首页

> 期刊论文知识库

首页 期刊论文知识库 问题

写论文用的研究模型

发布时间:

写论文用的研究模型

写论文常用理论模型有:1、杜威“做中学”。2、斯金纳“强化理论”。3、皮亚杰“认识发展理论”。4、维果斯基“最近发展区理论”。

1、杜威“做中学”杜威(John Dewey)提出“做中学”这个基本原则主要思想是“人的经验如何影响学习”。由于人们最初的知识和最牢固地保持的知识,是关于怎样做(how to do)的知识。因此,教学过程应该就是“做”的过程。

在他看来,如果儿童没有“做”的机会,那必然会阻碍儿童的自然发展。儿童生来就有一种要做事和要工作的愿望,对活动具有强烈的兴趣,对此要给予特别的重视。

杜威认为,“从做中学”也就是“从活动中学”、从经验中学入它使得学校里知识的获得与生活过程中的活动联系了起来。由于儿童能从那些真正有教育意义和有兴趣的活动中进行学习,那就有助于儿童的生长和发展。在开展学生动手实践、探究式教学等相关教学研究比较常用。

2、斯金纳“强化理论”

强调强化在学习中的作用。斯金纳把强化分成积极强化和消极强化两种。教学中的积极强化是教师的赞许等,消极强化是教师不再皱眉等。这两种强化都增加了反应再发生的可能性。斯金纳认为不能把消极强化与惩罚混为一谈。

他通过系统的实验观察得出了一条重要结论:惩罚就是企图呈现消极强化物或排除积极强化物去刺激某个反应,仅是一种治标的方法,它对被惩罚者和惩罚者都是不利的。他的实验证明,惩罚只能暂时降低反应率,而不能减少消退过程中反应的总次数。斯金纳对惩罚的科学研究,对改变当时美国和欧洲盛行的体罚教育起了一定作用。

论文模型构建方法如下:

首先要明确撰写论文的目的。

建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员读了之后,相信模型假设的合理性,理解在建立模型过程中所用方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。

当然,一篇好的论文是以作者所建立的模型的科学性为前提的。其次,要注意论文的条理性。

(一)问题提出和假设的合理性

在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。

列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届建模竞赛的试题可以看作是情景说明的范例。

对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立模型还是不够的,还要补充一些假设,模型假设是建立模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。

由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:

(1)论文中的假设要以严格、确切的语言来表达,使读者不致产生任何曲解。

(2)所提出的假设确实是建立模型所必需的,与建立模型无关的假设只会扰乱读者的思考。

(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。

(二)模型的建立

在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的方法,最后顺利地建立方程式或归纳为其他形式的问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨。

引用现成定理时,要先验证满足定理的条件。论文中用到的各种符号,必须在第一次出现时加以说明。总之,要把得到模型的过程表达清楚,使读者获得判断模型科学性的一个依据。

(三)模型的计算与分析

把实际问题归结为一定的问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。

有些模型需要作稳定性或其他定性分析。这时应该指出所依据的理论,并在推理或计算的基础上得出明确的结论。

在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。

(四)模型的讨论

对所作的模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。

通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。

除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。

语言是构成论文的基本元素。建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。

最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

研究所写论文用的模型

论文模型构建方法如下:

首先要明确撰写论文的目的。

建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员读了之后,相信模型假设的合理性,理解在建立模型过程中所用方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。

当然,一篇好的论文是以作者所建立的模型的科学性为前提的。其次,要注意论文的条理性。

(一)问题提出和假设的合理性

在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。

列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届建模竞赛的试题可以看作是情景说明的范例。

对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立模型还是不够的,还要补充一些假设,模型假设是建立模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。

由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:

(1)论文中的假设要以严格、确切的语言来表达,使读者不致产生任何曲解。

(2)所提出的假设确实是建立模型所必需的,与建立模型无关的假设只会扰乱读者的思考。

(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。

(二)模型的建立

在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的方法,最后顺利地建立方程式或归纳为其他形式的问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨。

引用现成定理时,要先验证满足定理的条件。论文中用到的各种符号,必须在第一次出现时加以说明。总之,要把得到模型的过程表达清楚,使读者获得判断模型科学性的一个依据。

(三)模型的计算与分析

把实际问题归结为一定的问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。

有些模型需要作稳定性或其他定性分析。这时应该指出所依据的理论,并在推理或计算的基础上得出明确的结论。

在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。

(四)模型的讨论

对所作的模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。

通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。

除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。

语言是构成论文的基本元素。建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。

最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

论文的理论模型写法:

模型准备一般需要写你的论文用到的边缘方法的理论,例如,图论用到Dijkstra或者Floyd算法,统计使用遗传算法、灰度预测等。类似这些方法的理论基础,因为不便在模型建立与求解中大篇幅展开,可以在模型准备中做简要说明。

模型准备这一部分的作用是使论文层次分明,起到由浅入深的效果。类似于模型假设和符号说明,对正文起铺垫作用。

数学建模简介:数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备一般需要写你的论文用到的边缘方法的理论,例如,图论用到Dijkstra或者Floyd算法,统计使用遗传算法、灰度预测等。类似这些方法的理论基础,因为不便在模型建立与求解中大篇幅展开,可以在模型准备中做简要说明。

写论文的研究模型

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

写论文常用理论模型有:1、杜威“做中学”。2、斯金纳“强化理论”。3、皮亚杰“认识发展理论”。4、维果斯基“最近发展区理论”。

1、杜威“做中学”杜威(John Dewey)提出“做中学”这个基本原则主要思想是“人的经验如何影响学习”。由于人们最初的知识和最牢固地保持的知识,是关于怎样做(how to do)的知识。因此,教学过程应该就是“做”的过程。

在他看来,如果儿童没有“做”的机会,那必然会阻碍儿童的自然发展。儿童生来就有一种要做事和要工作的愿望,对活动具有强烈的兴趣,对此要给予特别的重视。

杜威认为,“从做中学”也就是“从活动中学”、从经验中学入它使得学校里知识的获得与生活过程中的活动联系了起来。由于儿童能从那些真正有教育意义和有兴趣的活动中进行学习,那就有助于儿童的生长和发展。在开展学生动手实践、探究式教学等相关教学研究比较常用。

2、斯金纳“强化理论”

强调强化在学习中的作用。斯金纳把强化分成积极强化和消极强化两种。教学中的积极强化是教师的赞许等,消极强化是教师不再皱眉等。这两种强化都增加了反应再发生的可能性。斯金纳认为不能把消极强化与惩罚混为一谈。

他通过系统的实验观察得出了一条重要结论:惩罚就是企图呈现消极强化物或排除积极强化物去刺激某个反应,仅是一种治标的方法,它对被惩罚者和惩罚者都是不利的。他的实验证明,惩罚只能暂时降低反应率,而不能减少消退过程中反应的总次数。斯金纳对惩罚的科学研究,对改变当时美国和欧洲盛行的体罚教育起了一定作用。

写论文影响研究用什么模型

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

结构方程模型主要用于研究多个潜变量之间的影响关系,能够处理多个因变量,同时考虑各因子之间的关系。如果要分析,可以使用SPSSAU在线完成分析,操作非常简单,输出标准格式结果和结构图,针对每一步分析还会提供智能分析建议。

分析结果

结构图

如果你在文章当中要强调你对这个人的主观感受,可以在题目中表现,用上“我最尊敬的……”,“让我感动的一个人”等。3、如果你在文章当中要强调一个人的变化过程,你可以写“他变了”,“张小宝新记”、“浪子回头金不换”等。4、如果你强调两者的关系和交往,可以写“一起走过的日子”,“最好的朋友”、“永远难忘的情谊”等。

如果有长期的数据,多元线性回归。

主要看这模型当中三个影响因素是什么,这三个影响因素之间有没有关系,如果有关系的话,可以把三个影响因素化解为两个甚至更少。如果单纯的三个影响因素的话,只能采用多项式的方法来建模了。

数学模型

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。

论文研究中用到的数学模型

初中数学建模论文很简单的中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的这是某数学竞赛的建模论文要求,可以参考一下(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议.2. 开展科研课题去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息.同时如果有条件的话,可以去拜访相关领域的专家和学者.然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证.完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进.记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议.在论文写作结束以后,一定要得出结论.记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设.只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的.最后,需要很好地写一份摘要.摘要的字数应该是论文字数的十分之一左右.3. 完成论文写作完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等.最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人.

1、生物学数学模型

2、医学数学模型

3、地质学数学模型

4、气象学数学模型

5、经济学数学模型

6、社会学数学模型

7、物理学数学模型

8、化学数学模型

9、天文学数学模型

10、工程学数学模型

11、管理学数学模型

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。

数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 作用:应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步.建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面.数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之.

相关百科

热门百科

首页
发表服务