首页

> 期刊论文知识库

首页 期刊论文知识库 问题

论文网合集

发布时间:

论文网合集

1. 维普资讯中文科技期刊数据库(期刊论文)2. 中国知网(期刊、学位论文)(网上包库)3. 中国知网(期刊、学位论文)(本地镜像)4. 万方数字资源系统(学位论文 、会议论文、外文文献)5. 读秀学术搜索6. 超星数字图书馆(电子图书、讲座、读秀学术搜索)7. 书生之家数字图书馆(电子图书)8. 煤炭数字图书馆暨安全生产数字图书馆9. 中国资讯行高校财经数据库(统计数据、商业报告、证券消息等)10. 搜数网(统计数据)11. 国务院发展研究中心信息网(商业报告、统计数据等)12. (国泰安)中国股票市场交易数据库(股票交易数据)13. 高校教学资源库(教学课件、多媒体素材等)14. 方略学科导航(我校主要学科网络学术资源,包括煤炭经济、半岛经济)15. 爱迪科森就业库(考研、应用英语、职业认证培训、出国考试等视频课程)16. 新东方多媒体学习库17. VIPExam考试学习资源数据库(司法、财经类职业资格等考试题库)18. E线图情19. 山东高校图书馆随书光盘资源联合中心(免费资源)20. 国家精品课程资源网(免费资源,教学课件、教案、视频课程等)21. 中国大学视频公开课(免费资源,视频课程)22. 网易公开课(免费资源,中外视频课程)23. 厦门大学学术库(免费资源)24. 汉斯出版社中文学术期刊(免费资源)25. e读学术搜索

必收藏!免费好用的论文查找检测、查重、下载网站合集~

免费论文的网站有爱学术、汉斯出版社等。1、爱学术是一家专业的学术文献分享平台,覆盖各个行业期刊论文,学位论文,会议论文,标准,专利等各类学术资源,是国内最大的学术文献交流中心和论文资源免费下载网站,旨在构建一个专业的学术文献交流分享平台。2、汉斯出版社聚焦于国际开源(OpenAccess)中文期刊的出版发行,是秉承着传播文化和促进交流的理念,积极探索中文学术期刊国际化道路,并且积极推进中国学术思想走向世界。

大学生最需要的中文免费论文网站:无忧论文网(老牌子论文网)中国论文网(免费论文下载,大量免费资源)论文宝(爆多论文,百万论文库全免费,找论文的好去处)轻松论文网(论文网站,免费论文下载)中华论文网(论文下载,论文写作,论文发表等,不错的地方)中国论文网专业英文论文网站我要写论文网国内唯一论文写作平台,要写论文的、会写论文的都别错过了。亚洲论文网非常论文网

知网会议论文合集下载

免费下载知网论文的方法如下:

1、方法一:到中国国家图书馆网站上注册一个账号。进入知网,然后通过关键词i检索文献,之后将需要的文章标题复制下来,然后再从国家图书馆的入口进入知网搜索刚才复制下的标题,就能下载了。登陆之后下载这些期刊论文都是免费的。

2、方法二:超星移动图书馆,不过要等推送,慢。使用方法,首先你要是个学生,有学校的图书馆账号,一般就是你的学号。超星移动图书馆有网页版、PC版的,也有手机版和苹果版的,选择学校,用学校图书馆账号登录,绑定邮箱,然后你搜索到想要的文献后选择文献推送,就会把文献发给你的邮箱,承诺是48小时到,我一般遇上的都是第二天到。

3、方法三:学校VPN。各大高校基本提供了VPN,校园外用户可以使用vpn2,登陆后从“图书馆电子资源导航”进入即可。

4、方法四:上中国知网,根据下载量、引用量,选择期刊或论文,文献非常多,但无法查看完整文章。之后打开道客巴巴网站,搜索文章名称,基本都可以找到完整的文章但无法免费下载。下载“ 海纳百川 ”软件,专门针对道客巴巴的文章可以直接免费下载PDF版。

学术会议论文集查找方法如下:

1、网页搜索“百度学术”并点击进入首页,首页下面有变化的名人名言。2、进入精准搜索,可以导入自己的时间要求、主题、关键词、出版物等信息进行精确搜索。3、进入搜索页面后,大量相关论文排列,可以点击开自己所需文件。4、点击进入了知网的页面,可以利用校园内网下载或者知网账户下载。

学术会议论文集是一些学术会议的衍生出版物,但也并不是所有学术会议都会出版论文集,有些会议也是不出版的,论文集就是在学术会议上宣读的文章汇总出版的合集,论文集也是有一定用途的,但在国内,论文集较受争议,因此要看具体情况。

在国内评职晋升中,如果文件中明确不认可论文集,那么会议论文集就需要作者慎重选择了,这种要求在国内并不少见,很多职称晋升中不认可论文集上发表的文章,但会议论文有时需要区别对待,会议论文的发表在评职晋升中还是受认可的,尤其是一些高水平的学术会议,宣读的文章与其他国际学术论文具有同等价值。

1、中国知网:

知网,是国家知识基础设施的概念,由世界银行于1998年提出。CNKI工程是以实现全社会知识资源传播共享与增值利用为目标的信息化建设项目。由清华大学、清华同方发起,始建于1999年6月。

凭借优质的内容资源、领先的技术和专业的服务,中国知网在业界享有极高的声誉,在2007年,中国知网旗下的《中国学术期刊网络出版总库》获首届“中国出版政府奖”,《中国博士学位论文全文数据库》、《中国年鉴网络出版总库》获提名奖。

2、万方:

万方数据库是由万方数据公司开发的,涵盖期刊、会议纪要、论文、学术成果、学术会议论文的大型网络数据库;也是和中国知网齐名的中国专业的学术数据库。

其开发公司——万方数据股份有限公司是国内第一家以信息服务为核心的股份制高新技术企业,是在互联网领域,集信息资源产品、信息增值服务和信息处理方案为一体的综合信息服务商。

3、中国年鉴网络出版总库

中国年鉴网络出版总库是目前国内最大的连续更新的动态年鉴资源全文数据库。内容覆盖基本国情、地理历史、政治军事外交、法律、经济、科学技术、教育、文化体育事业、医疗卫生、社会生活、人物、统计资料、文件标准与法律法规等各个领域。

4、中国引文数据库

该库收录了中国学术期刊(光盘版)电子杂志社出版的所有源数据库产品的参考文献,涉及期刊类型、学位论文类型、会议论文类型、图书类型、专利类型、标准类型、报纸类型等超千万次被引文献。

该库通过揭示各种类型文献之间的相互引证关系,不仅可以为科学研究提供新的交流模式,同时也可以作为一种有效的科学管理及评价工具。

5、维普数据库系统

维普资讯网建成于2000年,现已成为全球著名的中文信息服务网站,是Google Scholar最大的中文内容合作网站,中国最大的数字期刊数据库,目前拥有2000余家集团用户,网站注册用户数超过200余万。

网站内容服务包括9000余种/2000万篇中文期刊全文;30余个国家/11300余种/800余万条外文期刊文献;400多种重要中文报纸信息,学科覆盖理、工、农、医、文、史、哲、法各个领域,并提供网上每日更新。

集合论论文

数学史上出现的三次数学危机,与其说是“数学的危机”,不如说是“数学哲学的危机”.下面我给你分享三次数学危机论文,欢迎阅读。

摘要:本文主要通过数学史上的三次危机的产生与消除,针对它们的本质浅谈自己的认识,实际导致这三次危机原因在与人的认识。第一次数学危机是人们对万物皆数的误解,随着无理数的发现,把第一次数学危机度过了。第二次数学危机是人们对无穷小的误解,微积分的出现产生了一种新的方法,即分析方法,分析方法是算和证的结合。是通过无穷趋近而确定某一结果。罗素悖论的发现,给数学界以极大的震动,导致了数学史上的第三次危机。为了探求其根源和解决难题的途径,在数学界逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。

关键词:危机;万物皆数;无穷小;分析方法;集合

一、前言

数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。

二、数学史上的第一次“危机”

第一次数学危机是发生在公元前580-568年之间的古希腊。那时的数学正值昌盛,忒被是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物旨数”。所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。在那个时期。上述思想是绝对权威、是“真理”。但是不久人们发现即使边长为1的正方形对角线不是可比数。这样毕达哥拉斯“万物皆数”是不成立的,绝对的权威受到了严重的挑战:一方面证明单位正方形对角线的长不是整数分数,按照他们的观点,这种长度不是数!另一方面,他们不承认自己的观点有问题,这就陷入了极大的矛盾之中,这是第一次数学危机。

三、第二次数学危机

第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到很多年后。牛顿和莱布尼兹开辟了新的天地――微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。

四、数学史上的第三次危机

1.悖论的产生及意义

(1)什么是悖论

悖论来自希腊语,意思是“多想一想”。这个次的意义比较丰富,它包括一切与人的知觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论是自相矛盾的命题,即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出原命题成立。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,他们震撼了逻辑学和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。

(2)悖论产生的意义

疏忽学悖论是在数学学科理论体系发展到相当高的阶段才出现的。它是对数学学科理论体系可能存在的内在矛盾的揭示。虽然暂时引起人们的思想混乱,对正常的科学研究可能会形成一定的冲击,但它对于揭露原有理论体系中的逻辑矛盾,对于揭露原有理论的缺陷或局限性,对于这一步深入理解,任何和评价原有科学理念,对于原有的科学概念或理论的进一步充实完善和促进科学管理的产生都有相当重要的意义,同时也为科学研究提供新的课题和研究方向。

2.第三次数学危机的产生与解决

(1)第三次数学危机的产生

第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。

罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有RR。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。

(2)第三次数学危机的解决

罗素的悖论产生后,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓zF公理系统),这场数学危机到此缓和下来。

现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算而得来的。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。

三次数学危机是我们数学史发展中的一个奠基,他为我们日后更详细、深入的研究数学做了很好的铺垫,我我想以后也许会有第四次数学危机,但数学家也会把它化解掉,只有出现危机,才能使我们的数学研究达到更高的境界。

数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的教育价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。

一、集合论的诞生

一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇文章标志着集合论的诞生。

二、集合论成为现代数学大厦的基础

康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。

集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊!

三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机

1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。

罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。

罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。

四、消除悖论,化解危机

罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。

在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。

解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔()和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。

五、危机的启示

从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。

矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。”

参考文献:

1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社

2.胡作玄,《第三次数学危机》

中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,以下是我搜集的一篇关于三次数学危机探讨的论文范文,供大家阅读参考,

从我国数学的发展看三次数学危机。

1 引言

数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。

2 三次数学危机

第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。但这一信条后来遇到了困难。因为有些数是不可公度的。这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。这在当时产生的震动太大了,因此历史上称之为第一次数学危机。

17、18世纪关于微积分发生的激烈的争论,被称为第二次数学危机[2].在17世纪晚期,形成了微积分学。牛顿和莱布尼茨被公认为微积分的奠基者。他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了无穷小悖论[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成第二次数学危机.

19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。庞加莱甚至在1900年巴黎国际数学大会上宣称:现在我们可以说,完全的严格性已经达到了![5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论悖论打破了人们的上述希望,引起了关于数学基础的新争论。他把关于集合论的一个着名悖论用故事通俗地表述出来。

它和其它一些集合论悖论一样,对数学发展的影响是十分深刻、巨大的,甚至可以说是动摇了整个数学的基础,并导致了第三次数学危机。

3 从我国数学的发展看三次数学危机

中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,这是我们国家社会主义建设的需要,也是我们党和国家非常重视科学技术的结果,

数学论文《从我国数学的发展看三次数学危机。中国科学院于1950年开始筹建数学研究所,1952年正式成立。全国各高等院校普遍设置了数学系,《数学学报》和《数学通报》复刊。1958年~1960年的大跃进时期,在极左思潮影响下,数学基础理论研究受到很大冲击,积极的一面是明确了向世界先进水平看齐的奋斗目标,也重视理论联系实际,线性规划得到大力推广并创造了切实可行的图上作业法,运筹学由此在我国发展起来。在发展我国高科技过程中,例如1965年9月17日,我国科学工作者在世界上首次用人工方法合成结晶牛胰岛素。

我们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。

4 总结

综上所述三次数学危机对数学的发展影响是巨大的。第一次数学危机中产生的欧几里德几何对树立天文学的发展起了很大的推动作用,第一次数学危机使古希腊数学基础发生了根本性的变化,使古希腊的数学基础转向几何。第二次数学危机中波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西指出无穷小量和无穷大量都是变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义;美国数理逻辑学家罗宾逊又利用无穷小量引进超实数的概念,建立了非标准分析,同样也能精确的描述微积分,解决无穷小悖论。第三次数学危机建立了实数理论,且在此基础上建立了极限的基本定理,使数学分析建立在实数理论的严格基础之上,康托尔创立了集合论。而且还产生了公理化方法论和数理逻辑等一批新颖学科。我国以至世界各国的数学发展也都依赖于三次数学危机中产生的数学的新内容。整个数学的发展是一个层层深入、层层递进的过程。

参考文献:

[1]人民教育出版社中学数学室着.现代数学概论[M].北京:人民教育出版社,2003.

[2]张光远.现代化知识文库:二十世纪数学史话[M].知识出版社,

[3]袁小明.数学史话[M].山东教育出版社,1985.

[4]于寅.近代数学基础[M].华中理工大学出版社,.

集合论的未来我们现在讨论一些相关的感兴趣的话题,人们对这些话题的观点是不同的,对于我,下文表中感叹号!的个数代表它推动我的工作的程度.话题 A: 对集合论兴趣的来源数学基础/对哲学的应用 !对数学的应用 !!!历史原因 !!!内在的发展 !!!!美感 !!!!!!!!!证明的乐趣 !!!!!一般化 !!!!!!游戏娱乐 [加上流行的规则] !!!我们也可以用这些话题对当前集合论的工作和学者评价分类,所以下面我们将重点强调它们的差异。在很大程度上我被吸引到数学然后是数理逻辑中来是因为它们的一般化,我以为我这种一般化观点是正确的;看来我似乎错了。我感到例子经常会把你搞糊涂:特殊的性质只是陷阱因为它们在普通的情况下不成立,注意“一般化”我是指我宁愿以一般的一阶完全理论为研究对象,而不是有限Morley秩的单群,但我的信条不是"不要只见树木,不见森林“,处理每个问题都要根据它的特性,找到你自己的领域对其他领域的应用意味着展示一些其他人会感兴趣的东西;但是给你一个问题,为什么不做到最好,把它做最大的推广呢,当然,如果定理已经被证明,而额外的推广是平凡的,那也是没意思的。从另一个角度来看,我的很多同行,包括一些集合论领域里最优秀的大脑,对他们自己领域的自卑态度让我感到吃惊,他们很多在面对数学家时感到自卑,似乎这里有数学家,这里有逻辑学家,它们是不相干的领域,他们认为数学家是真正工作在更深,更难,更丰富,更有意义的领域,所以我们数理逻辑学家必须通过找到”数理逻辑“对”数学“的应用来证明我们的存在。这导致对数学的应用,逻辑学家做的大量工作,就像Abraham Robinson学派所做的那样。现在我喜欢在很多数学领域证明定理,只要我能做到,但是我不喜欢这种数理逻辑领域里的的卑屈态度.很多其他人在发挥集合论对数学基础和哲学的作用做了很多工作,对此我也没有异议,但是有疑意。我的感受和很多作家类似:他们了解批评家对文化生活的作用,但认为墨守批评家的思想只会导致枯燥的作品,而这些思想本身会因为它们的内在美永远散发光芒。还有人为集合论”美好旧时时光“的失去而抱怨,那时证明由想法组成而不像现在这样具有技术性,大体来说,我不是”美好旧时时光“的支持者,因为那时忽视你技术性的能力,而技术性却是我的旗帜,很多次技术不是实现想法的例行事务,而是为组织,想法等等证明中的所有环节工作。这些技术是相当困难的,往往也包含有重要的新思想。我的感受,用夸张的方式来说,就是集合论的美感是永恒的,而它的哲学价值却受潮流引导.并且我感到这些抱怨者的话是相互矛盾的,比如他们有的说数理逻辑现在比以前更数学化了,有的说数理逻辑处理的事情是有意义的,顺便说一下,这些矛盾的观点在实践中却是不矛盾的,很多人支持当中不止一种观点。关于集合论美感,我是指在一个结构中,定义,定理,证明和谐的占有位置的美感。但是复杂的证明我也不怕。当我是一个本科生的时候,在Birkhoff-Maclane的书里,我发现Galois理论很漂亮,后来我发现Morley理论和它的证明很漂亮。厌烦的读者可能会大怒:”美感?你可以在自己的脏乱中找到美感的痕迹?“,我只能说各有各的爱好,我的即是如此。话题 B: 集合论的框架ZFC(译注:Zemelo-Frankel的8条公理+选择公理)!!!!!!!力迫法 !!!!内模型 !!!大基数 !!!ZF+依赖选择公理(DC)+ 一些形式的决定性公理 !这是一个合理但有交叉的划分,无论如何,我们都是在ZFC的框架内证明定理,从ZFC 框架的支持者的观点来看,证明定理意味着在ZFC框架内证明它,其它的框架是辅助的,对此,我相当认同。力迫法告诉我们什么时候不能证明一个定理,大基数用来做协调性证明,运气好时大基数也能排列成线形序比较大小,最后,内模型用来表明大基数是必需的,或者得到更好的等价性的结果。我的感受是除了像协调性的结果外,ZFC框架已经涵盖了我们的直觉范围,所以一个证明就是指ZFC框架下的一个证明,这当然是一个认为ZFC框架合理的强有力的证据.强化的力迫法本质上告诉我们所有的全体集合域都是同样正当的,因此我们应该研究有特殊的代表性的全体集合域,比如可构成集L就没有代表性,力迫法表明在ZFC框架下证明定理或假设广义连续统假设成立就是无所谓的事,这是力迫法很强的结论,但是我怀疑这种对力迫法的观点会有人支持。从折衷的观点看,力迫法框架和ZFC框架是互补的,一种框架给出另一种框架内结果的否定,所以你对一种框架感兴趣,你对另一种框架也会感兴趣,事实上,我被迫严肃的处理力迫法是我想证明:在解决阿贝尔群基数的Whitehead问题中,我用阿列夫1势集合的每个稳定子集上的diamond定理是正确的,因为连续统假设不够强(从我的感受来说,文[Sh 64]; [BD]中的力迫法太弱了)。

伟大的集合论康托尔与集合论集合论 世纪末 德国 伟大的康托尔是19世纪末20世纪初德国伟大的数学家,集合论的创立者。是数学史上最富有想象力,最有争议的人物之一。19世纪末他所从事的关于连续性和无穷的研究从根本上背离了数学中关于无穷的使用和解释的传统,从而引起了激烈的争论乃至严厉的谴责。然而数学的发展最终证明康托是正确的。他所创立的集合论被誉为20世纪最伟大的数学创造,集合概念大大扩充了数学的研究领域,给数学结构提供了一个基础,集合论不仅影响了现代数学,而且也深深影响了现代哲学和逻辑。1(康托尔的生平1845年3月3日,乔治?康托生于俄国的一个丹麦—犹太血统的家庭。1856年康托和他的父母一起迁到德国的法兰克福。像许多优秀的数学家一样,他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论。他的父亲力促他学工,因而康托在1863年带着这个目地进入了柏林大学。这时柏林大学正在形成一个数学教学与研究的中心。康托很早就向往这所由外尔斯托拉斯占据着的世界数学中心之一。所以在柏林大学,康托受了外尔斯特拉斯的影响而转到纯粹的数学。他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授。1874年康托在克列1/11页勒的《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章。数学史上一般认为这篇文章的发表标志着集合论的诞生。这篇文章的创造性引起人们的注意。在以后的研究中,集合论和超限数成为康托研究的主流,他一直在这方面发表论文直到1897年,过度的思维劳累以及强列的外界刺激曾使康托患了精神分裂症。这一难以消除的病根在他后来30多年间一直断断续续影响着他的生活。

science杂志合集

1、Nature子刊名

(1)Nature Cell Biology

(2)Nature Immunology

(3)Nature Medicine (03年创刊)

(4)Nature Genetics (03年创刊)

(5)Nature Structural & Molecular Biology (Nature Structural Biology)

(6)Nature Materials

(7)Nature Biotechnology

(8)Nature Chemical Biology (05年创刊)

(9)Nature Physics (05年创刊)

(10)Nature Neuroscience

(11)Nature Methods (04年创刊)

临床医学类期刊

(1)Nature Clinical Practice Cardiovascular Medicine

(2)Nature Clinical Practice Endocrinology & Metabolism

(3)Nature Clinical Practice Gastroenterology & Hepatology

(4)Nature Clinical Practice Nephrology

(5)Nature Clinical Practice Neurology

(6)Nature Clinical Practice Oncology

(7)Nature Clinical Practice Rheumatology

(8)Nature Clinical Practice Urology

2、Science子刊名

(1)Science Advances

(2)Science Translational Medicine

(3)Science Signaling

(4)Science Immunology

(5)Science Robotics

3、CELL子刊名

(1)Molecular Cell:1997年创刊。细胞生物学、分子生物学。

(2)Developmental Cell:2001年创刊。发育生物学。

(3)Cancer Cell:2002年创刊。癌症领域。

(4)Cell Metabolism:2005年创刊。代谢领域。

(5)Cell Host & Microbe:2007年创刊。感染症领域、微生物学。

(6)Cell Stem Cell:2007年创刊。干细胞领域、再生医学。

扩展资料

Science期刊发展历程:

1880年,纽约新闻记者约翰·迈克尔斯(英语:John Michaels)创立了《科学》,这份期刊先后得到了托马斯·爱迪生以及亚历山大·格拉汉姆·贝尔的资助。但由于从未拥有足够的用户而难以为继,《科学》于1882年3月停刊。

一年后,昆虫学家Samuel Hubbard Scudder使其复活并取得了一定的成功。然而到了1894年,《科学》重新陷入财政危机,随后被以500美元的价格转让给心理学家James McKeen Cattell。

1900年,Cattell与美国科学促进会秘书Leland Ossian Howard达成协议,《科学》成为美国科学促进会的期刊。

在20世纪早期,《科学》发表的重要文章包括托马斯·亨特·摩根的果蝇遗传、阿尔伯特·爱因斯坦的引力透镜以及埃德温·哈勃的螺旋星系。1944年Cattell去世后,AAAS成为《科学》新主人。

参考资料来源:百度百科-nature

百度百科-CELL (《细胞》期刊)

百度百科-科学 (美国科学促进会官方刊物)

首当其冲的就 科学 自然。

当我老了双手颤了谁会在我的左手边勾着我的手指当我老了眼睛花了谁会为我抹去混浊的眼泪

5本子刊:

《Science Signaling》 (科学信号)。

《Science Translational Medicine 》(科学转化医学)。

2015年的新子期刊:《Science Advances》 (科学进展)。

2016年的新子期刊:《Science Robotics》(人工智能)。

2016年的新子期刊:《Science Immunology》(免疫学)。

期刊简介

《科学》杂志属于综合性科学杂志,英文名:Science Magazine 。它的科学新闻报道、综述、分析、书评等部分,都是权威的科普资料,该杂志也适合一般读者阅读。

该期刊的主要关注点是出版重要的原创性科学研究和科研综述,此外《科学》也出版科学相关的新闻、关于科技政策和科学家感兴趣的事务的观点。不像大多数科学期刊专注于某一特定领域,《科学》和它的对手《自然》期刊涵盖了所有学科。根据期刊引证报告,《科学》在2014年的影响因子为。

虽然《科学》是美国科学促进会的期刊,但发表文章并不需要AAAS的会员资格。《科学》收到世界各地作者的论文。发表文章的竞争极其激烈,因为发表在这样高引用率期刊上文章可以为作者吸引关注并有助于其职业发展。但是提交给编辑的文章只有不到10%会被接受发表,所有的研究文章在见刊之前皆须同行评审。

杂志pdf合集

《读书杂志2020第09期》百度网盘pdf最新全集下载:链接:

《意林杂志1-24期合订本》百度网盘pdf最新全集下载:链接:

相关百科

热门百科

首页
发表服务