首页

> 期刊论文知识库

首页 期刊论文知识库 问题

数学教学论文答辩题

发布时间:

数学教学论文答辩题

三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法. ●难点磁场 已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围. ●案例探究 〔例1〕已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R). (1)求证:两函数的图象交于不同的两点A、B; (2)求线段AB在x轴上的射影A1B1的长的取值范围. 命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”. 技巧与方法:利用方程思想巧妙转化. (1)证明:由 消去y得ax2+2bx+c=0 Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4〔(a+ c2〕 ∵a+b+c=0,a>b>c,∴a>0,c<0 ∴ c2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=- ,x1x2= . |A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2 ∵a>b>c,a+b+c=0,a>0,c<0 ∴a>-a-c>c,解得 ∈(-2,- ) ∵ 的对称轴方程是 . ∈(-2,- )时,为减函数 ∴|A1B1|2∈(3,12),故|A1B1|∈( ). 〔例2〕已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围. (2)若方程两根均在区间(0,1)内,求m的范围. 命题意图:本题重点考查方程的根的分布问题,属★★★★级题目. 知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点. 技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制. 解:(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得 ∴ . (2)据抛物线与x轴交点落在区间(0,1)内,列不等式组 (这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过) ●锦囊妙计 1.二次函数的基本性质 (1)二次函数的三种表示法: y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n. (2)当a>0,f(x)在区间〔p,q〕上的最大值M,最小值m,令x0= (p+q). 若- 0时,f(α) |β+ |; (3)当a>0时,二次不等式f(x)>0在〔p,q〕恒成立 或 (4)f(x)>0恒成立 ●歼灭难点训练 一、选择题 1.(★★★★)若不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则a的取值范围是( ) A.(-∞,2 B. -2,2 C.(-2,2 D.(-∞,-2) 2.(★★★★)设二次函数f(x)=x2-x+a(a>0),若f(m)<0,则f(m-1)的值为( ) A.正数 B.负数 C.非负数 D.正数、负数和零都有可能 二、填空题 3.(★★★★★)已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在区间〔-1,1〕内至少存在一个实数c,使f(c)>0,则实数p的取值范围是_________. 4.(★★★★★)二次函数f(x)的二次项系数为正,且对任意实数x恒有f(2+x)=f(2-x),若f(1-2x2)0且a≠1) (1)令t=ax,求y=f(x)的表达式; (2)若x∈(0,2 时,y有最小值8,求a和x的值. 6.(★★★★)如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围. 7.(★★★★★)二次函数f(x)=px2+qx+r中实数p、q、r满足 =0,其中m>0,求证: (1)pf( )<0; (2)方程f(x)=0在(0,1)内恒有解. 8.(★★★★)一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元. (1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元? 参考答案 难点磁场 解:由条件知Δ≤0,即(-4a)2-4(2a+12)≤0,∴- ≤a≤2 (1)当- ≤a<1时,原方程化为:x=-a2+a+6,∵-a2+a+6=-(a- )2+ . ∴a=- 时,xmin= ,a= 时,xmax= . ∴ ≤x≤ . (2)当1≤a≤2时,x=a2+3a+2=(a+ )2- ∴当a=1时,xmin=6,当a=2时,xmax=12,∴6≤x≤12. 综上所述, ≤x≤12. 歼灭难点训练 一、1.解析:当a-2=0即a=2时,不等式为-4<0,恒成立.∴a=2,当a-2≠0时,则a满足 ,解得-2<a<2,所以a的范围是-2<a≤2. 答案:C 2.解析:∵f(x)=x2-x+a的对称轴为x= ,且f(1)>0,则f(0)>0,而f(m)<0,∴m∈(0,1), ∴m-1<0,∴f(m-1)>0. 答案:A 二、3.解析:只需f(1)=-2p2-3p+9>0或f(-1)=-2p2+p+1>0即-3<p< 或- <p<1.∴p∈(-3, ). 答案:(-3, ) 4.解析:由f(2+x)=f(2-x)知x=2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x2-2|<|1+2x-x2-2|,∴-2<x<0. 答案:-2<x<0 三、5.解:(1)由loga 得logat-3=logty-3logta 由t=ax知x=logat,代入上式得x-3= ,� ∴logay=x2-3x+3,即y=a (x≠0). (2)令u=x2-3x+3=(x- )2+ (x≠0),则y=au ①若0<a<1,要使y=au有最小值8, 则u=(x- )2+ 在(0,2 上应有最大值,但u在(0,2 上不存在最大值. ②若a>1,要使y=au有最小值8,则u=(x- )2+ ,x∈(0,2 应有最小值 ∴当x= 时,umin= ,ymin= 由 =8得a=16.∴所求a=16,x= . 6.解:∵f(0)=1>0 (1)当m<0时,二次函数图象与x轴有两个交点且分别在y轴两侧,符合题意. (2)当m>0时,则 解得0<m≤1 综上所述,m的取值范围是{m|m≤1且m≠0}. 7.证明:(1) ,由于f(x)是二次函数,故p≠0,又m>0,所以,pf( )<0. (2)由题意,得f(0)=r,f(1)=p+q+r ①当p<0时,由(1)知f( )<0 若r>0,则f(0)>0,又f( )<0,所以f(x)=0在(0, )内有解; 若r≤0,则f(1)=p+q+r=p+(m+1)=(- )+r= >0, 又f( )<0,所以f(x)=0在( ,1)内有解. ②当p<0时同理可证. 8.解:(1)设该厂的月获利为y,依题意得� y=(160-2x)x-(500+30x)=-2x2+130x-500 由y≥1300知-2x2+130x-500≥1300 ∴x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x≤45 ∴当月产量在20~45件之间时,月获利不少于1300元. (2)由(1)知y=-2x2+130x-500=-2(x- )2+ ∵x为正整数,∴x=32或33时,y取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.

用配方的方法来求最快,如,x2+4x+3=0,可以配方为(x+2)2-1=0,那么它的值域是.大于或等于-1…2.用点描绘出一元二次方程的图象,看它和x轴有多少个交点,有多少个交点,那么方程就有多少个解…

1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养6、谈小学、初中数学的衔接 7、容斥原理及其应用8、从高中课程改革看大学课程改革 9、信息化教育问题10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索 14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识 20、关于探索性命题的若干问题 21、数学实验教学模式探究22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神 26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维 28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质 30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见 32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用 34. 谈谈类比法 35. 数学教学设计随笔 36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题 38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识 40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析 42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用 44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习 46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便 48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识 50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改 52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力 54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用 56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则 58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考 60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学 62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计 64. 注重创新性试题的设计 以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题1.关于数学教学目的问题; 2.关于数学思维问题; 3.关于数学教学方法问题; 4.关于学习的迁移问题; 5.关于数学教学的评价问题; 6.关于熟练技能与深刻理解的关系问题; 7.数学的实用功能与数学的文化教育功能相关关系的研究; 8.数学教学的德育功能研究; 9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用; 10.数学发现法(探究式)教学可实施的基本内容、对象和范围; 11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究; 12.中学生数学学习习惯与学习方法的调查分析; 13.诊断和鉴别数学学习困难学生的方法探析; 14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究; 15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究; 16.教法与学法的双向作用研究; 17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究; 18.数学新课程实施中转变学生学习方式的途径; 19.学生数学观念或数学意识的形成机制和培养途径的实验研究; 20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。 21.中学数学教育的地位与作用。 22.形象思维与数学教学。 23.直观思维与数学教学。 24.非智力因素与数学学习。 25.数学美与数学教学。 26.在数学教学中怎样培养学生的数学能力。 27.数学作图及图形的教学。 28.数学解题错误的探讨。 29.怎样配备数学习题。 30.数学解题常用的一些思维方法。 31.怎样提高学生的自学能力。 32.怎样培养学生学习数学的兴趣。二、《概率论与数理统计》参考题 1.有关概率论发展的历史。 2.随机性与必然的数学基础与认识。 3.随机变量的直观认识与数学描述。 4.古典概率型的计算技巧。 5.几何概率型的分析处理。 6.有关概率论之介绍。 7.概率论中数学期望概念。 8.利用期望概率统一引人矩阵概率。 9.期望概率在概率论中的地位和作用。 10.特征函数与因数在概率论中的作用及其含义。 11.关于独立性。 12.大数定律与中心定律之含义。 13.大数定律与概率的统计定义。 14.有关概率不等式。 15.条件概率与条件期望。 16.Bayes公式的扩展。 17.概率在其它学科中的应用。 18.其它数学分支在概率论中的应用。 19.概率题目计算的多解性。 20.数理统计概念。 21.数理统计的过去与现在。 22.数理统计在客观现实中的作用。 23.假设检验的实质与作用。 24.参数估计的作用与处理方法。 25.数理统计在你自己工作实践中的应用(实例)。 26.学习概率统计的实践与体会。 27.概率统计中的错题分析。 28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。 29.利用回归分析方法处理问题。 30.回归分析理论中存在的问题与解决的设想。三、《微分几何》参考题 1.空间曲线的基本公式及其在曲线论中的作用。 2.渐近线与渐缩线。 3.空间曲线弯曲性的研究。 4.曲率与挠率。 5.曲面的第一基本形式在曲面论中的作用。 6.等矩映象与曲面的内在几何。 7.曲面的第二基本形式在曲面论中的作用。 8.曲面上的曲率线,渐近曲线,测地线。 9.曲面的内在几何与外在几何的相依性。 10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。 11.高斯曲率的意义与作用。 12.等矩映射与等角映射及等积映射的关系。 13.高斯与波涅公式的意义与作用。 14.伪球面与罗氏几何。四、《复变函数》参考题 1.复变函数在一点解析的等价定义。 2.幅角多值性所导出的问题汇集。 3.小结复变函数的积分。 4.解析与调和函数的关系。 5.漫谈复数∞。 6.0,∞与函数 7.多值函数单值分支的表达与计算。 8.分式线性函数全体对乘法——函数复合——构成群。 9.∞和∞邻域的引进使扩充复平面的为紧空间。 lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。 11.谈复数的比较大小问题。 五、《实变函数》参考题, 1.关于积分号下取极限(积分与极限交换次序问题)。 ①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。 ②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。 ③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。 2.关于微积分基本定理(牛顿一菜布尼兹公式) ①什么是微积分基本定理,它的重要意义在哪里? ②黎曼积分情形,相应定理的条件是什么?有什么不足之处? ③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题? ④应用例题。 3.关于绝对连续函数。 ①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。 ②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。 ③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。 ④绝对连续函数全体组成线性空间。 4.关于勒贝格积分。 ①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处? ②说明勒贝格积分在几何上仍是“曲边梯形的面积”。 ③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。 ④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。 ⑤勒贝格积分有许多重要性质,带来一些什么好处? 5.关于测度。 ①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。 ②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。 ③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。 6.关于可测函数。 ①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。 ②全体可测函数构成线性空间,构成环。 ③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。 7.关于可测函数列的各种收敛概念。 ①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。 ②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。 8.关于点集上的连续函数。 ①定义,性质。 ②与数学分析中讲的连续的关系。 9.集合论和点集论的方法在实变函数论中的意义。 从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。 以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。

小学数学答辩题及参考答案 01 A、义务教育阶段数学课程的基本出发点是什么? 基本出发点是促进学生全面、持续、和谐的发展。B、数和数字有什么不同? 用来记数的符号叫做数字。常用的数字有四种:阿拉伯数字、中国小写数字、中国大写数字、罗马数字。现在国际通用的数字是阿拉伯数字,他共有以下十个:1、2、3、4、5、6、7、8、9、0。数是由数字组成的。在用位置原则计数时数是有十个数字中的一个或几个根据位置原则排列起来,表示事物的个数或次序。数字是构成数的基础,配上其他一些数字符号,可以表示各种各样的数。 02 A、《标准》明确指出:学习数学不仅要考虑数学自身的特点,更应遵循什么? 更应遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲生经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获的对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进一步的发展。 B、分析并解答下面的文字题 105减去78的差乘15,积是多少? 可以从问题入手分析,要求“积是多少”就要知道两个因数,一个因数15,另一个因数是105减去78的差,所以现求差后求积,即:(105-78)×15 03 A、 请你谈谈义务教育阶段的数学课程应突出体现什么? 义务教育阶段的数学课程应突出的体现基础性、普及和发展性,使数学教育面向全体学生,实现: ??人人学有价值的数学; ??人人都能活的必需的数学; ??不同的人在数学上得到不同的发展。 B、下面各题的商是几位数,确定上的位数有什么规律?(除数是一位数的除法) 2016÷4 7035÷5 4543÷8 90180÷9 上面各题的商依次是三位数、四位数、三位数、五位数。根据除法法则可找出如下规律:一位数除多位数,如果被除数的前一位小于除数,那么商的位数就比被除数少一。如果被除数的前一位大于或等于除数,那么商的位数就和被除数同样多。 04 A、《数学课程标准》在学生的数学学习内容上有何要求? 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现方式应采用不同的表达方式,以满足多样化的学习要求。 B、根据下面的文字题,从下面各式中选出正确算式,并将其余的算式正确的叙述出来。 252与173的和乘以8,再除以2,商是多少? (1)(252+173)×(8÷2) (2)(2)(252+173×8)÷2 (3)(3)(252+173)×8÷2 (4)(4)252+173×8÷2(5)(3)式正确 (1) 式:252与173的和乘以8除以2的商,积是多少? (2) 式:252加上173乘以8的积,再除以2,商是多少? (3)式:252加上173乘以8除以2,和是多少? 05 A、《数学课程标准》在学生学习数学的方式上有何? 有效的数学学习活动不能单纯的依赖模仿记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。由于学生所处的文化环境、家庭背景和自身思维方式不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。 B、举例说明整除和除尽有什么关系? 整除一定是除尽,而除尽不一定是整除。 如:8÷4=2 说8能被4整除 2÷ 因为是小数,不是自然数,只能说2能被除尽,或能除尽2,不能说整除。 07 A、《标准》要求对数学学习的评价要关注些什么? 对数学学习的评价要关注学生学习的结果,更要关注他们的学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。帮助学生认识自我、建立信心。 B、“整数改写成小数,只要在小数后面添写0就行了。”这种说法对不对?为什么? 不对。整数改写成小数,必须先在小数后面点上小数点,然后再添写0,如果不点小数点,只在整数后面添写0,就把原来的数扩大了10倍、百倍??数值就改变了。所以这种说法是错误的。 08 A、请谈谈现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。 B、在研究近似数时,为什么2和不一样?在研究近似数时,一定要注意精确到那一位。2是精确到个位,是精确到十分位;比2精确。从四舍五入法得到的近似数来考虑,2和不一样。近似数2是由不小于,小于之间的数精确到个位得到的;而近似数是由不小于,小于之间的数精确到十分位得到的;近似数的取值范围比近似数2的取值范围小,所以近似数比2更精确。 09 A、《数学课程标准》将九年的学习时间具体划分为那几个学段? 分为三个阶段:第一学段(1—3年级) 第二学段(4—6)年级 第三学段(7—9年级) B、写出关于小数的两种分类方法。 (1)按整数部分来分类:小数分为纯小数和带小数。 (2)按小数部分的位数来分类:有限小数、无限小数纯循环小数 混循环小数 不循环小数 10 A、《标准》明确了义务教育阶段数学课程的总体目标,并从四个方面作了进一步阐述,请说出这四个方面。 知识与技能;数学思考;解决问题;情感与态度。 B、教学“分数意义”时为什么要强调“平均”二字? 分数是从测量和等分中得到的,而且只有把物体分成相等的份数,才能得到确定的数。所以在教学“分数意义”时,要强调“平均” 分。分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。学生在叙述时,如果忽落了“平均”二字,也就是说学生只看到了“分”的一面,而忽落了怎样分的一面,这样表示的数可能就不是分数了。而强调“平均分”是把分数限定在“等分”这一范围中进行的,这样表示的分数才叫做分数。所以教学时,要强调“平均”二字。 11 A、请说出《标准》中刻画数学活动水平的过程性目标动词。《标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词。 B、分数与除法有什么关系? 分数与除法有以下关系:m÷n=m/n(m、n都是整数且 n≠0)分数与除法比较,分数中的分子相当于除法中的被除数,分母相等于除法中的除数,分数线相等于除号,分数值相等于除得的商。分数与除法的区别是分数是一个数,而除法是一种运算。它们是两个不同的概念。 12 A、请说出《标准》中刻画知识技能的目标动词。 《标准》中使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词。 B、质数、质因数和互质数三个概念有什么区别?(1)质数是一个数,如2是质数,7是质数。 (2)质因数虽然也指一个数,但它针对一个合数而言的。例如:7是28的质因数。 (3)互质数不是指一个数,而是指公约数只有一的两数,例如:5和7是互质数,8和9是互质数。 13 A、《标准》将学习内容分为那四个学习领域? 分为:数与代数、空间与图形、统计与概率、实践与综合应用。B、举例说明为什么一个数的各位上的数的和能被3或9整除,这个数就能被3或9整除? 下面以8235为例来说明。 8235=8000+200+30+5 =8×1000+2×100+3×10+5 =8×(999+1)+2×(99+1)+3×(9+1)+5 =8×999+8+2×99+2+3×9+3+5 =8×999+2×99+3×9+(8+2+3+5) 因为最后一步的前一部分(8×999+2×99+3×9)一定能被3(或9)整除;且与8235无关。所以说,一个数8235各位上数的和8+2+3+5,如果能被3或9整除那么这个数8235就能被3或9整除;如果不能被3或9整除,那么这个数就不能被3(或9)整除。 14 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的数感。你人为数感在教材中主要表现在哪些方面? 主要表现在:理解数的意义;能用多种方法表示数;在具体情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决而选择适当的算法;能估计运算结果,并对结果的合理性作出解释。 B、在分数和比的性质中强调0除外,为什么没有在除法商不变的性质中提出0除外? 因为在分数和比的性质中提到的是分子与分母和前项与后项都乘以或都除以相同的数(0除外),特别强调0除外,就是因为0也是数;而除法商不变的性质中提到的是被除数和除数同时扩大或同时缩小相同的倍数,商不变,倍数不能是0,因此不必提出0除外。 15 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的符号感。你认为符号感在教材中主要表现在哪些方面? 主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。B、同分母分数相加为什么分母不变,分子相加? 分数的计数单位,是把单位“1”平均分后得到的新单位;它随着分母的变化而变化。分母不同的分数,分数单位也不同;同分母分数,分数单位是相同的。分数的分子时表示分数的个数,而不表示每一分的大小,同分母分数相加,即要把几个分数单位与另几个分数单位和并在一起就是分子相加;显然分数单位没有变,即分母不变。例如:2/7+3/7=(2+3)/7 即2个1/7加上3个1/7,等于5个1/7。16 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的应用意识。你认为应用意识在教材中主要表现在哪些方面? 主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实生活中有着广泛的应用,面对实际问题时能主动尝试着从数学的角度运用所学的知识和方法寻求解决问题的策略;面对新的数学知识时,能主动的寻找实际背景,并探索其应用价值。 B、体积、容积、容量有什么异同? (1)定义不同。体积是物体所占空间的大小;容积、容量是器皿所能容纳物体的体积。 (2) 测量方法不同。计算物体的体积要从物体外面来量,计算容器的容积,容量要从容器的里面来量。如果计算容器构成物体得体积,里外两面都要量。 17 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的推理能力。你认为推理能力在课程内容中主要应表现在那些地方? 主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰地有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论与质疑。 B、侧面积与表面积有什么区别? 侧面积 表面积表面积就是指物体表面面积的大小,实际上是指物体与空气接触面的大小,侧面积是指物体侧面面积的大小。 18 A、谈谈你对《标准》知识技能目标中“灵活运用”一词的理解?能综合运用知识,灵活、合理的选择与运用有关的方法完成特定的数学任务。B、比值与化简比有什么区别? 求比值是求出前项是后项的几倍(或几分之几),方法是前项除以后项,结果是一个数值;化简比是指化成最简整数比,方法是用比的性质,结果得到一个比。 19 A、谈谈你对《标准》过程性目标中“体验”一词的理解? 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。B、下面这样求最小公倍数是否正确?为什么?2 60 18 24 3 30 9 1210 3 4 ∴60、18和24的最小公倍数是:2×3×3×10×4=720 不正确。因为用短除法求三个数的最小公倍数,必须除到三个数两两互质为止;而题中仅除到三个得数互质就停止了,这时其中的10和4两个得数还有公约数2,所以题中求的不是最小公倍数。 20 A、请简单谈谈义务教育阶段的数学学习,学生能够达到的总 目标。1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。 2、初步学会用数学思维的方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。 3、体会数学与自然及人社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。 4、具有初步的创新精神和实践能力,在情感与态度和一般能力方面都能得到充分的发展。 B、学生作业中出现“1/3+3/4=4/7”教师应如何处理? 学生出现这个错误的原因是对异分母加减法没有真正理解。这就要求教师引导学生分析1/3和3/4的分数单位不同,教学时,可以画图使学生直观地看到1/3分数单位和3/4的分数单位是不同的。因而不能直接相加减,首先要统一分数单位,统一分数单位的方法是通分;通分之后也只是把分子进行相应的加、减运算,而分母不变(即按分母加减法的法则进行计算)。 21 A、请简单说说你对“数学思考”这一课程目标的理解。 答:1、经历运用数学符号和图形描述现实世界的过程,建立初步数感和符号感,发展抽象思维。 2、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。 3、经历运用数据描述信息、作出推断的过程发展统计观念。 4、经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理的、清晰的阐述自己的观点。 B、 刚入学的小学生在写10以内的数时易犯什么样的错误?常会出现如下错误:①把上、下、左、右的位置搞错; ;②写数字的笔画不到位,拐弯处不圆滑;③笔画错误,如把8写成;④笔顺错误,如写8时,笔顺写成 ;⑤数字各部分的比例掌握的不好。 为了使学生正确的书写数字,教学时首先引导学生观察字形:①使学生认识到:0、1、2、3、6、7、8、9这些数字都是一笔写成的,4、5两个数字有两笔写成。②1、4、7是由直线条组成,3、0、6、8由直线条和曲线条组成。其次,科学的教授写数字的一般步骤:看示范书写讲笔顺,描虚线,独立书写。还可以利用口诀说明数字的形状,5像小称勾,8像麻花,6像小口哨,9像气球带飘绳?? 22 A、请简单说说你对“情感与态度”这一课程目标的理解。1、能积极参与数学学习活动,对数学又好奇心和求知欲。 2、在数学活动中获得成功体验,锻炼克服困难的意志,建立 自信心。 3、初步认识数学与人类社会的密切联系及对人类历史的发展作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。 4、形成实事求是的态度以及进行质疑和独立思考的习惯。B、在一年级讲数的组成时,为什么不能说0和几组成几?在一年级讲数的组成时,是指一个数里含有多少个自然 单位。因为0不是自然数的计数单位,且不含有计数单位,所以讲数的组成时都不包括0。 23 A、统计与概率研究的内容有哪些? “统计与概率”主要是研究现实生活中的数据和客观世界中的随机现象,它通过对数据的收集、整理、描述和分析以及对事件发生的可能性的刻画,来帮助人们做出合理的推断和预测。B、比和比分有什么区别? 比是两个数相除,当然是除数不能为0的。因此,比的后项也是不能为0的。比是指两个数的比(倍比)。 比分是指一场比赛的结果,反映胜负的得分情况。得分的后项可以是0,也可以不是0。 24 A、你如何认识《标准》中的四个学习领域之间的关系?“数与代数”、“空间与图形”、“统计与概率”三部分,是实践与综合应用的基础。“实践与综合应用”将帮助学生综合应用已有的知识和经验,经过自主探索和合作交流,解决与生活密切联系的,具有一定挑战性的综合性的问题,以发展他们解决问题的能力,加深对“数与代数”、“空间与图形”“统计与概率”内容的理解,体会各部分内容之间的联系。B、怎样教学“小数的意义”? 答:教学“小数的意义”时,大体可以从以下三个方面进行:① 通过讲解小数的产生是学生了解小数的意义。② 从小数与分数的关系来讲解。 ③从对整数和小数的数位顺序表的掌握中进一步理解小数 的意义。这里要向学生讲清: ①整数和小数的基本单位都是“1”。不论表示整数还是表示 小数个位必须表示出来。 ②各个数位的位置及小数点的作用。③各个数位的计数单位及单位间的进率关系。 25 A、新课程对教师的角色要求是多方面的。请简单谈谈教师角色的转变主要有哪些? 1、由传统的知识传授者向新课程条件下的知识传授者的变化。 2、教师成为学生的促进者。 3、教师成为研究者。 B、教学“11——20各数的认识”时,学生常把12误写成21,为了防止学生出现这种情况,你怎样处理? 在教学时,要着中强调数位的意义。可根据低年级学生的特点,把书上的方格图做成教具,通过左右两边放的方格数量来说明。另外,还要通过学生操作学具来进一步巩固数位的初步认识。 26 A、 教师是促进学生自主学习的“促进者”。请谈谈“促进者” 这种角色的特点。(1)积极的旁观。(2)给学生以心理上的支持。(3)注重培养学生的自律能力。B、怎样教学万以内数的读法和写法? 教学万以内数的读法和写法的关键是熟记数位,所以教学中一定要牢牢地把握这一关键。教学万以内数的读法和写法时,必须让学生理解数位的概念,熟记各数位的计数单位及其位置。在组织学生进行读数和写数练习时,要特别注意学生对中间和末尾有0的数的读法和写法的掌握情况,及时纠正学生出现的错误。 27 A、《标准》在内容标准中仅规定了学生在相应的学段应该达到的( )水平,同时,并不规定内容的呈现( )和( ),教材可以有多种编排方式。 基本水平;顺序;形式。B、怎样教学简单的“有余数的除法”? 这部分内容的重点是使学生掌握试商的方法,并能迅速的进行计算。以43÷5为例,学生在试商时容易出现的错误有:商7余8,也有的商9。造成这种错误的根本原因使学生对“余数一定比除数小”没有引起足够注意,因此教师在教学时,一定要反复强调并讲清“余数一定要比除数小”的道理。另外,要设计针对性强的练习题,培养学生试商的能力。 28 A、小学常用的教学方法有哪些? 1、讲授法 2、谈话法 3、讨论法 4、观察演示法 5、实验法 6、参观法 7、练习法 8、复习法 9、指导小学生自学法B、0表示没有吗?到了小学高年级关于0的教学,可以讲到什么程度? 0除了表示一个物体也没有之外,还有许多重要作用: ①表示数位。写数时如果空位,必须用0占位; ②表示起点。如直尺的刻度是从0开始的; ③表示界限。如数轴上0表示正数和负数的分界; ④表示精确度。如3和,这两个数大小相等,精确度却不同。 ⑤用于编号。如车牌号00487,这个车牌号为487,并表明最大号为五位数。 29 A选择教学方法的依据是什么? 选择教学方法应从以下几方面去考虑:1、从教学内容出发。2、从学生的年龄特点和实际出发。3、从教室的教学特点和经验出发。B、教学时怎样帮助学生建立和理解好单位“1”?教学时要抓住以下四个环节: ① 通过实例说明单位“1”是可分的任何事物,它不仅可以表 示一个东西,一个计量单位,也可以表示一个物体。 ②单位“1”中的数量可以使任意的。 ③结合教材中的集合图,让学生进一步明确,用分数表示的部分与单位“1”的关系,说明单位“1”和部分是可以转化的,关键是看把谁看作单位“1”。 ④让学生进行找单位“1”的练习。 30 A、教学工作的全过程包括那几个环节: 教学工作的全过程包括五个环节:即:一、备课;二、 上课;三、课外作业的布置与评改;四、课外辅导;五、成绩的考核与评定。B、红星村修一条公路,原计划每天修20米,30天修完,结果提前6天完成,实际平均每天修多少米? 一名学生是这样例方程解答的: 解:设实际平均每天修X米,根据题意得: X=20×30÷(30-6) X=600÷24 X=25 你如何评价? 用方程解题。从思维角度说,能起到化难为易的作用, 但是,如果仅将“X=”放在一个算术式子的一边,使其成为形式上的方程,实质上还是用算术解法,这样不但没有发挥方程解题的优势,而且还会使本来较繁的算术解法,再添一些麻烦。教学时必须引导学生寻找其它解法,不能简单的一说了事。

数学情境教学论文答辩问题

小学数学答辩题及参考答案 01 A、义务教育阶段数学课程的基本出发点是什么? 基本出发点是促进学生全面、持续、和谐的发展。B、数和数字有什么不同? 用来记数的符号叫做数字。常用的数字有四种:阿拉伯数字、中国小写数字、中国大写数字、罗马数字。现在国际通用的数字是阿拉伯数字,他共有以下十个:1、2、3、4、5、6、7、8、9、0。数是由数字组成的。在用位置原则计数时数是有十个数字中的一个或几个根据位置原则排列起来,表示事物的个数或次序。数字是构成数的基础,配上其他一些数字符号,可以表示各种各样的数。 02 A、《标准》明确指出:学习数学不仅要考虑数学自身的特点,更应遵循什么? 更应遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲生经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获的对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进一步的发展。 B、分析并解答下面的文字题 105减去78的差乘15,积是多少? 可以从问题入手分析,要求“积是多少”就要知道两个因数,一个因数15,另一个因数是105减去78的差,所以现求差后求积,即:(105-78)×15 03 A、 请你谈谈义务教育阶段的数学课程应突出体现什么? 义务教育阶段的数学课程应突出的体现基础性、普及和发展性,使数学教育面向全体学生,实现: ??人人学有价值的数学; ??人人都能活的必需的数学; ??不同的人在数学上得到不同的发展。 B、下面各题的商是几位数,确定上的位数有什么规律?(除数是一位数的除法) 2016÷4 7035÷5 4543÷8 90180÷9 上面各题的商依次是三位数、四位数、三位数、五位数。根据除法法则可找出如下规律:一位数除多位数,如果被除数的前一位小于除数,那么商的位数就比被除数少一。如果被除数的前一位大于或等于除数,那么商的位数就和被除数同样多。 04 A、《数学课程标准》在学生的数学学习内容上有何要求? 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现方式应采用不同的表达方式,以满足多样化的学习要求。 B、根据下面的文字题,从下面各式中选出正确算式,并将其余的算式正确的叙述出来。 252与173的和乘以8,再除以2,商是多少? (1)(252+173)×(8÷2) (2)(2)(252+173×8)÷2 (3)(3)(252+173)×8÷2 (4)(4)252+173×8÷2(5)(3)式正确 (1) 式:252与173的和乘以8除以2的商,积是多少? (2) 式:252加上173乘以8的积,再除以2,商是多少? (3)式:252加上173乘以8除以2,和是多少? 05 A、《数学课程标准》在学生学习数学的方式上有何? 有效的数学学习活动不能单纯的依赖模仿记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。由于学生所处的文化环境、家庭背景和自身思维方式不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。 B、举例说明整除和除尽有什么关系? 整除一定是除尽,而除尽不一定是整除。 如:8÷4=2 说8能被4整除 2÷ 因为是小数,不是自然数,只能说2能被除尽,或能除尽2,不能说整除。 07 A、《标准》要求对数学学习的评价要关注些什么? 对数学学习的评价要关注学生学习的结果,更要关注他们的学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。帮助学生认识自我、建立信心。 B、“整数改写成小数,只要在小数后面添写0就行了。”这种说法对不对?为什么? 不对。整数改写成小数,必须先在小数后面点上小数点,然后再添写0,如果不点小数点,只在整数后面添写0,就把原来的数扩大了10倍、百倍??数值就改变了。所以这种说法是错误的。 08 A、请谈谈现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。 B、在研究近似数时,为什么2和不一样?在研究近似数时,一定要注意精确到那一位。2是精确到个位,是精确到十分位;比2精确。从四舍五入法得到的近似数来考虑,2和不一样。近似数2是由不小于,小于之间的数精确到个位得到的;而近似数是由不小于,小于之间的数精确到十分位得到的;近似数的取值范围比近似数2的取值范围小,所以近似数比2更精确。 09 A、《数学课程标准》将九年的学习时间具体划分为那几个学段? 分为三个阶段:第一学段(1—3年级) 第二学段(4—6)年级 第三学段(7—9年级) B、写出关于小数的两种分类方法。 (1)按整数部分来分类:小数分为纯小数和带小数。 (2)按小数部分的位数来分类:有限小数、无限小数纯循环小数 混循环小数 不循环小数 10 A、《标准》明确了义务教育阶段数学课程的总体目标,并从四个方面作了进一步阐述,请说出这四个方面。 知识与技能;数学思考;解决问题;情感与态度。 B、教学“分数意义”时为什么要强调“平均”二字? 分数是从测量和等分中得到的,而且只有把物体分成相等的份数,才能得到确定的数。所以在教学“分数意义”时,要强调“平均” 分。分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。学生在叙述时,如果忽落了“平均”二字,也就是说学生只看到了“分”的一面,而忽落了怎样分的一面,这样表示的数可能就不是分数了。而强调“平均分”是把分数限定在“等分”这一范围中进行的,这样表示的分数才叫做分数。所以教学时,要强调“平均”二字。 11 A、请说出《标准》中刻画数学活动水平的过程性目标动词。《标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词。 B、分数与除法有什么关系? 分数与除法有以下关系:m÷n=m/n(m、n都是整数且 n≠0)分数与除法比较,分数中的分子相当于除法中的被除数,分母相等于除法中的除数,分数线相等于除号,分数值相等于除得的商。分数与除法的区别是分数是一个数,而除法是一种运算。它们是两个不同的概念。 12 A、请说出《标准》中刻画知识技能的目标动词。 《标准》中使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词。 B、质数、质因数和互质数三个概念有什么区别?(1)质数是一个数,如2是质数,7是质数。 (2)质因数虽然也指一个数,但它针对一个合数而言的。例如:7是28的质因数。 (3)互质数不是指一个数,而是指公约数只有一的两数,例如:5和7是互质数,8和9是互质数。 13 A、《标准》将学习内容分为那四个学习领域? 分为:数与代数、空间与图形、统计与概率、实践与综合应用。B、举例说明为什么一个数的各位上的数的和能被3或9整除,这个数就能被3或9整除? 下面以8235为例来说明。 8235=8000+200+30+5 =8×1000+2×100+3×10+5 =8×(999+1)+2×(99+1)+3×(9+1)+5 =8×999+8+2×99+2+3×9+3+5 =8×999+2×99+3×9+(8+2+3+5) 因为最后一步的前一部分(8×999+2×99+3×9)一定能被3(或9)整除;且与8235无关。所以说,一个数8235各位上数的和8+2+3+5,如果能被3或9整除那么这个数8235就能被3或9整除;如果不能被3或9整除,那么这个数就不能被3(或9)整除。 14 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的数感。你人为数感在教材中主要表现在哪些方面? 主要表现在:理解数的意义;能用多种方法表示数;在具体情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决而选择适当的算法;能估计运算结果,并对结果的合理性作出解释。 B、在分数和比的性质中强调0除外,为什么没有在除法商不变的性质中提出0除外? 因为在分数和比的性质中提到的是分子与分母和前项与后项都乘以或都除以相同的数(0除外),特别强调0除外,就是因为0也是数;而除法商不变的性质中提到的是被除数和除数同时扩大或同时缩小相同的倍数,商不变,倍数不能是0,因此不必提出0除外。 15 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的符号感。你认为符号感在教材中主要表现在哪些方面? 主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。B、同分母分数相加为什么分母不变,分子相加? 分数的计数单位,是把单位“1”平均分后得到的新单位;它随着分母的变化而变化。分母不同的分数,分数单位也不同;同分母分数,分数单位是相同的。分数的分子时表示分数的个数,而不表示每一分的大小,同分母分数相加,即要把几个分数单位与另几个分数单位和并在一起就是分子相加;显然分数单位没有变,即分母不变。例如:2/7+3/7=(2+3)/7 即2个1/7加上3个1/7,等于5个1/7。16 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的应用意识。你认为应用意识在教材中主要表现在哪些方面? 主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实生活中有着广泛的应用,面对实际问题时能主动尝试着从数学的角度运用所学的知识和方法寻求解决问题的策略;面对新的数学知识时,能主动的寻找实际背景,并探索其应用价值。 B、体积、容积、容量有什么异同? (1)定义不同。体积是物体所占空间的大小;容积、容量是器皿所能容纳物体的体积。 (2) 测量方法不同。计算物体的体积要从物体外面来量,计算容器的容积,容量要从容器的里面来量。如果计算容器构成物体得体积,里外两面都要量。 17 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的推理能力。你认为推理能力在课程内容中主要应表现在那些地方? 主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰地有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论与质疑。 B、侧面积与表面积有什么区别? 侧面积 表面积表面积就是指物体表面面积的大小,实际上是指物体与空气接触面的大小,侧面积是指物体侧面面积的大小。 18 A、谈谈你对《标准》知识技能目标中“灵活运用”一词的理解?能综合运用知识,灵活、合理的选择与运用有关的方法完成特定的数学任务。B、比值与化简比有什么区别? 求比值是求出前项是后项的几倍(或几分之几),方法是前项除以后项,结果是一个数值;化简比是指化成最简整数比,方法是用比的性质,结果得到一个比。 19 A、谈谈你对《标准》过程性目标中“体验”一词的理解? 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。B、下面这样求最小公倍数是否正确?为什么?2 60 18 24 3 30 9 1210 3 4 ∴60、18和24的最小公倍数是:2×3×3×10×4=720 不正确。因为用短除法求三个数的最小公倍数,必须除到三个数两两互质为止;而题中仅除到三个得数互质就停止了,这时其中的10和4两个得数还有公约数2,所以题中求的不是最小公倍数。 20 A、请简单谈谈义务教育阶段的数学学习,学生能够达到的总 目标。1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。 2、初步学会用数学思维的方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。 3、体会数学与自然及人社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。 4、具有初步的创新精神和实践能力,在情感与态度和一般能力方面都能得到充分的发展。 B、学生作业中出现“1/3+3/4=4/7”教师应如何处理? 学生出现这个错误的原因是对异分母加减法没有真正理解。这就要求教师引导学生分析1/3和3/4的分数单位不同,教学时,可以画图使学生直观地看到1/3分数单位和3/4的分数单位是不同的。因而不能直接相加减,首先要统一分数单位,统一分数单位的方法是通分;通分之后也只是把分子进行相应的加、减运算,而分母不变(即按分母加减法的法则进行计算)。 21 A、请简单说说你对“数学思考”这一课程目标的理解。 答:1、经历运用数学符号和图形描述现实世界的过程,建立初步数感和符号感,发展抽象思维。 2、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。 3、经历运用数据描述信息、作出推断的过程发展统计观念。 4、经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理的、清晰的阐述自己的观点。 B、 刚入学的小学生在写10以内的数时易犯什么样的错误?常会出现如下错误:①把上、下、左、右的位置搞错; ;②写数字的笔画不到位,拐弯处不圆滑;③笔画错误,如把8写成;④笔顺错误,如写8时,笔顺写成 ;⑤数字各部分的比例掌握的不好。 为了使学生正确的书写数字,教学时首先引导学生观察字形:①使学生认识到:0、1、2、3、6、7、8、9这些数字都是一笔写成的,4、5两个数字有两笔写成。②1、4、7是由直线条组成,3、0、6、8由直线条和曲线条组成。其次,科学的教授写数字的一般步骤:看示范书写讲笔顺,描虚线,独立书写。还可以利用口诀说明数字的形状,5像小称勾,8像麻花,6像小口哨,9像气球带飘绳?? 22 A、请简单说说你对“情感与态度”这一课程目标的理解。1、能积极参与数学学习活动,对数学又好奇心和求知欲。 2、在数学活动中获得成功体验,锻炼克服困难的意志,建立 自信心。 3、初步认识数学与人类社会的密切联系及对人类历史的发展作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。 4、形成实事求是的态度以及进行质疑和独立思考的习惯。B、在一年级讲数的组成时,为什么不能说0和几组成几?在一年级讲数的组成时,是指一个数里含有多少个自然 单位。因为0不是自然数的计数单位,且不含有计数单位,所以讲数的组成时都不包括0。 23 A、统计与概率研究的内容有哪些? “统计与概率”主要是研究现实生活中的数据和客观世界中的随机现象,它通过对数据的收集、整理、描述和分析以及对事件发生的可能性的刻画,来帮助人们做出合理的推断和预测。B、比和比分有什么区别? 比是两个数相除,当然是除数不能为0的。因此,比的后项也是不能为0的。比是指两个数的比(倍比)。 比分是指一场比赛的结果,反映胜负的得分情况。得分的后项可以是0,也可以不是0。 24 A、你如何认识《标准》中的四个学习领域之间的关系?“数与代数”、“空间与图形”、“统计与概率”三部分,是实践与综合应用的基础。“实践与综合应用”将帮助学生综合应用已有的知识和经验,经过自主探索和合作交流,解决与生活密切联系的,具有一定挑战性的综合性的问题,以发展他们解决问题的能力,加深对“数与代数”、“空间与图形”“统计与概率”内容的理解,体会各部分内容之间的联系。B、怎样教学“小数的意义”? 答:教学“小数的意义”时,大体可以从以下三个方面进行:① 通过讲解小数的产生是学生了解小数的意义。② 从小数与分数的关系来讲解。 ③从对整数和小数的数位顺序表的掌握中进一步理解小数 的意义。这里要向学生讲清: ①整数和小数的基本单位都是“1”。不论表示整数还是表示 小数个位必须表示出来。 ②各个数位的位置及小数点的作用。③各个数位的计数单位及单位间的进率关系。 25 A、新课程对教师的角色要求是多方面的。请简单谈谈教师角色的转变主要有哪些? 1、由传统的知识传授者向新课程条件下的知识传授者的变化。 2、教师成为学生的促进者。 3、教师成为研究者。 B、教学“11——20各数的认识”时,学生常把12误写成21,为了防止学生出现这种情况,你怎样处理? 在教学时,要着中强调数位的意义。可根据低年级学生的特点,把书上的方格图做成教具,通过左右两边放的方格数量来说明。另外,还要通过学生操作学具来进一步巩固数位的初步认识。 26 A、 教师是促进学生自主学习的“促进者”。请谈谈“促进者” 这种角色的特点。(1)积极的旁观。(2)给学生以心理上的支持。(3)注重培养学生的自律能力。B、怎样教学万以内数的读法和写法? 教学万以内数的读法和写法的关键是熟记数位,所以教学中一定要牢牢地把握这一关键。教学万以内数的读法和写法时,必须让学生理解数位的概念,熟记各数位的计数单位及其位置。在组织学生进行读数和写数练习时,要特别注意学生对中间和末尾有0的数的读法和写法的掌握情况,及时纠正学生出现的错误。 27 A、《标准》在内容标准中仅规定了学生在相应的学段应该达到的( )水平,同时,并不规定内容的呈现( )和( ),教材可以有多种编排方式。 基本水平;顺序;形式。B、怎样教学简单的“有余数的除法”? 这部分内容的重点是使学生掌握试商的方法,并能迅速的进行计算。以43÷5为例,学生在试商时容易出现的错误有:商7余8,也有的商9。造成这种错误的根本原因使学生对“余数一定比除数小”没有引起足够注意,因此教师在教学时,一定要反复强调并讲清“余数一定要比除数小”的道理。另外,要设计针对性强的练习题,培养学生试商的能力。 28 A、小学常用的教学方法有哪些? 1、讲授法 2、谈话法 3、讨论法 4、观察演示法 5、实验法 6、参观法 7、练习法 8、复习法 9、指导小学生自学法B、0表示没有吗?到了小学高年级关于0的教学,可以讲到什么程度? 0除了表示一个物体也没有之外,还有许多重要作用: ①表示数位。写数时如果空位,必须用0占位; ②表示起点。如直尺的刻度是从0开始的; ③表示界限。如数轴上0表示正数和负数的分界; ④表示精确度。如3和,这两个数大小相等,精确度却不同。 ⑤用于编号。如车牌号00487,这个车牌号为487,并表明最大号为五位数。 29 A选择教学方法的依据是什么? 选择教学方法应从以下几方面去考虑:1、从教学内容出发。2、从学生的年龄特点和实际出发。3、从教室的教学特点和经验出发。B、教学时怎样帮助学生建立和理解好单位“1”?教学时要抓住以下四个环节: ① 通过实例说明单位“1”是可分的任何事物,它不仅可以表 示一个东西,一个计量单位,也可以表示一个物体。 ②单位“1”中的数量可以使任意的。 ③结合教材中的集合图,让学生进一步明确,用分数表示的部分与单位“1”的关系,说明单位“1”和部分是可以转化的,关键是看把谁看作单位“1”。 ④让学生进行找单位“1”的练习。 30 A、教学工作的全过程包括那几个环节: 教学工作的全过程包括五个环节:即:一、备课;二、 上课;三、课外作业的布置与评改;四、课外辅导;五、成绩的考核与评定。B、红星村修一条公路,原计划每天修20米,30天修完,结果提前6天完成,实际平均每天修多少米? 一名学生是这样例方程解答的: 解:设实际平均每天修X米,根据题意得: X=20×30÷(30-6) X=600÷24 X=25 你如何评价? 用方程解题。从思维角度说,能起到化难为易的作用, 但是,如果仅将“X=”放在一个算术式子的一边,使其成为形式上的方程,实质上还是用算术解法,这样不但没有发挥方程解题的优势,而且还会使本来较繁的算术解法,再添一些麻烦。教学时必须引导学生寻找其它解法,不能简单的一说了事。

数学建模一般来说没有标准答案,建模发挥空间比较大;答辩的问题主要集中在你建模的思想及逻辑推理性,也就是说怎样证明你建的模型是最优的,另也有可能问到一些你建模里没有考虑清楚或说明清楚的问题,当然如果你的逻辑推理性很强,假设又合理,我想是没有什么问题可难到你的,祝你成功!

问你思路。注意:不会的地方就不要提,老师抓你的小辫子,问死你

不能紧张,一定要口齿清晰!!!

小学数学情境教学论文答辩题目

为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人改革课堂教学的着力点谈素质教育在小学数学教学中的实施素质教育与小学数学教育改革浅谈学生数学思维能力的培养浅议表象积累与培养学生的思维能力也谈学生创新意识培养实施创新教学策略 培养学生创新意识10以内加法整理和复习改良“有余数除法计算”教法给学生创新的时间和空间和谐愉悦 主动探索——一年级《统计》教学片断评析小学数学教育--教师之家--教师培训教学策略A、B、C面向21世纪的数学素质及其培养能被3整除的数的特征年、月、日培养自学能力 推进素质教育浅谈小学数学总复习的“步步反馈,逐层提高”法入情才能入理 激情方能启思实施“生活数学”教育 培养自主创新能力数学作业批改中巧用评语提高元认知水平 培养自学能力“圆的面积”的教案圆柱的认识运用多媒体辅助教学 优化数学教学方法组织课堂讨论 优化课堂教学

新颖的数学论文题目有:

1、数学模型在解决实际问题中的作用。

2、中学数学中不等式的证明。

3、组合数学与中学数学。

4、构造方法在数学解题中的应用。

5、高中新教材中数学教学方法探讨。

6、组合数学恒等式的证明方法。

7、浅谈中学数学教育。

8、浅谈中学不等式的几何证明方法。

9、数学教育中学生创造性思维能力的培养。

10、高等数学在初等数学中的应用。

11、向量在几何中的应用。

12、情境认识在数学教学中的应用。

13、高中数学应用题的编制和一些解题方法。

14、浅谈反证法在中学教学中的应用。

15、探索证明线段相等的方法。

16、几个带参数的二阶边界值问题的正解的存在性研究。

17、关于丢番图方程1+x+y=z的一类特殊情况的研究。

18、变限积分函数的性质及应用。

19、有限集上函数的迭代及其应用。

20、小学课堂环境改着的行动研究。

21、网络环境下小学数学主题教学模式应用研究。

22、培养小学生数学学习兴趣的教学策略研究。

23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。

24、小学生数学创新思维的培养。

25、促进小学生数学课堂参与的数学策略研究。

26、使学生真正成为学习的主人。

27、改革课堂教学的着力点。

28、谈素质教育在小学数学教学中的实施。

29、素质教育与小学数学教育改革。

30、浅谈学生数学思维能力的培养。

ir parents-in-law, a

激发和培养学生的学习兴趣,使他们养成锲而不舍的钻研精神和科学态度,是新课程提出的一项重要目标。心理学家布鲁纳认为:“学习的最好刺激乃是对其所学材料的兴趣。”教学的成功与否,在很大程度上取决于学生的学习兴趣。兴趣并非生来就有的,而是在学习生活中逐步培养起来的。教材是培养学生学习兴趣的第一手材料。因此,如何激发学生的学习兴趣是教学中非常重要的一环。一、创设导入情境,激发学习兴趣良好的教学情境,使学生以纯真的情感主动参与教学过程,使整个课堂成为一个多方向的感染场所,让学生在这样的情境中,带着自己的内心感受和情感去观察、去想象、去理解、去掌握,有利于优化课堂教学,提高教学效率,减轻学生的学习负担。如在教学“周长的认识”一课时,我先给学生们介绍了一个老朋友———叮当猫,并向大家讲述了这样一个故事:“一天,叮当猫和它的主人去郊游,可是它的主人突然病了,叮当猫必须在最短的时间内把它的主人送到医院,但是有两条路可走,叮当猫却不知道该选择哪一条路。叮当猫非常着急,你能帮帮它吗?”我追问“:走哪条路呢?跟什么有关呀?”学生想到了周长。“那么,什么是周长呢?”学生立刻进入了思考状态。创设这样的情境,激起了学生对叮当猫的同情,大家都想帮一帮叮当猫,这就激起了学生探究的欲望。二、鼓励大胆质疑,促进学习兴趣“学起于思,思缘于疑。”有疑点,才有思考创新。教师要有目的地引导学生设疑、释疑,使学生的思维始终处于一种积极的探索状态。如教学“可能性”时,我先让学生做一个“摸球”的游戏,分别出示三个纸盒,A纸盒内装的全是红球;B纸盒内装着红球和黄球;C纸盒内装着黄球和蓝球,并让学生猜一猜从每个纸盒内摸球的情况。学生在猜想的基础上,提出质疑“为什么从三个纸盒内摸球的情况都不一样呢”“为什么从A纸盒内摸出的球都是红球,而从C纸盒内却摸不出红球呢”等等。这样教师就很自然地引入新课,点燃学生思维的火花,使之产生好奇,由好奇引发需要,由需要而积极思考,进而不断地去发现问题、提出问题。三、注重动手操作,唤起学习兴趣俗话说“:兴趣是最好的老师。”成功的教学首先要激发学生的学习兴趣,而动手操作最能激发学生的探索兴趣,激发学习新知的欲望,促使学生进入最佳学习状态。如在教学“长方体和正方体的认识”时,主要是让学生掌握理解长方体、正方体的特征,教师可以在课前布置学生人人动手做长方体和正方体各一个。课间,教师让学生小组合作动手给准备好的苹果切出一个平面,再用小手摸一摸切的面,使学生真正认识了物体的面。然后,教师又让学生在第一个面的旁边再切一个面,这样两个面之间就有一条相交的线,这条线就叫做棱。而后,教师又让学生在两个面的另一端再切一个面,形成三个面相交。这样就得到三条棱并相交于一个点,这个点叫做顶点。通过这样的操作,引导学生初步认识了面、棱、顶点。教师再引导学生观察长方体和正方体的教具、学具,接着让学生小组合作讨论并动手摸一摸有关长方体和正方体的面、棱、顶各有多少,各自之间有什么特点和关系。最后,教师引导学生通过观察图形,口头归纳叙述长方体和正方体的特征。这样学生通过自己动手操作,仔细观察,积极思考讨论,从而得出了长方体和正方体的特征,能真正清楚地认识、理解所学知识,促进了学生由形象思维到抽象思维的主动发展。四、联系生活实际,培养学习兴趣从学生的认知经验和生活背景出发,积极探索数学知识与学生生活经验有机联系的切入点,创设生活情境,让学生根据各自的生活经验,亲自体验、解决数学问题,这是激发学生学习数学的兴趣和调动学生积极参与的有效方法。例如,在教学“认识人民币”一课时,教师出示一个储蓄罐,让学生看实物猜价格。教师调动学生的学习趣,说:“小朋友看老师给你们带来了什么好东西!”(出示储蓄罐)学生非常兴奋地说:“储蓄罐。”教师做出非常神秘的样子,说:“想知道买这个漂亮的储蓄罐要用多少钱吗?”学生急切地回答:“想!”教师非常俏皮地说:“猜猜看。”学生情绪高涨地猜起来“:2元。”“太便宜了,买不来的。”教师摇摇头说。“30元。”一个学生迫不及待地嚷出。教师非常惊讶地说:“太贵了!如果以这个价卖给你,那我可赚多了。”……就这样,师生一起在猜价的游戏中不知不觉地学到了数学知识。五、巧设课堂练习,增强学习兴趣练习是课堂教学的重要组成部分,是知识形成技能的一种基本的活动方式,是培养学生能力的一种重要手段。课堂练习设计得好,不仅能巩固新知识,发展学生思维,促进知能转化,而且可以增强学生的学习兴趣。因此,教师在教学中要注重练习形式的多样化,要面向全体,做到人人都能得到巩固新知识的机会。六、亮出精彩结尾,保持学习兴趣教师应根据教学内容的特点和学生实际,精心设计形式多样、新颖活泼、精彩有趣的课堂结尾,让数学课堂结尾如美妙的音乐般耐人寻味,达到“课虽终,趣犹存”的良好效果。总之,学习兴趣是学生学习数学的营养剂和催化剂,教师只有在教学过程中千方百计地激发学生的学习兴趣,愉悦学生的身心,活跃课堂气氛,使学生的学习信心得到了培养和提高,才能达到事半功倍的效果。

小学数学情感教育论文答辩题目

小学数学课题研究最佳题目数学核心素养下农村小学高年级学生运算能力培养的研究小学数学大班额背景下小组合作学习的有效性研究小学数学教学中培养学生动手实践能力及其评价方式的研究以“智慧放手”的教学特色培养小学生合作学习能力的研究基于核心素养下的小学低年级数学评价模式研究小学生空间观念和几何直观的培养与评价研究核心素养背景下小学数学整理和复习课的研究优化小学数学课堂教学方式的实践研究基于读懂学生错误培养学生反思能力的实践研究依托综合与实践活动教学提升小学生数学素养的研究在小学数学“数与代数”领域开展游戏化教学的实践研究小学数学中培养学生几何直观能力的研究小学数学课堂教学与现代教育技术融合实验与研究小学数学教学中建立模型思想的策略与方法研究基于发展学生核心素养的小学数学作业设计有效性的研究小学中年级数学课堂提问有效性的研究小学数学小组合作学习有效性的研究小学数学课堂教学与信息技术整合的研究优化小学数学教学有效性的策略研究

很多小学 教育 论文的题目偏离了教育硕士学位论文的基本要求,选题的实践性不强,研究对象过于宽泛。那小学教育的论文要怎么选题呢?下面是我带来的小学教育论文题目的内容,欢迎阅读参考! 小学教育论文题目(一) 1. “概率统计思想”教育对培养小学生数学能力的影响 2. 小学教育专业教育实习存在问题与解决对策探讨 3. 海峡两岸小学段“统计与概率”的比较研究 4. 生命教育呼唤对话教育 5. 关于小学校园 安全教育 问题的若干思考 6. Authorware和PowerPoint的比较 7. 教师在小学习作教学中的角色浅析 8. 厦门市小学英语教师教学能力调查研究 9. 电子档案袋在小学评价中的应用 10. 浅析小学生收集和处理信息能力培养 11. 大学生主观幸福感现状调查及相关因素研究 12. 传统教学与网络教学的比较研究 13. 浅谈档案袋评价在小学英语教学中的应用 14. 高等教育质量观述评 15. 学校管理中决策的民主化和科学化研究 16. 初探新课改下的 家庭教育 与小学生厌学的关系 17. 小学语文教师“口语交际”课专业素养问题初探 小学教育论文题目(二) 1. 小学英语快乐教学的误区及其原因探讨 2. 晏阳初的平民教学观及其当代价值 3. 中美两国小学教育专业(本科) 教学 方法 之比较与思考 4. 课堂教学有效提问的策略研究 5. 美国小学教育专业硕士课程方案的分析与思考 6. 从《卖火柴的小女孩》看小学童话教学的审美教育 7. 新课程背景下小学校长的用人艺术研究 8. 中小学科学教育人 文化 的思考 9. 小学教师指导研究性学习能力的研究 10. 现代小学青年教师心理健康问题的研究 11. 创建个性化语文教育 12. 新课程与小学生学习方式的变革 13. 浅谈小学生创新能力的培养 14. 浅谈新理念下的课堂教学 15. 小学数学与信息技术的整合 16. 课堂的问题与处理 17. 创新思维 在语文教学中的培养 小学教育论文题目(三) 1. 论小学语文教育的人文教育功能 2. 论小学语文教育的情感教育功能 3. 论小学语文教育中的 传统文化 教育 4. 小学语文教育中审美问题探讨 5. 行走在“大语文”教育之路上——小学语文教育教学再思考 6. 论语文教学中常见的五种偏向 7. 小学语文教学的误区与 反思 8. 让 儿童 生活在思考的世界里——谈小学语文教学中的思维品质训练 9. 农村小学语文课堂教学存在的问题及改进策略 10. 如何在小学语文教学中激发学生的学习兴趣 猜你喜欢: 1. 关于小学教育的论文题目 2. 小学教师职称论文题目 3. 浅谈小学教育的论文 4. 有关小学教育方向毕业论文 5. 小学语文教师论文题目大全 6. 关于小学数学教育毕业论文题目

这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地

学术堂整理了十个毕业论文题目供大家进行参考:1、小学数学教师几何知识掌握状况的调查研究2、小学数学教师教材知识发展情况研究3、中日小学数学“数与代数”领域比较研究4、浙江省Y县县域内小学数学教学质量差异研究5、小学数学教师教科书解读的影响因素及调控策略研究6、中国、新加坡小学数学新课程的比较研究7、小学数学探究式教学的实践研究8、基于教育游戏的小学数学教学设计研究9、小学数学教学中创设有效问题情境的策略研究10、小学数学生活化教学的研究

小学数学教学方法论文答辩

ir parents-in-law, a

培养学生良好的学习习惯 学习习惯对学生的学习有直接的影响,良好学习习惯是促进学生取得较好学习成绩的重要因素。结合数学教学,培养良好的习惯,包括哪些内容呢?在教学过程中,要注意培养学生认真、严格、刻苦钻研的学习态度

数学的美著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,也许美在她是探求世间现象规律的出发点,也许美在她用几个字母符号就能表示若干信息的简单明了,也许美在她大胆假设和严格论证的伟大结合,也许美在她对一个问题论证时殊途同归的奇妙感受,也许美在数学家耗尽终生论证定理的锲而不舍,也许美在她在几乎所有学科中的广泛应用。 而美的数学,在自古崇尚诗书传世的中国,竟也浸染着扑鼻的书香。中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样颜色,这就是数学的文采。自然美 刘勰《文心雕龙》以为文章之可贵,在尚自然。文章是反映生活的一面镜子,脱离生活的文学是空洞的,没有任何用处。数学也是这样。 数学存在的意义,在于理性地揭示自然界的一些现象规律,帮助人们认识自然,改造自然。可以这样说,数学是取诸生活而用诸生活的。数学最早的起源,大概来自古代人们的结绳记事,一个一个的绳扣,把数学的根和生活从一开始就牢牢地系在了一起。后来出现的记数法,是牲畜养殖或商品买卖的需要,古代的几何学产生,是为了丈量土地。中国古代的众多数学著作(如:《九章算术》)中,几乎全是对于某个具体问题的探究和推广。 在中国,数学源于生活,在外国,历代数学家也都宗法自然。阿基米德的数学成果,都用于当时的军事、建筑、工程等众多科学领域,牛顿见物象而思数学之所出,即有微积分的创作。费尔玛和尤拉对变分法的开创性发明也是由探索自然界的现象而引起的。简洁美世事再纷繁,加减乘除算尽;宇宙虽广大,点线面体包完。这首诗,用字不多,却到位地概括出了数学的简洁明了,微言大义。数学和诗歌一样,有着独特的简洁美。诗歌的简洁,众所周知——着寥寥几字,却为读者创造出了广阔的想象空间,这大概正是诗歌的魅力所在。 美国著名心理学家L?布隆菲尔德(L.Bloonfield)说:“数学是语言所能达到的最高境界。”如果说,诗歌的简洁,是写意的,是欲言还休的,是中国水墨画中的留白,那么数学语言的微言大义,则是写实的,是简洁精确、抽象规范的,是严谨的科学态度的体现。数学的简洁,不仅使人们更快、更准确地把握理论的精髓,促进自身学科的发展,也使数学学科具有了很强的通用性。目前,数学作为自然科学的语言和工具,已经成了所有科学———包括社会科学在内的语言和工具。 最为典型的例子,莫过于二进制在计算机领域的的应用。试想,任何一个复杂的指令,都被译做明确的01数字串,这是多么伟大的一个构想。可以说,没有数学的简化,就没有现在这个互联网四通八达、信息技术飞速发展的时代。对称美 中国的文学讲究对称,这点可以从历时百年的楹联文化中窥见一斑。而更胜一筹的对称,就是回文了。苏轼有一首著名的七律《游金山寺》,便是这方面的上乘之作:《游金山寺》 潮随暗浪雪山倾,远浦渔舟钓月明。/桥对寺门松径小,槛当泉眼石波清。/迢迢绿树江天晓,霭霭红霞晚日晴。/遥望四边云接水,碧峰千点数鸥轻。 不难看出,把它倒转过来,仍然是一首完整的七律诗: 轻鸥数点千峰碧,水接云边四望遥。/晴日晚霞红霭霭,晓天江树绿迢迢。/清波石眼泉当槛,小径松门寺对桥。/明月钓舟渔浦远,倾山雪浪暗随潮。 这首回文诗无论是顺读或倒读,都是情景交融、清新可读的好诗。类似的又如“香莲碧水动风凉,水动风凉夏日长。长日夏凉风动水,凉风动水碧莲香”。这些诗凭着精巧的构思,给人以奇妙的感受,每每读之,读者都会暗自叫绝。而数学中,也不乏这样的回文现象,如:12×12=144,21×21=441;13×13=169,31×31=961;102×102=10404,201×201=40401;103×103=10609,301×301=90601;9+5+4=8+7+3,92+52+42=82+72+32。 而数学中更为一般的对称,则体现在函数图象的对称性和几何图形上。前者给我们探求函数的性质提供了方便,后者则运用在建筑、美术领域后给人以无穷的美感。悬念美 文学中的小说以设置悬念见长,在开头先抛出一个引人入胜的画面、出人意表的事件、叫人揪心的矛盾、令人关注的悬念、发人深省的问题,然后一步步去描写、讲述、展开、解答、思考;或者在最后留下一个无结局、无论断、无答案、无终点的结尾,让读者自己去想象、去求证、去追问、去体验。照米兰?昆德拉的说法:小说家的才智就是把一切肯定变成疑问,教读者把世界当成问题来理解。 这种现象,在数学中绝非少见。许多数学问题都是从一个看不出任何端倪的方程式开始,运用各种方法,一步步求解,最终得出一个清楚明白的结论。而数学的乐趣,在于人们抱着探求事实真相的态度,满怀好奇的求解过程和最终真相大白时的快感。这一点,和人们读悬疑小说所产生的感觉是相似的,难怪有人说,世界本身就是个未知数,而文学本身就是探索世界之谜的方程式。意象美诗与数学之间最深刻的关系莫过于数学概念或意象(imagery)与诗歌的结合。七八个星天外,两三点雨山前。(辛弃疾)一去二三里,烟村四五家。亭台六七座,八九十枝花。(邵雍)一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋。(纪晓岚)一别之后,二地相悬,只说是三四月,又谁知五六年,七弦琴无心抚弹,八行书无信可传,九连环从中折断,十里长亭我眼望穿,百思想,千系念,万般无奈叫丫环。万语千言把郎怨,百无聊赖,十依阑干,九九重阳看孤雁,八月中秋月圆人不圆,七月半烧香点烛祭祖问苍天,六月伏天人人摇扇我心寒,五月石榴如火偏遇阵阵冷雨浇花端,四月枇杷未黄我梳妆懒,三月桃花又被风吹散!郎呀郎,巴不得二一世你为女来我为男。(卓文君) 读上面这些诗,每个人都能明显感到,诗的意境全来自那几个数词,无论是数词的单个应用,重复引用,抑或是循环使用,看似毫无感染力的数词竟也都能表现出或寂寥,或欣然,或恬淡,或伤感的思想感情。 在外国,中世纪欧洲两个最伟大的诗人——但丁(Dante,1265~1321)和乔叟(,1342~1400)的作品也无不充满着数学知识。17世纪,英国著名形而上学诗人约翰?多恩(JohnDonne,1572~1631)和安德鲁?马佛尔(AndrewMarvell,1621~1678)通过圆规、欧氏几何中的平行线之类的数学概念来类比爱情。后者的《爱的定义》尤为有趣: 像直线一样,爱也是倾斜的/它们自己能够相交在每个角度/但我们的爱确实是平行的/尽管无限,却永不相遇。 爱情,向来是难以用语言表达清楚的一个名词。作者用读者都熟悉的平行线,借助数学丰富的意象,巧妙地向读者准确地传达了自己的意思。逻辑美 提起逻辑,就不能不提中国四大名著之一的《红楼梦》。复杂的人物关系,缜密的故事情节,引得至今仍有大量学者终生考证,乐此不疲。 《红楼梦》迷人之处在于由卷初一首诗开始,章回紧扣地发展下来。优美的数学也是在一个宏观的概念之下,经由严谨的论证,简单有力地表达出来。 数学规律就如《红楼梦》,由一些基本定理出发,雅洁、鲜明地表达出来。大多数的数学论文都是艰涩难懂,有些却能令人留连再三。牛顿三大定律,非常简单,但可以解释非常繁杂的现象,如天体运行的规律。这就是数学家的口味,不够严谨,经不起推敲,就不入法眼。 数学和文学作品不但同样讲究严谨的逻辑论证,还同样遵从由局部结构发展到大范围结构的发展规律。 同文学极为相似的是,从局部结构发展到大范围结构也是近代数学发展的过程。文学的局部到大范围,往往通过比兴的手法来处理:即对事物有不同的感受,同一事或同一物可以产生不同的吟咏。对事物有不同的感受后,往往通过比兴的方法另有所指,例如“美人”有多重意思,除了指美丽的女子外,也可以指君主。屈原《九章》:“结微情以陈词兮,矫以遗夫美人。”也可以指品德美好的人,《诗经?邶风》:“云谁之思,西方美人。”苏轼《赤壁赋》:“望美人兮天一方。”而几何学和数论都有这一段历史,代数几何学家在研究奇异点时通过爆炸的手段,有如将整个世界浓缩在一点。微分几何和广义相对论所见到的奇异点比代数流形复杂,但是也希望从局部开始,逐渐了解整体结构。数论专家研究局部结构时则通过素数的模方法,将算术流形变成有限域上的几何,然后和大范围的算术几何对比,得出丰富的结果。此外,数学家对某些重要的定理,也会提出很多不同的证明。例如勾股定理的不同证明有10个以上,等周不等式亦有五六个证明,高斯则给出数论对偶定律6个不同的看法。不同的证明让我们以不同的角度去理解同一个事实,往往引导出数学上不同的发展。这也可算是局部到大范围的一个例子。 总之,数学并不像有些人认为的那般枯燥乏味,它不是长篇的定理公式的累积,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也许,用网友的一篇《沁园春?数学》来结束这篇文章是再合适不过的了:《沁园春?数学》数苑飘香,千载繁荣,百世流芳。读《九章算术》,何其精彩,《几何原本》,意味深长;复变函数,概统理论,壮阔雄奇涌大江;逢盛世,趁春明日暖,好学轩昂。难题四处飞扬,引无数英才细参详;仰枷罗华氏,煌煌群论,陈氏定理,笑傲万方;一代天骄,A?怀尔斯,求证费马破天荒;欣昂首,看数学发展,无可限量!

相关百科

热门百科

首页
发表服务