分最重要也是最复杂的环节。报表的编制和汇总更是企业会计的一项重要挑战。一项复杂的会计核算对象纷繁复杂,需要很好的编制汇总,这也是核算的最主要特点之一。汇总表的准确与否直接关系到对象的选择和决策的正确与否。其结果不容忽视。
因此,建设一支有责任心的队伍必不可少,内部 审计会计的素质需要提高,高素质的人才是企业成败和发展的关键。受欢迎的管理队伍,能够担负企业的未来。正如好的成本核算,一个合理内核下就能拥有一个好的发展。这在一定程度上,也是有效节约成本的一个方法和途径。因此,可以说,会计核算下的成本核算需要 应用到的实际操作,正是因此实现的,人是所有成本的基础。
结语:高素质的会计部门人才是关键,建立高机制的成本核算迫在眉睫。企业中最重要的就是成本核算,因此,它也是会计核算中最重要的一个环节,他牵制影响着整个企业的发展。做好一个合格准确的成本核算,有利于企业的可持续发展,在企业成长的道路上做出准确关键的决策。在遵守一定的企业原则下,制定一个合理的核算模式和方法。另外,运用创新手段和科技发展手段位企业服务,也是成本中不可缺少的一项,是企业在当今 社会生存发展的手段。
点击下页还有更多>>>成本核算与管理论文
对现行高校教育成本核算方法进行研究论文
早在 20 世纪 60 年代初,西方国家就产生利用成本核算建立教育成本的思想。高等院校属于非营利机构,其具有不核算成本、不计盈亏的特性,而这种特性使高等院校在成本核算实践和理论方面的发展受到限制,阻碍教育成本核算的发展,其实际应用也较少。然而,随着高等院校管理者的管理意识不断提升,对成本信息的需求越来越大。为满足高等院校管理层对成本信息的需求,高等院校财务必须运用科学的核算方法对成本进行计算,为高校提供科学、相关、准确的成本信息。
1 高校教育成本研究现状
国外高校成本研究现状20 世纪中期,“人力资源”理论的诞生,为教育成本实践和理论提供依据。1968年,希恩和维泽两位学者,在其《教育所用的资源》一书中提出教育单位成本观念。到 20 世纪 70 年代,西方高等院校开始推行成本核算,并逐步系统化、条理化。在西方,教育成本的核算方法较多,如韦伯斯特的效率分析法、特威和普雷斯特的成本分析法等。20 世纪 50、60 年代,美国加大教育产出和投入,借助教育生产函数研究教育资源投入与产出间的转化。此外,西方经济学家还把“边际收益递减律”应用于教育成本研究中,得出教育成本规模的关系是 U 型。1975 年,西蒙斯把学校作为分析单位,采用多元回归分析法,明确教育资源投入对其产出的影响,并在世界各国进行横向比较。
国内高校成本研究现状早在 1961 年,周恩来总理就指出:“物质生产的某些规律,同样适用于精神生产”,人才的培养也要讲成本。当时,我国高等院校以国家拨款为主,未曾对此问题进行深入思考。目前,高等院校现行财务核算以预算管理为中心,其管理模式是“量入为出、收支平衡”及“大收入、大支出”。这种模式只注意收支平衡,忽视经费使用效益和支出合理性。因此,现行高等教育成本核算仍处于薄弱环节。此外,社会各界对高校教育成本核算问题进行深入研究的寥寥无几。直到党的十二大召开以后,关于教育资源使用效益的提高和教育成本问题才提到日程上来。
总的'来说,我国对教育成本核算的研究仍处于初级阶段,对教育成本在会计成本中的地位认识不足,且缺乏一套完整的教育成本核算体系。
2 高校教育成本特点
从某种意义上讲,高等院校教育部门也是生产部门,其开展的都是有组织、有产出的社会经济活动。因此,与一般生产部门相比,在某些方面具有共性,如成本核算及分类。但两者之间在性质上还存在一定区别。与一般意义上的成本相比,高等院校教育事业自身的特点决定其独特性。
成本补偿间接性在生产物资过程中,其耗费的活劳动和物化劳动转移到物资产品中,企业借助产品销售获取收入,除去产品成本后,其余部分为企业纯收入。因此,销售环节使生产耗费的物质产品得以回收。但教育成本投资相比物质生产投资,存在一定区别,教育成本补偿是间接性的。高等院校的学费只是教育成本的一部分,不能完全补偿高等院校投资。把对教育成本的补偿放在教育上并不可行,应将其投入到毕业生从事的社会劳动和劳动力市场中。因此,高等院校教育成本不能通过收取高额学费的方式进行回收,部分成本可以通过国民收入分配和再分配进行补偿。
递增性随着科技管理不断加强,物资生产的成本(单位产品)不断递减。但是,在高等院校,其教育成本呈现不断增加的特性。造成成本递增的原因较多,其主要是受人才培养质量、资金额度大小及现代科技的运用等因素影响。高校教育的成本核算并不以追求成本最小化为目标,相反,部分学校成本的核算存在追求成本效益最大化的倾向。教育学家霍华德·鲍恩对此作了深入分析,并将其归纳为 5条高等院校费用规律。他认为院校办学的主要目的是声望显赫、成绩卓越及影响深远,为追求这种富有教育成果的目标,高等院校所需要的费用是无止境的,无论教育成本支出多少,都难以被认为足够。故此,高等院校的开销达到其财力能担负的最高上限,而这些教育开支被固定下来,撤销就很困难。
每所院校筹集的资金被全部用掉,开支日趋增长。高等院校教育代表社会先进的科技水平,因此,配备先进的设备和教学仪器,采用现代化教学手段,提供良好的生活和工作条件,是高等院校培养高科技水平人才的关键。为保证高等院校教育质量,其消耗的财力、物力及人力不断增加,从而使高等院校教育成本呈递增发展趋势。
效益与时间的不配合性在时间上,教育效益表现为长效性和迟效性,高等院校资金的耗费与投入不能立竿见影,一般来说,在毕业生就业后的第 10~15年,教育投资收益才会达到最高值。因此,高等院校教育资金的投入具有显著的滞后性。虽然教育投资周期长,但投资带来的效益非常大,能获得加倍收益,比一般物资生产领域的投入所产生的效益要大得多,且这种效益持久、稳定。
3 高校教育成本核算方法比较
成本统计法
成本统计法是利用教育费用来统计资料,从中抽取培养学生的支出作为成本数据进行计算。该方法是借助会计资料,按照高校教育成本核算原则,对数据进行修正,进而得到成本数据,其具有一定的合理性和科学性,且操作简单,是现行高校教育提供成本信息的一种重要手段。但是,部分学者认为高校教育成本核算是一项重要工作,需对现行会计制度和财务制度进行改革,从原有以费用支出为中心转移到以成本核算为中心上来。因此,短时间内教育成本核算的建立和推行可能性较小。另外,成本统计法严格上说不是一种会计核算法,而且该方法统计的成本信息较为粗略,准确性差。
会计调整法
会计调整法是指利用会计资料转换成对教育成本的计算方法。其以教育成本核算为对象,将教育支出数据调整为教育成本项目数据。如计算学校为学生提供 3年教学服务耗费的资源,可通过会计资料得到教育经费数据,除去与教育无关的费用,增加经费中未反映的应计费用,转换为各项目成本。相比统计法,该方法操作复杂,但准确性及合理性高。其缺点是部门没有制订调整规则,适用于不信赖统计法而又力求教育成本准确性的教育成本核算。
会计核算法
会计核算法是指高校教育成本采用会计方法进行核算,通过建立教育成本会计账户,期末时根据期末余额结转本期发生额,其明细账以成本核算对象进行开设,在分配和归集教育费用时,成本明细与成本核算对象要保持一致,按成本核算对象进行费用的归集与分配,要以成本明细账进行记录。通过教育归集费用之和,即成本核算对象的总成本,再按折合学生数计算人均成本。采用该方法计算高校教育成本,结果比较精确,但其工作量大。
4 结语
高校教育成本核算对高校财务管理来讲,是一个充满挑战性的课题。现行高校教育尚未将教育成本核算设置成科目,因而不能进行成本核算。目前,我国高校成本核算仍处于理论阶段,国家尚未制订有关教育成本核算方面的制度。本文主要研究现行高校教育成本的核算方法,并对其方法进行比较,阐述教育成本对高校教育事业发展的重要作用。
-艾拉莫德是一种新型抗炎药,可用于治疗风湿性关节炎。 以4-氯-3-硝基苯甲醚(化合物2)为原料,在叔丁醇钾的催化下,与苯酚发生醚化反应生成4-苯氧基-3-硝基苯甲醚(化合物3);化合物3经硝基还原,生成4-苯氧基-3-氨基苯甲醚(化合物4);化合物4在吡啶中与甲磺酰氯发生甲磺酰化反应,生成4-苯氧基-3-甲磺酰胺基苯甲醚(化合物5);然后将三氯化铝与氨基乙腈盐酸盐溶于硝基苯中,再加入化合物5,持续不断通入饱和的氯化氢气体进行盖特曼-科赫反应,生成α-氨基-2-甲氧基-4-甲磺酰胺基-5-苯氧基苯乙酮盐酸盐(化合物6);化合物6经甲氧基水解得α-甲酰胺基-2-甲氧基-4-甲磺酰胺基-5-苯氧基苯乙酮(化合物7);最后化合物7与N,N-二甲基甲酰胺二甲缩醛发生环化反应得到目标产物艾拉莫德(化合物1)。本课题研究了醚化反应中投料比、反应时间;还原反应中铁粉的用量、盐酸的用量;甲磺酰化反应中甲磺酰氯的用量、吡啶的用量等因素对产物得率的影响;探讨了盖特曼-科赫反应、氨基酰化反应、甲氧基水解和环化反应的合成方法和机理等。确定了较佳工艺条件:醚化反应中,4-氯-3-硝基苯甲醚/苯酚/叔丁醇钾的摩尔量为 ,在110℃下反应5h,收率为;还原反应中,每4g化合物3与3g还原铁粉和的4mol·L~(-1)的盐酸,在70℃下反应1h,收率为;在50mL吡啶中,每化合物4与甲磺酰氯,0℃~5℃下反应1h,收率为;目标产物艾拉莫德(化合物1)的总得率为。
邻羟基苯甲醚俗名愈创木酚。是一种治气管炎的药吧。
常用苯酚的氢氧化钠(苯酚钠)溶液和碘甲烷或硫酸二甲酯反应制的苯甲醚。