首页

> 期刊论文知识库

首页 期刊论文知识库 问题

化学金属腐蚀的论文参考文献

发布时间:

化学金属腐蚀的论文参考文献

化学金属腐蚀、材料保护涉及很多方向:具体内容可以从以下几个方面考虑。对于金属腐蚀的电化学技术研究,腐蚀电位,发生电化学腐蚀的作用机理,钝化膜成膜机理以及膜的特性,组分,在腐蚀过程中的作用;对于材料保护方面可以合成缓蚀剂,复配等等,也可以研究具体保护方法,缓蚀剂特性,对金属材料腐蚀过程中的抑制作用及机理等。

腐蚀是金属表面部分或者全部剥离、溶解或软化的化学反应。“生锈”经常被误用或者误解,它仅仅指铁和钢。“腐蚀”不仅包含黑色金属,而且包含有色金属。以下内容主要讨论腐蚀的成因和纠正措施。移除热量是金属加工液最重要的功能之一。有效移除热量,就能保证刀具的良好使用寿命,以及工件的几何精度。和油相比,水在移除热量方面性能更卓越;但纯水和新加工的金属接触后会导致腐蚀。因此,腐蚀是每位用户,也是水基金属加工液制造商必须面对的问题。干切削过程也会面对腐蚀问题,并不仅仅由水基金属加工液引起。引起金属表面腐蚀有许多种原因,下面做具体介绍。1季节性腐蚀腐蚀可以发生在一年内的任何时候。一般来说,7~9月的温度和相对湿度较高,在美国东部和中西部更容易发生腐蚀。干旱地区,如克罗拉多州、新墨西哥州、亚利桑那州、犹他州及加州,这些地方的相对湿度较低,腐蚀情况就很少发生。2手印腐蚀当工件接触人手后,就容易发生腐蚀。搬运过程中新机床和金属工件表面留下的手印,会导致腐蚀。这种情况普遍存在于皮肤呈酸性的人群,以及表面光洁度高的工件。使用手印中和剂能防止类似的手印腐蚀。随着温度上升,包括腐蚀在内的化学反应速度就会更快。夏季高温和空气中的水分和氧气也是加速腐蚀的原因。当水分凝结在工件表面,就会形成电池的电解液。秋冬季节能提供防锈保护的加工液浓度,当湿度持续上升时,就不再提供有效的防锈保护。因此,适当的浓度调整非常必要。秋冬季节,浓度1:30()已经足够;但湿热季节,浓度可能需要提高到1:25(4%),或者不再看到工件表面生锈为止。需要注意的是,提高中央槽系统的浓度,会导致泡沫和皮炎问题。金属加工液用户也可能需要增加防锈添加剂,这取决于金属加工液的种类、用户对化学品的限制、添加剂的有效性以及所使用的加工液。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。

参考文献是论文写作中可参考或引证的主要文献资料,不仅为论文写作提供了方便,同时也丰富了我们论文的内容。下文是我为大家搜集整理的关于化学论文参考文献范例的内容,欢迎大家阅读参考! 化学论文参考文献范例(一) [1]管用时.导线内交变电流趋肤效应近似分析[J].邵阳高专学报.1994(03) [2]李海元,栗保明,____,宁广炯,王争论,杨春霞.等离子体点火密闭爆发器中火药燃速特性的研究[J].爆炸与冲击.2004(02) [3]谢玉树,袁亚雄,张小兵.等离子体增强发射药燃烧的实验研究[J].火炸药学报.2001(03) [4]张洪海,张明安,龚海刚,杨国信.结构参数变化对等离子体发生器性能的影响[J].火炮发射与控制学报.2004(03) [5]孟绍良.电热化学炮用脉冲电源及等离子体发生器电特性的研究[D].南京理工大学2006 [6]戴荣,栗保明,张建奇.固体含能工质等离子体单药粒点火特性分析[J].火炸药学报.2001(01) [7]赵科义,李治源,吕庆敖,段晓军,朱建方.电爆炸金属导体在Marx发生器中的应用[J].高电压技术.2003(10) [8]弯港.基于格子Boltzmann 方法 的流动控制机理数值研究[D].南京理工大学2013 [9]李海元.固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[D].南京理工大学2006 [10]王争论.中心电弧等离子体发生器及其在电热化学炮中的应用研究[D].南京理工大学2006 [11]成剑,栗保明.电爆炸过程导体放电电阻的一种计算模型[J].南京理工大学学报(自然科学版).2003(04) [12]李海元,栗保明,____.膛内等离子体点火及燃烧增强过程数值模拟[J].爆炸与冲击.2002(03) [13]龚兴根.电爆炸断路开关[J].强激光与粒子束.2002(04) [14]戴荣,栗保明,宁广炯,董健年.SPETC炮等离子体发生器自由喷射放电特性研究[J].兵工学报.2001(04) [15]刘锡三.高功率脉冲技术的发展及应用研究[J].核物理动态.1995(04) 化学论文参考文献范例(二) [1] 林庆华,栗保明. 等离子体辐射对固体火药燃烧速度影响的研究[J]. 弹道学报. 2005(03) [2] 李倩,徐送宁,宁日波. 用发射光谱法测量电弧等离子体的激发温度[J]. 沈阳理工大学学报. 2011(01) [3] 狄加伟,杨敏涛,张明安,赵斌. 电热化学发射技术在大口径火炮上的应用前景[J]. 火炮发射与控制学报. 2010(02) [4] 杨家志,刘钟阳,牛秦洲,范兴明. 电爆炸过程中金属丝电阻变化规律的仿真分析[J]. 桂林理工大学学报. 2010(02) [5] 郭军,邱爱慈. 熔丝电爆炸过程电气特性的数字仿真[J]. 系统仿真学报. 2006(01) [6] 苏茂根,陈冠英,张树东,薛思敏,李澜. 空气中激光烧蚀Cu产生等离子体发射光谱的研究[J]. 原子与分子物理学报. 2005(03) [7] 李兵,张明安,狄加伟,魏建国,李媛. 电热化学炮内弹道参数敏感性研究[J]. 电气技术. 2010(S1) [8] 赵晓梅,余斌,张玉成,严文荣. ETPE发射药等离子体点火的燃烧特性[J]. 火炸药学报. 2009(05) [9] 杨宇,谢卫平,王敏华,郝世荣,韩文辉,张南川,伍友成. 含电爆炸元件电路的PSpice模拟和实验研究[J]. 高压电器. 2007(06) [10] 郝世荣,谢卫平,丁伯南,王敏华,杨宇,伍友成,张南川,韩文辉. 一种基于电爆炸丝断路开关的多脉冲产生技术[J]. 强激光与粒子束. 2006(08) [11] 伍友成,邓建军,郝世荣,王敏华,韩文辉,杨宇. 电爆炸丝方法产生纳米二氧化钛粉末[J]. 高电压技术. 2006(06) [12] 林庆华,栗保明. 高装填密度钝感发射装药的内弹道遗传算法优化[J]. 弹道学报. 2008(03) [13] 王桂吉,蒋吉昊,邓向阳,谭福利,赵剑衡. 电爆炸驱动小尺寸冲击片实验与数值计算研究[J]. 兵工学报. 2008(06) [14] 林庆华,栗保明. 电热化学炮内弹道过程的势平衡分析[J]. 兵工学报. 2008(04) [15] 蒋吉昊,王桂吉,杨宇. 一种测量金属电爆炸过程中电导率的新方法[J]. 物理学报. 2008(02) 化学论文参考文献范例(三) [1.] 詹晓北, 王卫平, 朱莉. 食用胶的生产、性能与应用[M]. 北京: 中国轻工业出版社, 2003. 20-36. [2.] O'Neill M A, Selvendran R R, Morris V J. Structure of the acidic extracellular gelling polysaccharideproduced by Pseudomonas elodea[J]. Carbohydrate Research, 1983, 124(1): 123-133. [3.] Jansson P. E., Lindberg B, Sandford P A. Structural studies of gellan gum, an extracellularpolysaccharide elaborated by Pseudomonas elodea[J]. Carbohydrate Research, 1983, 124(1): 135-139. [4.] Morris E R., Nishinari K, Rinaudo M. Gelation of gellan–A review[J]. Food Hydrocolloids, 2012,28(2): 373-411. [5.] Kuo M S, Mort A J, Dell A. Identification and location of L-glycerate, an unusual acyl substituent ingellan gum[J]. Carbohydrate Research, 1986. 156: 173-187. [6.] 张晨, 谈俊, 朱莉, 等. 糖醇对结冷胶凝胶质构的影响[J]. 食品科学, 2014. 35(9): 48-52. [7.] Kang K S, Veeder G T, Mirrasoul P J, et al. Agar-like polysaccharide produced by a Pseudomonasspecies: production and basic properties[J]. Applied and Environmental Microbiology, 1982. 43(5):1086-1091. [8.] Grasdalen H, Smidsr d O. Gelation of gellan gum[J]. Carbohydrate Polymers, 1987, 7(5): 371-393. [9.] 詹晓北. 结冷胶[J]. 中国食品添加剂, 1999, 2: 66-69. [10. ]孟岳成, 邱蓉. 高酰基结冷胶 (HA) 特性的研究进展[J]. 中国食品添加剂, 2008(5): 45-49. [11. ]Chandrasekaran R, Puigjaner L C, Joyce K L, et al. Cation interactions in gellan: an X-ray study of thepotassium salt[J]. Carbohydrate Research, 1988, 181: 23-40. [12.] Arnott S, Scott W E, Rees D A, et al. I-Carrageenan: molecular structure and packing ofpolysaccharide double helices in oriented fibres of divalent cation salts[J]. Journal of MolecularBiology, 1974, 90(2): 253-267. [13. ]Chandrasekaran, R., Radha A, and Thailambal V G. Roles of potassium ions, acetyl and L-glycerylgroups in native gellan double helix: an X-ray study[J]. Carbohydrate Research, 1992, 224: 1-17. [14.] Morris E R, Gothard M G E, Hember M W N, et al. Conformational and rheological transitions ofwelan, rhamsan and acylated gellan[J]. Carbohydrate Polymers, 1996, 30(2): 165-175. [15.] 李海军, 颜震, 朱希强, 等. 结冷胶的研究进展[J]. 食品与药品, 2006, 7(12A): 3-8.猜你喜欢: 1. 化学论文参考范文 2. 化学论文范文 3. 化学毕业论文范例 4. 化学毕业论文范文精选 5. 有关化学论文报告范文

金属腐蚀论文

关于浅谈金属腐蚀与防护方式论文

无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是对某些学术问题进行研究的手段。你所见过的论文是什么样的呢?以下是我整理的关于浅谈金属腐蚀与防护方式论文,仅供参考,欢迎大家阅读。

摘要: 本文简单阐述了金属腐蚀的类别与影响因素,对于腐蚀的防护方式与必要性展开了具体的探究,并同时指明了部分经常使用的化学涂料,对于它们的原理与功能展开了简单的阐释。此外还论证了金属腐蚀的防护方式并非单一的,它是具有多样性的。最终对防护领域进行了忠告,尽可能的降低由于金属腐蚀的因素而引发的恶劣后果。

关键词: 金属腐蚀;因素;防护方式

化学工业、石油化工、原子能等领域中,因为材料腐蚀导致的跑、冒、滴、漏,不但会让社会承受重大的损失,还会导致大量的有害物质甚至是放射性物质外泄对环境造成不可恢复的伤害,继而对人们的身体健康造成威胁,一些物质在短时间内不会消失,会长时间内对环境以及人身造成威胁;同时因为金属腐蚀所引发的灾难性事故会危及人民的生命财产安全,例如氢脆和应力腐蚀断裂等类型的失效事故,一般会导致爆炸、火灾等重大的事故,使人们的生命财产承受巨大的损失。

1、金属腐蚀的类别

金属的腐蚀的发生主要是在环境的影响下所导致的破坏和变质。根据腐蚀过程来划分,主要包含化学腐蚀与电化学腐蚀;根据金属腐蚀破坏的状态与腐蚀区的布局,重点包含全面腐蚀与局部腐蚀;此外根据腐蚀的条件来划分。重点包含高温腐蚀与常温腐蚀;干腐蚀与湿腐蚀等。

2、影响金属腐蚀的因素

①空气相对湿度与金属腐蚀的临界相对湿度。空气内的氧气总是比较充足的,腐蚀反应的速率重点是基于水分的产生,假如到达或者超越特定的相对湿度,锈蚀就会以较快的速度出现和恶化,通常而言,钢铁的临界相对湿度大概是75%。

②空气中污染性物质的影响。通常能够见到的为SO2,CO2,Cl-,灰尘等,多数皆为酸性气体。

③温度。环境温度和变化规律影响金属表面水份凝聚及电化学腐蚀反应速率。

④酸碱盐。重点体现在影响水膜电解质浓度与H+浓度,进而加快腐蚀的速度。

3、防护方式

金属腐蚀的防护方式具有多样性,重点对象为金属本质,将被保护金属和腐蚀介质进行隔离,或者对金属的表面进行操作,改变腐蚀条件和电化学保护等。

改善金属本质

按照差异性的用途采取差异性的材料构成耐蚀合金,或者于金属内加入合金元素,提升它的耐腐蚀性,能够预防或者降低金属腐蚀的速度。比方,于钢内融入镍制成不锈钢能够强化防腐蚀等级。

构成保护层

于金属表面设置各类保护层,将被保护的对象和腐蚀性介质进行隔离,此为预防金属腐蚀的最佳方式。

金属的磷化处理

在钢铁制品去油、除锈操作之后,添加一定组成的磷酸盐溶液中浸泡,就能够在金属表面产生一层不溶于水的磷酸盐薄膜,此类过程即为磷化操作。磷化膜表现为暗灰色到黑灰色,厚度通常是5至20μm之间,于空气内具备较强的耐腐蚀能力。

金属的氧化处理

把钢铁制品融入至NaOH的混合溶液内,加热,在它的'表面就能够产生一层厚是~μm的蓝色氧化膜(主要组分是Fe3O4),来实现钢铁防腐蚀的目标,这个过程就叫做发蓝处理。此类氧化膜具备较强的弹性与润滑度,不会对零件的精度产生任何负面的作用。因此精密仪器与光学元件等通常选择这种操作。

非金属涂层

通过非金属比如油漆、喷漆、沥青等涂抹于金属表层产生保护层,叫做非金属涂层,亦能够实现防腐蚀的目标。比如船身、车厢、水桶等通常选择油漆,车辆的表面经常喷漆等。

金属保护层

其为将一类耐腐蚀能力较大的金属或者合金镀于保护对象的表层上所产生的保护镀层。此镀层的产生,不仅可以通过电镀、化学镀实现,还能够通过热浸镀、渗镀、真空镀等方式实现。

改善腐蚀条件

改善条件对于降低与避免腐蚀具有必要性。比如,能够选择在腐蚀介质内融入可以减小腐蚀速度的物质,也就是缓冲剂,来降低与避免腐蚀的发生。缓冲剂属于一类化学物质,将其适量的融入至腐蚀介质内,即能够大幅度降低金属腐蚀的速度。因为缓冲剂的用量较小,便捷和廉价,因此这也是一类十分重要的防腐蚀方式。

电化学保护法

此类方式为以电化学原理为基础的,于金属设备上进行操作,让其变成腐蚀电池中的阴极,进而成为预防或者减缓金属腐蚀的方式。

阴极保护

此外通过外加电源来保护金属。将保护的对象接于负极,变成阴极防止腐蚀的产生。同时选择部分铁块接于正极,让其变成阳极,使其腐蚀,也就是说牺牲阳极。此类方式重点应用于化工厂的部分酸性溶液贮槽或者管道,地下水管、输油管等。

4、结语

不管是在社会中的哪个领域,金属腐蚀工作皆具有十分重要的意义,对环境、经济、安全皆会产生严重的影响。石油化工设施比方新建油库、管道、大型石化生产设备等,应当采取防腐措施。但防腐蚀的方式具备多样性,其形成的因素也是多种多样的,这对于这个领域中的所有人员都是一个巨大的挑战,值得所有人员做出相应的努力。

腐蚀是金属表面部分或者全部剥离、溶解或软化的化学反应。“生锈”经常被误用或者误解,它仅仅指铁和钢。“腐蚀”不仅包含黑色金属,而且包含有色金属。以下内容主要讨论腐蚀的成因和纠正措施。移除热量是金属加工液最重要的功能之一。有效移除热量,就能保证刀具的良好使用寿命,以及工件的几何精度。和油相比,水在移除热量方面性能更卓越;但纯水和新加工的金属接触后会导致腐蚀。因此,腐蚀是每位用户,也是水基金属加工液制造商必须面对的问题。干切削过程也会面对腐蚀问题,并不仅仅由水基金属加工液引起。引起金属表面腐蚀有许多种原因,下面做具体介绍。1季节性腐蚀腐蚀可以发生在一年内的任何时候。一般来说,7~9月的温度和相对湿度较高,在美国东部和中西部更容易发生腐蚀。干旱地区,如克罗拉多州、新墨西哥州、亚利桑那州、犹他州及加州,这些地方的相对湿度较低,腐蚀情况就很少发生。2手印腐蚀当工件接触人手后,就容易发生腐蚀。搬运过程中新机床和金属工件表面留下的手印,会导致腐蚀。这种情况普遍存在于皮肤呈酸性的人群,以及表面光洁度高的工件。使用手印中和剂能防止类似的手印腐蚀。随着温度上升,包括腐蚀在内的化学反应速度就会更快。夏季高温和空气中的水分和氧气也是加速腐蚀的原因。当水分凝结在工件表面,就会形成电池的电解液。秋冬季节能提供防锈保护的加工液浓度,当湿度持续上升时,就不再提供有效的防锈保护。因此,适当的浓度调整非常必要。秋冬季节,浓度1:30()已经足够;但湿热季节,浓度可能需要提高到1:25(4%),或者不再看到工件表面生锈为止。需要注意的是,提高中央槽系统的浓度,会导致泡沫和皮炎问题。金属加工液用户也可能需要增加防锈添加剂,这取决于金属加工液的种类、用户对化学品的限制、添加剂的有效性以及所使用的加工液。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。

金属电化学腐蚀与防护论文

关于浅谈金属腐蚀与防护方式论文

无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是对某些学术问题进行研究的手段。你所见过的论文是什么样的呢?以下是我整理的关于浅谈金属腐蚀与防护方式论文,仅供参考,欢迎大家阅读。

摘要: 本文简单阐述了金属腐蚀的类别与影响因素,对于腐蚀的防护方式与必要性展开了具体的探究,并同时指明了部分经常使用的化学涂料,对于它们的原理与功能展开了简单的阐释。此外还论证了金属腐蚀的防护方式并非单一的,它是具有多样性的。最终对防护领域进行了忠告,尽可能的降低由于金属腐蚀的因素而引发的恶劣后果。

关键词: 金属腐蚀;因素;防护方式

化学工业、石油化工、原子能等领域中,因为材料腐蚀导致的跑、冒、滴、漏,不但会让社会承受重大的损失,还会导致大量的有害物质甚至是放射性物质外泄对环境造成不可恢复的伤害,继而对人们的身体健康造成威胁,一些物质在短时间内不会消失,会长时间内对环境以及人身造成威胁;同时因为金属腐蚀所引发的灾难性事故会危及人民的生命财产安全,例如氢脆和应力腐蚀断裂等类型的失效事故,一般会导致爆炸、火灾等重大的事故,使人们的生命财产承受巨大的损失。

1、金属腐蚀的类别

金属的腐蚀的发生主要是在环境的影响下所导致的破坏和变质。根据腐蚀过程来划分,主要包含化学腐蚀与电化学腐蚀;根据金属腐蚀破坏的状态与腐蚀区的布局,重点包含全面腐蚀与局部腐蚀;此外根据腐蚀的条件来划分。重点包含高温腐蚀与常温腐蚀;干腐蚀与湿腐蚀等。

2、影响金属腐蚀的因素

①空气相对湿度与金属腐蚀的临界相对湿度。空气内的氧气总是比较充足的,腐蚀反应的速率重点是基于水分的产生,假如到达或者超越特定的相对湿度,锈蚀就会以较快的速度出现和恶化,通常而言,钢铁的临界相对湿度大概是75%。

②空气中污染性物质的影响。通常能够见到的为SO2,CO2,Cl-,灰尘等,多数皆为酸性气体。

③温度。环境温度和变化规律影响金属表面水份凝聚及电化学腐蚀反应速率。

④酸碱盐。重点体现在影响水膜电解质浓度与H+浓度,进而加快腐蚀的速度。

3、防护方式

金属腐蚀的防护方式具有多样性,重点对象为金属本质,将被保护金属和腐蚀介质进行隔离,或者对金属的表面进行操作,改变腐蚀条件和电化学保护等。

改善金属本质

按照差异性的用途采取差异性的材料构成耐蚀合金,或者于金属内加入合金元素,提升它的耐腐蚀性,能够预防或者降低金属腐蚀的速度。比方,于钢内融入镍制成不锈钢能够强化防腐蚀等级。

构成保护层

于金属表面设置各类保护层,将被保护的对象和腐蚀性介质进行隔离,此为预防金属腐蚀的最佳方式。

金属的磷化处理

在钢铁制品去油、除锈操作之后,添加一定组成的磷酸盐溶液中浸泡,就能够在金属表面产生一层不溶于水的磷酸盐薄膜,此类过程即为磷化操作。磷化膜表现为暗灰色到黑灰色,厚度通常是5至20μm之间,于空气内具备较强的耐腐蚀能力。

金属的氧化处理

把钢铁制品融入至NaOH的混合溶液内,加热,在它的'表面就能够产生一层厚是~μm的蓝色氧化膜(主要组分是Fe3O4),来实现钢铁防腐蚀的目标,这个过程就叫做发蓝处理。此类氧化膜具备较强的弹性与润滑度,不会对零件的精度产生任何负面的作用。因此精密仪器与光学元件等通常选择这种操作。

非金属涂层

通过非金属比如油漆、喷漆、沥青等涂抹于金属表层产生保护层,叫做非金属涂层,亦能够实现防腐蚀的目标。比如船身、车厢、水桶等通常选择油漆,车辆的表面经常喷漆等。

金属保护层

其为将一类耐腐蚀能力较大的金属或者合金镀于保护对象的表层上所产生的保护镀层。此镀层的产生,不仅可以通过电镀、化学镀实现,还能够通过热浸镀、渗镀、真空镀等方式实现。

改善腐蚀条件

改善条件对于降低与避免腐蚀具有必要性。比如,能够选择在腐蚀介质内融入可以减小腐蚀速度的物质,也就是缓冲剂,来降低与避免腐蚀的发生。缓冲剂属于一类化学物质,将其适量的融入至腐蚀介质内,即能够大幅度降低金属腐蚀的速度。因为缓冲剂的用量较小,便捷和廉价,因此这也是一类十分重要的防腐蚀方式。

电化学保护法

此类方式为以电化学原理为基础的,于金属设备上进行操作,让其变成腐蚀电池中的阴极,进而成为预防或者减缓金属腐蚀的方式。

阴极保护

此外通过外加电源来保护金属。将保护的对象接于负极,变成阴极防止腐蚀的产生。同时选择部分铁块接于正极,让其变成阳极,使其腐蚀,也就是说牺牲阳极。此类方式重点应用于化工厂的部分酸性溶液贮槽或者管道,地下水管、输油管等。

4、结语

不管是在社会中的哪个领域,金属腐蚀工作皆具有十分重要的意义,对环境、经济、安全皆会产生严重的影响。石油化工设施比方新建油库、管道、大型石化生产设备等,应当采取防腐措施。但防腐蚀的方式具备多样性,其形成的因素也是多种多样的,这对于这个领域中的所有人员都是一个巨大的挑战,值得所有人员做出相应的努力。

谢谢哈 我也要写论文的。。

在网站上找了一份,希望对你有帮助。一电化学腐蚀原理?1.腐蚀电池(原电池或微电池)金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。在这个过程中金属被氧化,所释放的电子完全为氧化剂消耗,构成一个自发的短路电池,这类电池被称之为腐蚀电池。腐蚀电池分为三(或二)类:(1)不同金属与同一种电解质溶液接触就会形成腐蚀电池。例如:在铜板上有一铁铆钉,其形成的腐蚀电池。铁作阳极(负极)发生金属的氧化反应:Fe→Fe2++2e-;(Fe→Fe2++2e)=-.阴极(正极)铜上可能有如下两种还原反应:(a)在空气中氧分压=21kPa时:O2+4H++4e-→2H2O;(O2+4H++4e-→2H2O)=,(b)没有氧气时,发生2H++2e-→H2;(2H++2e-→H2)=0V,有氧气存在的电池电动势E1=-()=;没有氧气存在时,电池的电动势E2=0-()=。可见吸氧腐蚀更容易发生,当有氧气存在时铁的锈蚀特别严重。铜板与铁钉两种金属(电极)连结一起,相当于电池的外电路短接,于是两极上不断发生上述氧化—还原反应。Fe氧化成Fe2+进入溶液,多余的电子转向铜极上,在铜极上O2与H+发生还原反应,消耗电子,并且消耗了H+,使溶液的pH值增大。在水膜中生成的Fe2+离子与其中的OH—离子作用生成Fe(OH)2,接着又被空气中氧继续氧化,即:Fe2++2OH-→Fe(OH)24Fe(OH)2+2H2O+O2→4Fe(OH)3Fe(OH)3乃是铁锈的主要成分。这样不断地进行下去,机械部件就受到腐蚀。(2)电解质溶液接触的一种金属也会因表面不均匀或含杂质微电池。例如工业用钢材其中含杂质(如碳等),当其表面覆盖一层电解质薄膜时,铁、碳及电解质溶液就构成微型腐蚀电池。该微型电池中铁是阳极:Fe→Fe2++2e-碳作为阴极:如果电解质溶液是酸性,则阴极上有氢气放出(2H++2e-→H2);如果电解质溶液是碱性,则阴极上发生反应O2+2H2O+4e-→4OH-。总结:从上面的分析可以看出:所形成的腐蚀电池阳极反应一般都是金属的溶解过程:M→Mz++ze-阴极反应在不同条件下可以是不同的反应,最常见的有下列两种反应:?①在缺氧条件下,H+离子还原成氢气的反应(释氢腐蚀)2H++2e-→H2。(=)该反应通常容易发生在酸性溶液中和在氢超电势较小的金属材料上。②氧气还原成OH-离子或H2O的反应(耗氧腐蚀)中性或碱性溶液中O2+2H2O+4e—→4OH-。(=)在酸性环境中,O2+4H++4e-→2H2(=)2.腐蚀电流一旦组成腐蚀电池之后,有电流通过电极,电极就要发生极化,因而研究极化对腐蚀的影响是十分必要。在金属腐蚀文献中,将极化曲线(电势~电流关系)绘成直线(横坐标采用对数标度),称为Evans(埃文斯)极化图(图10—8)。在Evans极化图中的电流密度j腐蚀表示了金属腐蚀电流,实际上代表了金属的腐蚀速率。影响金属表面腐蚀快慢(即腐蚀电流j)的主要因素:①腐蚀电池的电动势——两电极的平衡电极电势差越大,最大腐蚀电流也越大。②金属的极化性能——在其它条件相同的情况下,极化程度愈大(即极化曲线的斜率),腐蚀电流愈小。③氢超电势——释氢腐蚀时,氢在金属表面析出的超电势逾大,极化曲线的斜率就逾大,腐蚀电流反而减小。二、金属的稳定性“在所处环境下金属材料的稳定性如何?”是研究金属腐蚀与防腐首先必须考虑的问题。因此,金属-水系统的电势—pH图无疑是很有用的工具。1.电势(E)—pH关系的一般表达式若有如下电极反应:xO(氧化态)+mH++ze-?-→yR(还原态)+nH2O例如:Fe3O4+8H++2e-=3Fe2++4H2O式中O代表氧化态、R代表还原态;x,m,z,y,n为各反应物、产物的计量系数。当T=时E=-(10—14)因pH=-lg[a(H+)],a(H2O)=1上式可写成E=--(10—15)在a(R),a(O)被指定时,电势E与pH值成直线关系。①.电势与pH无关的反应:②.这些反应只有电子得失,没有H+或OH-离子参加。例如反应Zn2+(aq)+2e-=Zn(s);E(Zn2++2e-→Zn)=[a(Zn2+)/a(Zn)]。当a(Zn2+)=10-6、a(Zn)=时,E(Zn2++2e-→Zn)=.水溶液中的氢、氧电极反应因为反应在水溶液中进行,反应与H2,O2,H+,OH-有关。所以凡是以水作为溶剂的反应系统都一定要考虑氢、氧电极反应。氢电极反应(①线):电极反应式2H+(a)+2e-→H2(p);当p(H2)=时,有E(2H++2e-→H2)=(10—13)在E—pH图上是一条截距为零的直线,斜率为。氧电极反应(②线):电极反应式O2(p)+2H+(a)+2e-→H2O(l)在(H2O)=1、p(O2)=时,E(O2+2H++2e-→H2O)=该式表示氧电极反应的E—pH直线与氢电极的E—pH直线斜率相同,仅截距不同。4.电势-pH图的应用(1)图10—9中每条线上的点都表示Zn—H2O系统的一个平衡状态。凡不在直线上的任何一点均为非平衡状态,且每条线上方为该线所代表电极反应中氧化态稳定区,下方为还原态稳定区。因此,在图上分别得到Zn2+,Zn,Zn(OH)2的各自稳定存在区。线②以上是O2(氧化态)的稳定区,下方是H2O(还原态)的稳定存在区;在线①以上是H+(氧化态)的稳定区、线①以下是H2(还原态)的稳定存在区。(2)在E—pH图中任意两条线所代表的电极反应都能构成一个化学反应。例如线①与②所代表的电极反应构成的化学反应为:O2(g)+2H2(g)=2H2O(l)。该反应可视为氧电极和氢电极组成的燃料电池。一般而言,高电势区直线所代表电极反应中的氧化态能氧化低电势区直线所代表反应中的还原态即:[氧化态]上+[还原态]下→[还原态]上+[氧化态]下且二直线相距愈远,以此二直线所代表电极反应组成电池时,电池的电动势就愈大,因此该氧化还原反应的趋势就愈大。如Zn2++2e-=Zn是线段a代表的平衡系统,该平衡位于①线下方,说明Zn在水溶液中是不稳定的。溶液中H+被还原成H2(g),Zn被氧化成Zn2+的反应2H++Zn=Zn2++H2是自发进行的。又因Zn的稳定区也在O2还原反应的②线以下,Zn被氧化成Zn2的反应:+2H++Zn=Zn2++H2O①线与a线反应组成电池:②线与a线组成电池,比①线距离线a更远,说明在含有O2的水溶液中Zn的热力学稳定性更差。(3)E—pH图可用来指导防腐、金属保护等方面的研究。从图10—9可知,当E<-时,Zn在酸性溶液中,既使在有氧存在的情况下都可以稳定存在,这就是金属电化学防腐的阴极保护原理;(4)水-Fe的E-pH图:Fe2++2e-→Fe(1线)Fe2O3+6H++2e=2Fe2++3H2O(2线)Fe3++e-=Fe2+(3线)Fe2O3+6H+=2Fe3++3H2O(4线)Fe3O4+8H++2e-=3Fe2++3H2O(5线)3Fe2O3+2H++2e-=2Fe3O4+H2O(6线)Fe3O4+8H++8e-=3Fe+4H2O(7线)总之,E—pH图在解决水溶液中发生的一系列反应及平衡问题,如元素分离,湿法冶炼,金属防腐,金属电沉积,地质问题等方面均得到广泛的应用。三、电化学保护1.阳极保护(适用有钝化曲线的金属)凡是在某些化学介质中,通过一定的阳极电流,能够引起钝化的金属,原则上都可以采用阳极保护法防止金属的腐蚀。例如我国化肥厂在碳铵生产中的碳化塔已较普遍地采用阳极保护法,取得了良好效果,有效地保护了碳化塔和塔内的冷却水箱。使用此法注意点:钝化区的电势范围不能过窄,否则容易由于控制不当,使阳极电势处于活化区,则不但不能保护金属,反将促使金属溶解,加速金属的腐蚀。2.阴极保护就是在要保护的金属构件上外加阳极,这样构件本身就成为阴极而受到保护,发生还原反应。阴极保护又可用两种方法来实现。(1)称为牺牲阳极保护法:它是在腐蚀金属系统上联结电势更负的金属,即更容易进行阳极溶解的金属(例如在铁容器外加一锌块)作为更有效的阳极,称为保护器。这时,保护器的溶解基本上代替了原来腐蚀系统中阳极的溶解,从而保护了原有的金属。此法的缺点是用作保护器的阳极消耗较多。(2)外加电流的阴极保护法:目前在保护闸门、地下金属结构(如地下贮槽、输油管、电缆等)、受海水及淡水腐蚀的设备、化工设备的结晶槽、蒸发罐等多采用这种方法,它是目前公认的最经济、有效的防腐蚀方法之一。该法是将被保护金属与外电源的负极相连,并在系统中引入另一辅助阳极,与外电源的正极相连。电流由辅助阳极(由金属或非金属导体组成)进入腐蚀电池的阴极和阳极区,再回到直流电源B。当腐蚀电池中的阴极区被外部电流极化到腐蚀电池中阳极的开路电势,则所有金属表面处于同一电势,腐蚀电流消失。因此,只要维持一定的外电流,金属就可不再被腐蚀。(3)气相中阴极保护。电化学方法能否在气相环境中使用是人们一直希望解决的问题。1988年,中国研究出了气相环境中的阴极保护技术,用于架空金属管道、桥梁、铁轨、海洋工程构件上的飞溅区保护,并在架空金属管道的实际试验中取得了非常好的保护效果,使材料的寿命延长了20多倍,为气相环境中的构件保护提供了一个崭新的途径。气相阴极保护原理与溶液中的阴极保护原理相同,只是用固体电介质代替溶液,成为阴极保护电流从阳极层流向阴极层的主要离子迁移通道。外加阴极电流从辅助阳极流入,经过固体电介质至阴极(即被保护的结构材料),从而使处于气相环境中的结构得到保护。3.缓蚀剂的防腐作用把少量的缓蚀剂(如万分之几)加到腐蚀性介质中,就可使金属腐蚀的速率显著的减慢。这种用缓蚀剂来防止金属腐蚀的方法是防腐蚀中应用得最广泛的方法之一。下面我们根据极化图来说明缓蚀剂抑制金属腐蚀的基本原理。电化学腐蚀的速率是由阳极过程和阴极过程的极化特征所决定的。只要加入的缓蚀剂能够抑制上述过程中的一种或二种,腐蚀速率就会降低。根据缓、蚀剂所能抑制的过程,我们可以把缓蚀剂分为阳极型缓蚀剂、阴极型缓蚀剂和混合型缓蚀剂。加入缓蚀剂,加快极化程度,降低腐蚀电流。作用的机理主要是在电极表面形成钝化膜或者吸附膜。缓蚀剂的种类繁多,属于无机类的缓蚀剂有亚硝酸盐、铬酸盐、重铬酸盐,磷酸盐等等;属于有机类的缓蚀剂有胺类、醛类、杂环化合物、咪唑啉类等等。具体使用时,需根据要保护的金属种类和腐蚀介质等条件通过筛选试验来确定。

化学金属腐蚀、材料保护涉及很多方向:具体内容可以从以下几个方面考虑。对于金属腐蚀的电化学技术研究,腐蚀电位,发生电化学腐蚀的作用机理,钝化膜成膜机理以及膜的特性,组分,在腐蚀过程中的作用;对于材料保护方面可以合成缓蚀剂,复配等等,也可以研究具体保护方法,缓蚀剂特性,对金属材料腐蚀过程中的抑制作用及机理等。

金属的防护与腐蚀论文文献

§5-2金属在海水中的腐蚀 海水是具有强腐蚀性的天然电解质,海上各种运输工具舰船,海上石油采钻平台,海底电缆,输油管道都面临海水腐蚀,所以研究和解决金属材料的海水腐蚀??对发展我国海运和海洋开发都具有重要的意义。一,海水特点1, 海水溶有大量NaCl为主的盐类。其含NaCl量约为3%或%2, 海水具有很高的导电率3, 海水表面含氧量随水温不同大约在5-12ppm之间4, 海水的PH值通常在-%二、海水腐蚀的电化学过程海水既然是一种典型的电解质溶液,关于电化学腐蚀的基本规律也适用于海水腐蚀,但海水腐蚀的电化学过程又有其自身的特点。1、 海水近中性且含有溶解氧,对于大多数金属或合金在海水中的腐蚀过程都是氧去极化过程2、 海水中含有大量Cl-离子,对于大多数金属(钢,铁,锌)在海水中的腐蚀,阳极极化程度很小,这是因为Cl-离子能阻碍和???金属的钝化,其破坏方式有①破坏氧化膜,②Cl-比某些钝化剂更易吸附,③Cl-与金属形成络合物加速了阳极溶解。由于这些原因即使是不锈钢也难以保持不腐蚀,若在不锈钢中加入Mo则能提高其在海水中的稳定性。3、 海水的电阻率很小,因此异种金属接触能造成的显著的电焊腐蚀。其作用强烈,作用范围大,如前面讲了海船的青铜螺旋桨能引起数十米远钢制船身腐蚀。4、 在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。三、影响海水腐蚀的因素。海水是含有多种盐类的溶液且又含有生物,悬浮状砂,腐败的有机物等,其腐蚀速度与化学物理,生物等因素有关它要比单纯的盐溶液腐蚀强很多。1、 盐的浓度:海水是以NaCl为主的盐溶液,钢的腐蚀速度与含盐量关系如下图所示,随NaCl浓度升高腐蚀速度加快对海水来说其NaCl的浓度范围正好在最大范围内,当溶盐超过一定值后,由于氧的溶解度降低使金属腐蚀速度下降。2、 含氧量:海水中氧含量是影响海水腐蚀的重要因素,因金属在海水中的腐蚀主要是氧去极化过程,因此海水中含氧量增加可使金属腐蚀速度增加,海水表面与大气接触,含氧量最高可达12ppm,随海水浓度增加氧含量降低,随海水中盐浓度增加和温度上升,含氧量也降低。3、 温度:和其他反应一样,温度升高,金属腐蚀速度加快而海水温度随纬度季节和海水???不同而变化。4、 海生物:在海生物为了维持其生命活动要吸收氧气,放出二氧化碳在其死亡后,尸体分解析出H2S。CO2和H2S会加速金属的海水腐蚀速度,如在??设在海水中的金属设备常丛生着一些??和附着一些动物使金属腐蚀加速。5、 海水流速(金属结构与海水的相对运动速度)因海水的腐蚀过程是氧去极化过程,海水流速大使金属腐蚀速度加快。四、防止海水腐蚀的方法1、 电化学保护,主要是阴极防护是防止海水腐蚀的常用方法,它是依靠牺牲阳极来实现阴极保护的。用来作牺牲阳极的材料为锌合金,镁合金,铅合金。2、 合理选材:①选用含Mo的不锈钢??减少????,②选用耐腐蚀的钛合金,铜合金,??合金。3、 涂层保护,这是防止海水腐蚀的普遍采用的方法,如采用防锈漆涂料和防止生物粘污的防污涂料§5-3土壤腐蚀埋在地下的金属油气水管,电缆等由于土壤腐蚀造成管线穿孔,而漏气,漏油,漏水或使电信发生故障而且这些设备很难检测,给生产造成很大的损失和危害,如美国每年因腐蚀而替换的管子费用就有几亿美元之多,对我国来说,随着石油工业的发展,每年有大量的管线埋在地下投入运行,因此研究土壤腐蚀规律寻找有效的防护措施具有重要的实际意义土壤腐蚀是一种电化学腐蚀,溶解有盐类和其他物质的土壤电解质,其腐蚀要比一般盐类溶液腐蚀严重的多。一、土壤电解质的特点1、 土壤的多相性:土壤由土粒,水,空气等组成,具有复杂的多相结构,土粒中又含有多种无机物和有机物土粒粒度大小也不同,往往有几种不同土粒(砂,碳土,粉沙土,粘土)组成的。2、 土壤具有毛细管多孔性:在土壤颗粒间形成大量毛细管微孔或孔隙,孔隙中充满空气和水,因此土壤的孔隙度和含水性的程度有影响土壤的透气性和导电率的大小。3、 土壤的不均匀性:在宏观上讲不同区域,土壤性质上不同,从微观结构讲,即前面讨论的由水,土壤,气孔,水分的存在其结构紧密程度上的差异。4、 土壤的相对固定性:土壤固体部分对埋在地下的金属构件是固定不变的,仅土壤中液相和气相可作有限运动。二、土壤腐蚀过程 土壤腐蚀过程同样可分为阳极过程和阴极过程1、 阳极过程:钢管埋在土壤中阳极区发生铁的溶解反应。 阳极反应进行的速度首先受金属离子水化过程的难易控制,因此土壤的湿度对阳极过程影响较大,尤其是土壤中的氯离子Cl-和硫酸根离子能与Fe2+生成可溶性盐类,会加速阳极溶解。2、 阴极过程:在弱酸性,中性和碱性土壤中阴极过程主要是氧的去极化作用。土壤中的氧存在于土壤孔隙中和溶解在水中,由于水中溶解氧是有限的,对土壤腐蚀其主要作用的缝隙和毛细管中的氧,但是这些氧到达阴极表面的传递过程是比较复杂的,其传递速度取决于土层的厚度,结构和湿度,厚的土层阻碍氧的扩散,且土壤粘度越大湿度越高,氧到达阴极表面越困难,金属的腐蚀越轻,反之,土层浅土壤疏松,湿度小,透气性好金属腐蚀就越严重。对于大多数土壤来说是腐蚀决定于腐蚀微电池作用时,腐蚀过程强烈的为阴极过程所控制,如下图所示三、土壤腐蚀的几种形式1、 由于充气不够均匀引起的腐蚀:主要是地下管道穿过结构不同和潮湿度不同的土壤带时,由于所接触的氧浓度差别引起的宏观电池腐蚀,(图)与含氧量较高的土壤(砂土)接触的管道成为宏观腐蚀电池的阴极区,而与含氧量较少的土壤(粘土区)接触的管道,成为宏观腐蚀电池的阳极区。该区将受到腐蚀。管道埋设在结构不同土壤中发生氧的浓差电池腐蚀,??如埋设湿度不同也会造成氧的浓差宏观电池,离地面较深的部位为阳极区受到腐蚀,在直径较大的水平输送管道上就能看到感到下部比上部腐蚀更为严重。2、 由于杂散电流引起的腐蚀:所谓杂散电流指由原定的正常电路漏失而流入它处的电流,其主要来源是应用直流电大功率装置,如有轨电车,地铁,电气大??以接地为回路的交通工具以及电解电镀槽等直流电力系统,图是有轨电车附近的下金属管道由于杂散电流而引起的腐蚀示意图,在正常情况下,电流自电源的正极通过电力机车的架空线再沿铁轨回到电源负极,但是当铁轨与土壤间的绝缘不良时,有一部分电流就会从铁轨漏失到土壤中,如果其附近有地下管道,杂散电流便通过管道再流经土壤回到电源,此时相当于有两个串连的电解池即:路轨(阳极)│土壤│管道(阴极)管道(阳极)│土壤│路轨(阴极) 在第二个电解池中的阳极区(杂散电流从管道的流出端)发生腐蚀,管道上的杂散电流可高达300-500A其影响又达到几十公里,如??7-8mm的钢管在4个月内便可腐蚀掉。3、 由于微生物引起的腐蚀 在缺氧条件下,如密实,潮湿的粘土深处,金属腐蚀似乎很难进行,但是这样的条件却特别有利于某些微生物的生长,特别是有硫酸盐还原菌存在时,这种细菌能将硫酸盐还原成氧,其中一部分消耗于微生物自身的新陈代谢,大部分可作为阴极去极化剂,引起地下金属管道强烈腐蚀,据统计地下埋设的金属构件有一半是属于这种腐蚀四、影响土壤腐蚀的因素2、孔隙度(透气性),较大的孔隙度有利于用氧的渗透和水分存在,因而是腐蚀的促进因素。3、含水量:图表示铜管的腐蚀速度与土壤含水量关系,可以表示当含水量很高时,氧的扩散,渗透受到阻碍,腐蚀速度较小,随含水量减少,扩散渗透氧均匀,氧去极化变易腐蚀速度增加,当含水量在10%一下,由于水分短缺,因阳极极化和土壤的电阻增大,腐蚀速度又急剧降低。4、 电阻率:土壤电阻率与土壤孔隙度,含水量及含盐量等因素有关,土壤的电阻越小腐蚀越严重,如土壤潮湿含氧量高,腐蚀严重。5、 土壤的酸度PH值:大部分土壤呈中性PH值为6-8之间,但也有PH值为9-10的碱性土壤及PH值为3-6的酸性土壤(沼泽土,腐植土)在PH≤4的酸性土壤中氢的阴极去极化,能顺利进行,使腐蚀速度增加。1. 土壤中的含氧量。土壤中的氧有的溶解在水中有的存在于毛细管中和隙缝中,含氧量在干燥的砂土中最高,在潮湿的砂土中次之,在潮湿密实的粘土中最少,??的速度由于湿度和结构不同土壤中含氧量可相差几百倍,这种充气不均匀是造成氧浓度差电池腐蚀的主要原因。五、防止土壤腐蚀的措施1、 覆盖层保护:在土壤中普遍使用焦油沥青质的覆盖层,在涂层内用玻璃纤维(布),石棉等纤维材料地下还缠绕加固地基,也可采用聚乙烯叠料或环氧树脂喷涂。2、 金属土层或包覆金属:镀锌有一定效果,?????,因为镀层与被覆的金属构成腐蚀电路,使镀层很快造成破坏。用铅包覆电缆有较好的效果,因为铅在地下比碳钢稳定很多,腐蚀速度小。3、 采用电化学保护:广泛采用牺牲阳极或外加电流对地下管道进行保护,甚至把覆盖层与电化学保护结合地使用,在涂层??地方阴极保护其作用。§5-4微生物(细菌)腐蚀微生物(细菌)腐蚀指在微生物生命活动参与下所发生的腐蚀过程,又由于与腐蚀有关的微生物主要是细菌类,又称细菌腐蚀。凡是同水,土壤,潮湿空气接触的金属???都可能遭到微生物腐蚀,前面曾讲到有50%以上的地下管道的腐蚀都与微生物腐蚀有关。此???深水泵,油田冷水系统,水坝,码头等金属设施也都可能发生微生物腐蚀。一、微生物腐蚀的特征1、 微生物腐蚀并非微生物直接食取金属,而是微生物生命活动结果直接或间接参与了腐蚀过程。2、 微生物的生命过程即生长繁殖需具有适宜的环境条件,如一定的温度,湿度,酸度,环境含氧量及营养源等,因此微生物腐蚀显然与这些条件密切相关3、 微生物腐蚀往往是多种微生物共生(嗜氧菌的腐蚀造成厌氧菌的环境)是相互作用的结果。4、 有粘泥存在5、 腐蚀部位伴有孔蚀迹象(∵粘泥下为贫氧区,因氧浓差电池腐蚀会造成)二、微生物腐蚀机制1、 微生物新陈代谢产物的腐蚀作用,这些腐蚀性的新陈代谢物包括无机物,有机物,硫化物,氨等??腐蚀环境2、 促进腐蚀的电极反应动力学过程如硫酸盐还原菌的存在(其活动过程)3、 致变金属周围环境的氧浓度含盐量,??度等,形成氧浓差等局部腐蚀电池。4、 破坏具有保护作用的涂覆层或缓蚀剂的稳定性,如有机纤维覆盖层被分解破坏,亚硫盐缓蚀剂因细菌作用而被氧化。三、与腐蚀有关的主要微生物(细菌) 细菌按其生长发育中对氧的要求分为:嗜氧性细菌及厌氧性细菌,前者需要有氧存在才能生长繁殖,后者在缺氧条件下才能生长繁殖。1、 硫酸盐还原菌:这种菌在自然界分布非常广泛,属于厌氧细菌,所造成的腐蚀类型常呈点蚀局部腐蚀。腐蚀产物是黑色的带有难闻气味的硫化物。反应机理如下:阳极反应: 水电离: 阴极反应: 细菌引起阴极去极化: (腐蚀产物)2、 硫氧化菌:属于嗜氧性细菌,被还原的土壤组分是硫,硫化物,硫代硫酸盐,常存在施肥的及含有硫的土壤,这种细菌能将硫及硫化物氧化成硫酸,其反应为:3、 铁细菌:属于嗜氧性细菌,其分布也相当广泛,有杆,球,丝多种形态,被还原的土壤组分主要是碳酸亚铁,碳酸氢亚铁等常存在于含有铁盐的有机物的静水流水中,溪流和泉水少,该细菌能使二价铁离子氧化成三价并沉淀于菌体内。四、微生物腐蚀的控制1、 使用杀菌剂和抑菌剂:所用的这些药剂除具有高校,低毒,稳定价廉外,主要根据微生物种类及使用环境来选择,如对于铁细菌可通氯杀死,但残余氯含量应该控制在-1ppm之间,否则氯离子又要引起腐蚀,对于硫酸盐还原菌采用铬酸盐较为有效。2、 致变环境条件,通过改变环境条件抑制微生物生长,如减少微生物有机物营养源,提高PH值(PH>5)及提高温度(>50℃)3、 覆盖防护层:地下管道采用炼焦油沥青涂层4、 阴极保护,如为防止硫酸盐还原菌的作用对于土壤中钢铁构件的保护电位被控制在-以下。

举例子,特别是户外建筑,从化学原理分析,通俗一点

腐蚀是金属表面部分或者全部剥离、溶解或软化的化学反应。“生锈”经常被误用或者误解,它仅仅指铁和钢。“腐蚀”不仅包含黑色金属,而且包含有色金属。以下内容主要讨论腐蚀的成因和纠正措施。移除热量是金属加工液最重要的功能之一。有效移除热量,就能保证刀具的良好使用寿命,以及工件的几何精度。和油相比,水在移除热量方面性能更卓越;但纯水和新加工的金属接触后会导致腐蚀。因此,腐蚀是每位用户,也是水基金属加工液制造商必须面对的问题。干切削过程也会面对腐蚀问题,并不仅仅由水基金属加工液引起。引起金属表面腐蚀有许多种原因,下面做具体介绍。1季节性腐蚀腐蚀可以发生在一年内的任何时候。一般来说,7~9月的温度和相对湿度较高,在美国东部和中西部更容易发生腐蚀。干旱地区,如克罗拉多州、新墨西哥州、亚利桑那州、犹他州及加州,这些地方的相对湿度较低,腐蚀情况就很少发生。2手印腐蚀当工件接触人手后,就容易发生腐蚀。搬运过程中新机床和金属工件表面留下的手印,会导致腐蚀。这种情况普遍存在于皮肤呈酸性的人群,以及表面光洁度高的工件。使用手印中和剂能防止类似的手印腐蚀。随着温度上升,包括腐蚀在内的化学反应速度就会更快。夏季高温和空气中的水分和氧气也是加速腐蚀的原因。当水分凝结在工件表面,就会形成电池的电解液。秋冬季节能提供防锈保护的加工液浓度,当湿度持续上升时,就不再提供有效的防锈保护。因此,适当的浓度调整非常必要。秋冬季节,浓度1:30()已经足够;但湿热季节,浓度可能需要提高到1:25(4%),或者不再看到工件表面生锈为止。需要注意的是,提高中央槽系统的浓度,会导致泡沫和皮炎问题。金属加工液用户也可能需要增加防锈添加剂,这取决于金属加工液的种类、用户对化学品的限制、添加剂的有效性以及所使用的加工液。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。3pHpH值是金属加工液控制腐蚀的一个重要参数。超过9的高pH值,可以保护黑色金属,但对有色金属腐蚀防护不利,如:铝、黄铜和青铜。水硬度会影响加工液的平衡,不同地理区域的水硬度是不同的,调节水硬度会优化加工液的表现性能。单机条件下如果pH值较低,最简单的解决方法是倾倒和清洗,然后按照推荐浓度加新鲜金属加工液。如果是加工黑色金属的中央槽系统,可以用适当添加剂,将pH值调整到。如果pH值特别高,往往是金属加工液已经受到污染,需要倾倒和换新液。4污垢再循环金属加工液的金属微粒,往往被认为是“污垢”或“碎屑”。如果没有及时清理,碎屑会在工件表面堆积而形成电池,碎屑下面的金属往往会生锈。单机条件下,应及时排空—清洗—用清水冲洗,按照推荐浓度加新鲜金属加工液。5水通常水中的化学物质是积累的,会提高加工液的腐蚀程度。所有水包含离子,部分离子富有侵蚀性,会导致大部分金属腐蚀。水含有超过100×106的氯化物、超过100×106的硫化物,或50×106硝酸盐,这些离子被认为富有侵蚀性。氯化物、硫化物和硝酸盐破坏金属表面的防护层,导致腐蚀。持续加水会提高中央槽系统的氯化物、硫化物和硝酸盐含量。金属加工液使用时间越长,离子的侵蚀性更高。每种金属加工液的配方,都需要维持浓度来发挥“最佳点”。定期检测金属加工液浓度,可以避免加工性能和环境问题。如果用户怀疑水有侵蚀性时,可取样并通过全分析来确定。当中央槽系统的金属加工液被怀疑导致腐蚀,请取样并检测离子含量。当氯化物、硫化物和硝酸盐浓度超过可接受范围,可使用去离子水或者蒸馏水作为工艺用水,也可选择防腐蚀性能高的金属加工液。溶解在水中的固体,可以破坏金属加工液很多的渴望性能。最熟悉的例子就是“水硬度”,是由于钙和镁离子溶解在水中引起。二价离子和皂类、润湿剂和乳化剂反应所形成化合物,溶解度会降低。这种不溶解的成分,耗竭机床和工件防锈剂。硬水指的是含量超过250×106碳酸钙或者15“德国克”(德国硬度标准)。硬度越高,越容易产生腐蚀。电导率是另一个检测金属加工液中溶解离子的方法。高电导率增加了腐蚀、金属加工液的不稳定、残留物和其他问题。超过4MilliSiemens/cm被认为高电导率。

关于浅谈金属腐蚀与防护方式论文

无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是对某些学术问题进行研究的手段。你所见过的论文是什么样的呢?以下是我整理的关于浅谈金属腐蚀与防护方式论文,仅供参考,欢迎大家阅读。

摘要: 本文简单阐述了金属腐蚀的类别与影响因素,对于腐蚀的防护方式与必要性展开了具体的探究,并同时指明了部分经常使用的化学涂料,对于它们的原理与功能展开了简单的阐释。此外还论证了金属腐蚀的防护方式并非单一的,它是具有多样性的。最终对防护领域进行了忠告,尽可能的降低由于金属腐蚀的因素而引发的恶劣后果。

关键词: 金属腐蚀;因素;防护方式

化学工业、石油化工、原子能等领域中,因为材料腐蚀导致的跑、冒、滴、漏,不但会让社会承受重大的损失,还会导致大量的有害物质甚至是放射性物质外泄对环境造成不可恢复的伤害,继而对人们的身体健康造成威胁,一些物质在短时间内不会消失,会长时间内对环境以及人身造成威胁;同时因为金属腐蚀所引发的灾难性事故会危及人民的生命财产安全,例如氢脆和应力腐蚀断裂等类型的失效事故,一般会导致爆炸、火灾等重大的事故,使人们的生命财产承受巨大的损失。

1、金属腐蚀的类别

金属的腐蚀的发生主要是在环境的影响下所导致的破坏和变质。根据腐蚀过程来划分,主要包含化学腐蚀与电化学腐蚀;根据金属腐蚀破坏的状态与腐蚀区的布局,重点包含全面腐蚀与局部腐蚀;此外根据腐蚀的条件来划分。重点包含高温腐蚀与常温腐蚀;干腐蚀与湿腐蚀等。

2、影响金属腐蚀的因素

①空气相对湿度与金属腐蚀的临界相对湿度。空气内的氧气总是比较充足的,腐蚀反应的速率重点是基于水分的产生,假如到达或者超越特定的相对湿度,锈蚀就会以较快的速度出现和恶化,通常而言,钢铁的临界相对湿度大概是75%。

②空气中污染性物质的影响。通常能够见到的为SO2,CO2,Cl-,灰尘等,多数皆为酸性气体。

③温度。环境温度和变化规律影响金属表面水份凝聚及电化学腐蚀反应速率。

④酸碱盐。重点体现在影响水膜电解质浓度与H+浓度,进而加快腐蚀的速度。

3、防护方式

金属腐蚀的防护方式具有多样性,重点对象为金属本质,将被保护金属和腐蚀介质进行隔离,或者对金属的表面进行操作,改变腐蚀条件和电化学保护等。

改善金属本质

按照差异性的用途采取差异性的材料构成耐蚀合金,或者于金属内加入合金元素,提升它的耐腐蚀性,能够预防或者降低金属腐蚀的速度。比方,于钢内融入镍制成不锈钢能够强化防腐蚀等级。

构成保护层

于金属表面设置各类保护层,将被保护的对象和腐蚀性介质进行隔离,此为预防金属腐蚀的最佳方式。

金属的磷化处理

在钢铁制品去油、除锈操作之后,添加一定组成的磷酸盐溶液中浸泡,就能够在金属表面产生一层不溶于水的磷酸盐薄膜,此类过程即为磷化操作。磷化膜表现为暗灰色到黑灰色,厚度通常是5至20μm之间,于空气内具备较强的耐腐蚀能力。

金属的氧化处理

把钢铁制品融入至NaOH的混合溶液内,加热,在它的'表面就能够产生一层厚是~μm的蓝色氧化膜(主要组分是Fe3O4),来实现钢铁防腐蚀的目标,这个过程就叫做发蓝处理。此类氧化膜具备较强的弹性与润滑度,不会对零件的精度产生任何负面的作用。因此精密仪器与光学元件等通常选择这种操作。

非金属涂层

通过非金属比如油漆、喷漆、沥青等涂抹于金属表层产生保护层,叫做非金属涂层,亦能够实现防腐蚀的目标。比如船身、车厢、水桶等通常选择油漆,车辆的表面经常喷漆等。

金属保护层

其为将一类耐腐蚀能力较大的金属或者合金镀于保护对象的表层上所产生的保护镀层。此镀层的产生,不仅可以通过电镀、化学镀实现,还能够通过热浸镀、渗镀、真空镀等方式实现。

改善腐蚀条件

改善条件对于降低与避免腐蚀具有必要性。比如,能够选择在腐蚀介质内融入可以减小腐蚀速度的物质,也就是缓冲剂,来降低与避免腐蚀的发生。缓冲剂属于一类化学物质,将其适量的融入至腐蚀介质内,即能够大幅度降低金属腐蚀的速度。因为缓冲剂的用量较小,便捷和廉价,因此这也是一类十分重要的防腐蚀方式。

电化学保护法

此类方式为以电化学原理为基础的,于金属设备上进行操作,让其变成腐蚀电池中的阴极,进而成为预防或者减缓金属腐蚀的方式。

阴极保护

此外通过外加电源来保护金属。将保护的对象接于负极,变成阴极防止腐蚀的产生。同时选择部分铁块接于正极,让其变成阳极,使其腐蚀,也就是说牺牲阳极。此类方式重点应用于化工厂的部分酸性溶液贮槽或者管道,地下水管、输油管等。

4、结语

不管是在社会中的哪个领域,金属腐蚀工作皆具有十分重要的意义,对环境、经济、安全皆会产生严重的影响。石油化工设施比方新建油库、管道、大型石化生产设备等,应当采取防腐措施。但防腐蚀的方式具备多样性,其形成的因素也是多种多样的,这对于这个领域中的所有人员都是一个巨大的挑战,值得所有人员做出相应的努力。

金属防护与腐蚀杂志

《腐蚀科学与防护技术》自1989年创刊以来,刊物的质量及水平不断提高。目前已成为“中国科技论文统计源期刊”,“中国学术期刊综合评价数据库统计源期刊”;并被“中国核心期刊(遴选)数据库”、“中国学术期刊(光盘版)”、中国科学引文索引等收录;同时被国际重要检索性刊物如CA、MA、SA等摘引收录。主要刊登金属腐蚀与防护领域中有所创见的研究报告、综述,技术报告等稿件,适于科研、教学、工程技术人员阅读参考。全部文章均附英文摘要,图题及表题也用英文标出,以飨国内外不同读者并便于国际检索。

1.中国腐蚀与防护学报

主要刊登我国在腐蚀与防护学科高水平的研究报告,以具有创新性的原始科研论文为主,并适当篇幅刊登综述及技术报告等. 《中国腐蚀与防护学报》是腐蚀与防护领域最具影响力和权威性的杂志。 《中国腐蚀与防护学报》...

2.腐蚀与防护

《腐蚀与防护》(月刊)创刊于1980年,由上海市腐蚀科学技术学会、上海材料研究所主办。 《腐蚀与防护》本刊是国内最早的腐蚀专业学会——上海市腐蚀科学技术学会的会刊,也是国内创办最早的腐蚀专业杂志之一,为...

3.腐蚀科学与防护技术

《腐蚀科学与防护技术》是由中国科学院金属研究所主办,期刊荣誉为:中国学术期刊(光盘版)全文收录期刊。《腐蚀科学与防护技术》主要刊登金属腐蚀与防护领域中有所创见的研究报告、综述,技术报告等稿件,适于科...

4.材料保护

《材料保护》是由武汉材料保护研究所、中国腐蚀与防护学会、中国表面工程协会,中国机械工程学会表面工程分会主办的全国性表面应用技术杂志,是北大核心期刊,统计源期刊,CSCD核心期刊,综合因子为:。材料保...

相关百科

热门百科

首页
发表服务