离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课。 离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课 一般是解决最优化问题,比如很多有联系的事情,按照如何顺序在做能达到用时最少,效果最好。主要用在工程领域和计算机领域。 定义:离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。它是计算机科学和其他应用科学的基础理论课。 应用:逻辑与证明,算法,计算方法与分类原理,循环关系,图论,树,网络模型,布尔代数与组合电路,自动化、语法与语言,计算几何。离散数学课程所涉及的概念、方法和理论,大量地应用在 “ 数字电路 ”、“ 编译原理 ”、“ 数据结构 ”、“ 操作系统 ”、“ 数据库系统 ”、“ 算法的分析与设计 ”、“ 软件工程 ”、“ 人工智能 ”、“ 多媒体技术 ”、“ 计算机网络 ” 等专业课程以及 “ 信息管理 ”、“ 信号处理 ”、“ 模式识别 ”、“ 数据加密 ”等 参考资料: 给老师正浦靠费的 《离散数学》是理工科高等院校计算机专业的重要基础课程,它不仅为后续课程——数据结构、操作系统、编译原理、数据库原理、人工智能等做必要的理论准备,而且在培养学生的创新思维、创新能力和综合素质方面有其独特的作用。 到20世纪下半叶乃至21世纪,随着电气时代乃至计算机时代的来临。对直接与计算机打交道的越来越多的人群来说,最重要的数学趋势不再是以微积分为代表的连续数学,而是以图论、组合学、数论、代数、概率论、运筹学与控制论、数理逻辑等为核心内容的离散分析,也就是离散数学。因为计算机是“离散地”处理、计算、安排、存储、调拨、配置,用“离散”近似(可做到相当精确)逼近“连续”。从中学到大学,从数学专业到理工科专业,离散数学的课程和内容逐步与传统的突出连续数学的课程及内容分庭抗礼,起着越来越显著的作用。 最实际的应用比如说最短路径问题,就要用到离散的图论知识,在物流方面应用广泛。求商场最佳进货量,随不是直接的离散问题,也要用到离散的思想。此外,凡是涉及计算机、数值分析的地方就少不了离散数学。离散数学已经越来越多的影响着人类的生活。
应用:在物流方面应用广泛。求商场最佳进货量,虽不是直接的离散问题,也要用到离散的思想。此外,凡是涉及计算机、数值分析的地方就少不了离散数学。离散数学已经越来越多的影响着人类的生活。
《离散数学》是理工科高等院校计算机专业的重要基础课程,它不仅为后续课程——数据结构、操作系统、编译原理、数据库原理、人工智能等做必要的理论准备,而且在培养学生的创新思维、创新能力和综合素质方面有其独特的作用。
离散数学是传统的逻辑学
集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。
以上内容参考:百度百科-离散数学
如果这两个不行,你可以把这两篇论文综合一下哦
改革开放三十年来,我国的高等教育飞速发展,大学生的思政教育工作也在我国全方位的改革中不断摸索、不断创新,并取得了显著的成绩。下面是由我整理的大学生思政论文模板,谢谢你的阅读。 大学生思政论文模板篇一 浅谈大学生思想政治教育的重要性 摘 要:思想政治教育是培养大学生人文素质的重要途径, 从当前形势来看,我国大学生思想政治教育工作面临着许多新问题和新挑战,情况不容乐观,还存在很多薄弱环节,这就需要教育工作者结合时代特征开展思想政治教育工作。 关键词:思想政治教育 重要性 大学生的世界观、人生观、价值观的形成,政治立场和思想观念的形成,对社会主义建设及其重要。思想政治教育,是社会进步的需要,是满足人才全面成长的需要。 一、大学生思想政治教育是大学生思想素质发展情况决定的 从目前来看,当代大学生的思想政治素质总体上是好的,他们对社会主义社会充满了信心,相信中国特色社会主义一定会实现,他们与时俱进,思维活跃,具有强烈的开拓意识和创新精神,不管做什么事,他们都有很强的竞争意识和进取精神,道德理想和道德追求也比较高。然而,我们在看到当代大学生好的思想素质的一方面,不能忽视他们思想素质中不好的以免,由于我们正处于时代转换时期,所以部分大学生的时代感强但责任意识弱,虽然有很强的进取心,但是辨别能力有待改进,自制力方面也需要加强。这些情况都说明加强大学生的思想政治教育,提升他们的思想道德情操迫在眉睫。 二、使大学生思想政治教育更好地适应文化开放的大环境。胡锦涛强调,切实加强和改进大学生思想政治教育工作,培养造就千千万万具有高尚思想品质和良好道德修养、掌握现代化建设所需要的丰富 知识和扎实本领的优秀人才,使大学生们能够与时代同步伐、与祖国共命运、与人民齐奋斗,这对于确保实现全面建设小康社会、进而实现现代化的宏伟目标,确保实现中华民族的伟大复兴,具有重大而深远的战略意义。在经济全球化浪潮的推动下,特别是随着我国改革开放的逐渐深入和加入世界贸易组织,我国的对外开放程度进一步提高,对外开放进入了新的阶段。对外开放的国策,对外开放的环境,一方面有利于我们广泛地吸收人类文明的优秀成果;另一方面,伴随着各种思潮的传入,使人们的思想观念日趋多元化,打破了原先封闭条件下主流思想占据主导地位、一枝独秀的局面,出现了文化多样化的发展趋势,同时在多元化中还伴有强势文化的扩展。特别是西方强势文化、价值观念对我国的主流思想的冲击更为严峻。而随着西方资产阶级思想文化的渗透和扩张,必将对高校大学生的思想信念、道德伦理产生潜移默化的影响。因此,开放的环境大大增强了思想政治教育的难度,并对其所处的环境提出了严峻的挑战。这就要求高校的思想政治教育工作者要认真研究在新时期新形势下如何采用各种有效的方法有针对性地对大学生进行思想政治教育,切实做到体现主旋律、弘扬主流意识形态。面对新的发展趋势,大学生思想政治教育显然不能,也不可能使学生的思想游离于现实世界之外,必须突破高校和社会的隔离。牢牢地把握这个趋势,大学生思想政治教育必须以勇敢的迎接社会和世界上各种思潮和文化,以非凡的毅力抵抗不良思潮和文化的侵蚀,以超人的能力辨证吸收借鉴其中的先进成果。在教育过程中让学生正确的认识世界、了解世界,培养和增强学生的判断、选择、适应能力,才能更 好的提高大学生思想政治教育的效果。 三、 我国改革开放和社会主义市场经济的发展,要求高校培养的专业技术人才能对大规模复杂系统进行分析和管理。今后中国经济可持续发展的战略迫切需要人才具备独创性、发明创造能力、想象力和创业精神等,要求高校培养的专业技术人才具备很高的综合素质,不仅要了解本专业知识,而且要深刻了解所处的社会、经济环境和国际背景。无论从实现物质文明和精神文明共同进步、经济和社会协调发展,还是从实现经济体制与经济增长方式的两个根本性转变来看,都要求肩负培养高层次优秀人才重要使命的高等教育,应重视培养大学生的人文素质。思想政治教育是培养大学生人文素质的重要途径。不少大学生极度缺乏人文知识和人文精神,“马加爵事件”和“药家鑫事件”就是很好的证明。他们对人类的传统文化遗产知之甚少,缺乏社会所需要的情操道德和艺术气质。所以,这些大学生的信念、理想、德行和素养也随之淡化了。当他们进入社会后,当理想与社会现实发生冲突,他们就会浮躁不安,消极抑郁;在激烈的社会竞争中,也会变得思想狭隘,不从大局出发考虑事情,有的人还不能正确辨别真、假、善、恶、美、丑,在人生轨道上迷失方向。思想政治教育是人文教育的有机组成部分,让思想政治教育进课堂,对大学生进行情感和意志的培养,可以把大学生培养成社会所需要的人才。 高校是培养人才的重要基地,必须把培养中国特色社会主义事业的建设者和接班人作为根本任务。要坚持思想政治理论教育,注重引导大学生深入社会、了解社会、服务社会。坚持党的思想政治工作的 优良传统,高度重视新形势下大学生思想政治教育工作。 大学生思政论文模板篇二 大学生思想政治教育论文思想政治教育论文 创新大学生思想政治教育的可行路径 [摘要]改革开放三十年来,我国的高等教育飞速发展,大学生的思想政治教育工作也在我国全方位的改革中不断摸索、不断创新,并取得了显著的成绩。在我们总结三十年来大学生思想政治教育工作成绩和经验的同时,我们还应该看到,当下大学生所表现出的行为养成和道德素质等方面的问题仍很突出,并直接影响到未来祖国建设者和接班人的整体水准。反观大学生客观存在的道德行为问题,究其原因就是我们在大学生思想政治教育恰切的路径上还须作出更加务实的选择。 [关键词]大学生 思想政治教育 创新 途径 一、必要性:改革开放三十年来大学生思想政治教育的探索与努力 党的十三届四中全会到党的十六大,我们党强调把德育放在学校工作的首位,制定《中国普通高等学校德育大纲》,深入进行爱国主义、集体主义、社会主义教育及中华民族传统美德教育;积极推动马克思主义中国化最新成果进课堂、进教材、进学生头脑,通过教学改革逐步形成结构合理、功能互补的马克思主义理论课和思想品德课课程体系。党的十六大以来,我们党敏锐把握新世纪新阶段大学生思想政治教育所面临的新课题、新要求,制定下发《关于进一步加强和改 进大学生思想政治教育的意见》,实施马克思主义理论研究和建设工程,推进社会主义核心价值体系建设;设立马克思主义理论一级学科,加强和改进思想政治理论课程建设,全面推进大学生思想政治教育创新发展。 可以说,从探索与努力的程度上、实施的内容体系上,改革开放三十年大学生思想政治教育成绩斐然;但从大学生实际行为表现上、思想政治教育效度上,仍有许多值得我们反思与进一步努力的领域。这主要体现在当下大学生自身的弱点上: 1.转型期对于涉世未深的大学生来说思想容易受到冲击,是非观念不强、判断标准不一、理想信念不坚定,大学生易用个例否定理论、用少数现象解读政策,以发牢骚来发泄对社会、政治和生活的不满。 2.道德认知与道德行为脱节。表现为社会责任感淡化、社会功德和传统文化缺失。 3.西方伦理与传统道德产生冲突。西方文化的大量引进,冲击了大学生传统的道德观念。“快餐文化”、追求享受、交往开放等大量西方的观念被大学生所接收,在追逐西方现代观念与传承中华民族优秀道德观念上的思想碰撞,造成大学生道德判断标准模糊。 二、可行性:大学生的主观兴趣与党的政策支撑 一种事物或一个问题所选择的路径是否可行,关键看受教育者主体的接受自觉程度;同时,还要看当下背景下党和国家的相关政策是 否提供政治保障与支撑。二者兼具,就势必确认了这一路径的可行性。 1.把握大学生高雅的主观兴趣 青春年少是一个人一生中的黄金时期,是大学生的自然优势。除了对知识的渴望、对理想的憧憬外,他们还有着活跃的思想和广泛的兴趣。在《关于大学生兴趣爱好的问卷调查》中,我们了解到,被调查大学生中喜欢看影视名片的占、喜欢听音乐的占50%、喜欢读文学作品的占。关于“这些兴趣爱好获得的明显收益”,选择“能陶冶性情”的占、选择“能丰富大学生活”的占、选择“能提升做人品位”的占、选择“能提高审美志趣”的占。这说明,大学生对于高雅的艺术品位给自己带来的收益是充分肯定的。 2.民族精神的理性回归 近年来,主流媒体有关国学的“百家讲坛”为国学的日渐升温营造了浓郁的舆论氛围。从读《论语》开始,一股强劲的国学热在中华大地掀起,特别是在大学生这一精英群体中逐渐奉为时尚。中国的传统文化博大精深,虽然由于时代的局限而存在很多不和谐的音符,但一些优秀的理论对今天社会的发展仍然有着不容忽视的启迪作用。国学并非简单的文史哲,而是一门吸收了中华民族五千年历史精华的深奥学问。每一个大学生都应该提高自身的国学修养,去其糟粕,取其精华,让国学重新回归。当前,大学生们也正是逐渐认识到了国学的博大精深,才从思想深处乐于感悟国学中的人文情怀和民族精神,并使 这种人文情怀和民族精神渐渐走向理性回归。 三、当下创新大学生思想政治教育的可行路径 长期以来,大学生思想政治教育在内容上的功利性及其与形式上的脱离性造成大学生思想政治教育效果甚微。笔者认为,任何教育的内容和形式是不可分的,只有在恰切的形式路径中探寻科学务实的内容,思想政治教育才能实现教育效度的最大化。 1.整合时政教育资源 目前高校向大学生实施的“两课”是教育部统一下达的指令性的三门课程,即《大学生思想道德修养与法律基础》、《毛泽东思想、邓小平理论和“三个代表”重要思想概论》和《中国近现代史纲要》。这三门课程围绕大学生的生活实际、思想实际和学习实际,重点加强大学生的世界观教育、价值观教育和理想信念教育以及政策教育、国情教育。如果单纯以这三门课程为指定内容,相继开设或并列授课,势必会因为其内容的抽象性、交叉性和政治功利性而导致大学生的厌学情绪并付诸厌学行动。如果以专题的形式,就某一社会热点问题、焦点问题和难点问题,就党和国家的中心工作和重大政策,采取报告、解读、讨论等方式,在三门课程的内容框架内,充分整合时政教育资源,不仅为大学生提供最新的时政资讯,而且在动态的时政资源传递过程中激发大学生接受思想政治教育的主动精神和学习热情,势必产生事半功倍的教育效果。 2.开发儒学教育资源 作为一个有着悠久历史的文明古国,中国国学中有着取之不尽的思想教育资源。高校应该有针对性地改革思想道德教育的僵硬模式,在充实“两课”内容、及时反映当代中国马克思主义发展的最新成果的同时,将国学的精华融入其中,并不断丰富教学形式,以增强思想道德教育的吸引力和感染力。这正是改进大学生思想政治教育的切入点。 3.优化公共艺术教育资源 艺术教育的德育效应,并非是由艺术教育径直指向德育的“两点”单线运动,而是通过艺术教育价值的全方位彰显,最终实现由审美到立美、立德和立人的“四点”相接的多维运动链条与理论构架。在艺术教育的实施过程中,我们通过引领学生由感官的熏陶转化为内心对艺术的认识和体会,从而帮助学生明是非、知善恶、识美丑、辨荣辱;在对艺术美、自然美、社会美欣赏的同时,了解自然、了解社会、了解历史,从而获得广博的知识,激发学生的形象思维和创新潜能。 看了“大学生思政论文模板”的人还看: 1. 大学生政治论文格式模板 2. 大学思想政治论文范文 3. 大一思想政治论文格式 4. 大学生思想政治论文 5. 2500字大学政治论文格式范文
先说难的吧!我想不论是哪个学校的学生,提到运筹学,没有一个不说它难的。我是不知道我们航院教导这门课程的难度有多大,但是只要你考研究生,考管理科学与工程这个专业,全国大部分高校,运筹学是肯定考的。那么就我所学的体会来看,运筹学确实不是那么容易学习。但是,它并不是不可攻破,关键看你自己是否下工夫。就拿线性规划来说,表格就得画很多个,如果你没有耐心,估计很难有收获。在学习的时候,我建议大家上课一定要认真听,因为书本上的东西,太过于抽象,不容易理解;而老师讲的,比较具体,你只要记下来,课下再看,一般都能看懂。做题一定不要贪多,因为一道题目的书写量很大,你如果做的太多,会因为题目做的很慢而丧失信心。从中选择几道题目,把它研究透,收获往往会更大,因为你现在的主要任务是入门,而不是急于求成。再说离散数学,大家一定不要被它的名字糊住。离散数学其实并不是很离散,因为如果你不是计算机专业的学生,学习这门课程,绝对不会讲的很深,只是一个入门而已。所以大家一定不要害怕。在学习中,要注意这么一些问题,一定要把题目读懂,反复推敲,因为我发现离散数学的一大难点在于你的语文功底,也即对于句子的理解能力考察;再者,一定要按规矩来解题目,不要标新立异,因为很多问题,你不按规矩,就很容易漏掉一些情况。而且,老师也不喜欢看那种不规范的答题方法,这样会增大它的改卷难度,所以大家一定要注意。这就是我对这两门课程的一些体会,仅供大家参考,希望能给大家带来帮助!
数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。
太难了,估计没有人回答的。请朋友自己自力更生吧。
组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。
你们学校也要提交译文是吧 怎么现在才交啊 现在都在忙着毕业论文的事情 估计没人有空来帮你翻译的你直接去cnki找篇相似的好了 用google翻译 效果也蛮好的 或者找本有中文翻译而且相关的书 对照英文原版就行了再说 译文这种东西 没人去仔细看的或者你提到200分试试吧
去百度文库:健入搜索词:《离散数学》(耿素云)习题解
康托尔是德国一名伟大的数学家,康托尔创立了集合论。下面是我带来的关于康托尔的集合论论文的内容,欢迎阅读参考!康托尔的集合论论文篇1:《基于集合论思想的人性》 摘要:作为人类,我们有必要去了解自己,这样才能更加地进步。人性是从根本上决定并解释着人类行为的那些人类天性。本文利用集合论的思想对此进行了一些讨论。 关键词:人性;理性;社会性;自然性;集合论思想 一、引言 在长期以来的生活中,人类的大脑会在无意识的作用下储存某些事物的信息,由于并没有通过大脑严谨的思考,所以这些信息大部分是外在的,只是事物表面的一些形态特征而已。这些信息并非零散的分布,之间没有联系。而是之间存在着一定的关联,虽然结构不严谨,可能其中会有错误。但是有时候却可以起到一定的作用。但是我们不能仅依靠这样的意识形态,因为我们有自我意识,需要不断完善,不断进步。依靠这样的意识是不可能看到事物的本质的。 有时候你问某个人为什么,他可能会答道:“凭直觉”。我并不否认直觉所带来的“便利”,但这种“便利”是给自己不去思考事物本质的借口。直觉也是一种意识形态,但是这种意识是在潜意识之下的,这样意识的形成也是要通过长时间的作用。大脑可以自己不断地调整,不断地完善,但是这个过程相当缓慢。要进步可不能依靠这样的思想。 现在我想说的是,我们必须减少对这些意识的依赖。因为这些意识都不是通过严谨的思考之后得到的产物,所以用这样的意识去做出一些反应是很容易出错的。这也会阻碍我们对真实世界的探索。我们应该挖掘出这样的意识,分析其中的思想结构,将不好的思想去掉,并且把有缺陷的思想不断加强和完善。这样一来,我们就会更加理性。人就具有这样的性质——理性。因此人类才能进步,文明才能发展。 二、理论分析 假设A={a1,a2,…,an},B={b1,b2,…,bm}。若A?奂B,则说明A中的n个元素均可以在B中找到,且m>n。反之,说明中的个元素均可以在A中找到,且n>m。若A=B,则说明中的所有元素与B中的所有元素相同,且n=m。如果某一个元素可以在集合A中找到,那么记作a∈A。 结合以上思想,对人与动物进行分析,动物={青蛙,鱼,狗,猫,人,……},可以看出人是属于动物的,即人动物。并且将这样的集合叫做普通集合,以区分下面所叙述的性质集合。既然青蛙,鱼,狗,猫,人等都属于动物,那么也就是说它们具有共同的性质,比如:没有细胞壁,必须利用现成的有机物获得能量,无叶绿体,能自由移动等。但是人除了这些共同性质之外,还有其他的性质。也就是说,从性质集合上看,动物的性质集合包含于人的性质集合中的。即动物的所有性质,人类均有。我们将性质集合中的元素命名为“属差”,而将普通集合命名为“种”,普通集合中的元素命名为“属”。 如果B的性质集合包含于A的性质集合,那么A和B就具有相同的属差,并且B的所有属差均是A中的属差。属差越多,则性质集合的表述范围就越小,即越受限制。那么B显然比A的表述范围大。说明B可以述说A,即A是B,其中A就是主词,而B就是宾词,则B的所有属差是A的属差。 那么按照上面所说,动物可以表述人,即人是动物。“人”的属差比“动物”的要多,也就是限制的条件要多一些。 有些存在于主体中的事物,其定义是不能用来表述一个主体的。例如:对于白人来说,“白”就依存于身体这个主体,并被用来表述身体这个主体,也就是说身体可以被说成是白的,但是要注意,“白”的定义却不能被用来表述身体。 属和种的属差都可适用于第一实体,种的属差适用于属,所以属和种决定了实体的性质。例如:“人”和“动物”的属差都可适用于个别的人,可以说人是动物,个别的人是人,个别的人是动物。也可以这样想:对“动物”的定义肯定也适用于对“人”的定义,因为“人”是属于“动物”的。所谓的“第一实体”,比如“个别的人”、“个别的老虎”等,是真实存在的个体,并不依存于其他个体。[1] 属差的定义也能适用于属和个体,并且还可以用来表述属和个体。例如:“有脚的”、“有手的”的定义也可以适用于“人”和个别的人。并且还可以说“人”和个别的人是“有手的”。既然属差的定义可以适用于个体,那么属差也就可以决定了个体的性质。而且这些性质都可以用属差表述其个体。 分析到这里,我们应该感觉到有点思路了。也就是我们现在要找到这样的属差,然后根据这些属差的定义来表述个体。 但是还有一个前提,那就是个别的人是不是实体呢?因为刚才我们得到一个结论:属和种决定了实体的性质。也就是这些分析都是以实体作为前提的。所以我们要知道个别的人是不是实体。其实我们从实体最原始,最根本的定义出发,个别的人的确属于实体,因为是真实存在的,并且不依存于其他主体。 三、结果分析 1.人具有理性:有一篇关于鱼“自杀”的报道。我就在想鱼如何“自杀”的呢?自杀就说明鱼有自我意识,能够自己选择死亡。但科学上表明自然界(这里并不指整个宇宙)中除人类外,其他动物都只有直接意识,而没有自我意识。难道科学不客观?其实并非这样,只不过是媒体的故意渲染而已。鱼只是因为环境的改变而做出本能的反应,这样的本能就是直接意识,鱼并没有思考这样做会不会导致死亡,只是出于本能。那么人与其他动物相比,不同之处就在于人有理性。 比如一只老虎饿了,看到食物就会扑上去吃。但是人饿了却不会看到食物就扑上去,而要想想这能不能吃。这就是与其他动物的不同之处。也就是说“理性”是“人”的一个属差。 2.人具有社会性:人处在社会之中,与其他个体之间进行沟通,交流信息。进行物质的分享、分割和交换。社会是互动的,不可能是个别的个体所支撑。也就说明我们身处社会,只有聚集起来才能共同完成分享、分割和交换。有人说自己很孤独,其实这并不是真正的孤独,也不可能存在真正的孤独。因为人不可能摆脱社会性而存在。可能有人会对刚才我说的“不会有真正的孤独”有意见,他们会说:“既然没有孤独,那么创造这个词不就没意义吗?”孤独只不过是人们的感受,感受并不能反应事物的真实规律。所以我在之前也说过,我们必须放弃一些错误的思想。这样才不会被感觉和表面现象所蒙蔽。 在人类社会这个庞大的群体性活动中,无论是什么简单的活动,都不可避免要与其他个体进行信息传达。这样人类才能发展和繁衍下去。这样说来,动物也应当存在社会性。这显然是肯定的。一些动物也是具有这样的性质的,例如:蚂蚁,蜜蜂等。可见“社会性”也是“人”的一个属差。 3.人具有自然性:人类是自然界中的一员,就不可能不具有自然性。人类的组织结构、生理结构和自然界交往过程所产生的一些基本特征都表现出人的自然性。人类不可能脱离自然性而独立存在。而其他生物也一样具有这样的性质。所以“自然性”也是“人”的一个属差。 四、结束语 我们作为人类,有必要去了解自己,这样才能更加地进步。通过集合论的思想来分析人性,是本文的亮点。除了三个性质外,还存在着其他的性质。在这里由于自己的智慧有限,没有给出更多的性质,但是本文重点是在于提供一个可行的分析 方法 。通过数学的逻辑,会使得分析变得更加严谨和系统化。这是本文做出的大胆尝试。 参考文献: [1]亚里士多德.亚里士多德全集(第一卷)[M].苗力田,译.北京:中国人民大学出版社,1990. 康托尔的集合论论文篇2:《集合论与第三次数学危机》 数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的 教育 价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。 一、集合论的诞生 一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇 文章 标志着集合论的诞生。 二、集合论成为现代数学大厦的基础 康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。 集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊! 三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机 1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。 罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。 罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。 四、消除悖论,化解危机 罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。 在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。 解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔()和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。 五、危机的启示 从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。 矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。” 参考文献: 1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社 2.胡作玄,《第三次数学危机》 康托尔的集合论论文篇3:《模糊集合论视角下的隐喻》 【摘 要】本文从模糊集合论的角度出发,研究隐喻解读过程中的逻辑真值问题,揭示出隐喻的模糊性是固有的,客观的,对人类认识世界以及进行文学创作具有重要作用。 【关键词】模糊集合论;隐喻;文学创作 模糊性是自然语言的本质特征之一,客观事物自身范畴的模糊性、人类认知的局限性以及不同的话语语境均会导致模糊语言的形成。模糊集合论从诞生伊始,便开始了与诸多学科的交叉研究,与语言学的结合使得我们在语义研究方面有了新的视角。隐喻作为一种特殊的语义现象,其解读过程显现出模糊语言的特点。隐喻的模糊性反映出人类的潜逻辑规律,是客观的,隐性的,它不仅是人类心理范畴化的结果,也是人类模糊思维的产物,所以模糊集合论为我们研究解析隐喻开辟了新的窗口[1]。 1965年,美国控制论专家札德受语言模糊性的启发在《信息与控制》杂志上发表了论文《模糊集合》,最早提出了“模糊集合论”的概念。传统的集合论强调,任何一个集合的成员要么属于它(隶属度为1),要么不属于它(隶属度为0),只有两种真值情况[2]。但是如果对自然界中的诸多对象进行分类,我们经常会找不到能够精确判定其身份的依据。所以, 札德在论文《模糊集合》中对模糊集的定义为: 设X是由点构成的一个区间, 区间内的类属性元素用x表示, 即X ={x}。在区间X中,模糊集A由具有构成该集合元素属性的隶属函数fA(x)表示。该函数与区间[ 0, 1 ]内的任一实数相关联,此对应值表示x所具有的构成A的资格程度。如果区间内设置两个临界点, 即0 <β <α < 1, 那么我们就会获得一种三值逻辑: 如果fA(x) ≥α, 则x属于A;如果fA(x) ≤β, 则x不属于A; 如果隶属函数fA(x) 所表示的值位于α和β之间,则x具有一种相对于A的中间状态。模糊集合论之所以适用于语言研究,是因为语言范畴实际上就是某一个论域中的模糊集合。某一范畴中所有成员共有的典型属性构成此范畴的核心部分,它相当于集合的定义,这部分是明确的,清晰的;相比较而言,范畴的边缘却是模糊的,很难对其进行明确地界定,此部分相当于集合的外延,也就是构成该集合的所有元素。传统集合论实际上是二值逻辑,一个命题,即一个表达明确意义的陈述句,其真值只能是真(记作“1”),或者是假(记作“0”),没有第三种可能性。例如“汤姆是名学生”这个命题,只允许取值“1”或“0”。但是,如果我们将这个 句子 中的“学生”加个修饰词,变成“好学生”,问题就出现了。因为“好”是个模糊概念,其内涵容易辨认,外延却不明确。对于这样的命题,如果用传统的集合论就很难判断其真值。基于二值逻辑的缺陷,札德提出了“隶属度”的概念。即对于像“好”、“坏”这样的模糊概念的集合,规定其成员对该集合的隶属程度,可以取闭区间[0,1]内的任何实数值。模糊逻辑本质上是一种多值逻辑,这使得模糊集合论在研究隐喻时具有特别重要的价值。 模糊集合论为隐喻真值的合法性提供了依据。隐喻的理解有赖于对两组不同范畴的特征的识别,如果我们要把“A is B”视为隐喻,而非字面意思,那我们就需要确定A和B的所指。句法,语义以及语境都可以帮助我们确定其含义,但是最终还是意义的解读决定对相似属性和不同属性筛选的结果 [3]。要想理解隐喻所指双方语义属性的比较过程,我们可以求助于模糊集合论的概念。通过模糊不同集合的界限,隐喻所指某一集合的属性可以部分的与其他集合的属性相结合,进而克服精确定义所带来的阻碍。从语言的表层结构来看, 隐喻的本体集合与喻体集合是不相容的。如果我们运用模糊逻辑的开放性原理, 就可以对这两个不同集合中的属性进行对比区分, 找到相互类似的属性以及不具有可比性的属性。 以莎士比亚名句“Juliet is the sun.”(朱丽叶是太阳)为例: “太阳”是无生命语义标记的子集, “朱丽叶”是有生命语义标记的子集。由于这个隐喻指出了太阳对于人类的重要性与朱丽叶对于罗密欧的重要性之间的相似性,相关元素属性的隶属函数是一个小于1的值,使得此隐喻带有较强的启示力和暗示性。一般来讲,根据逻辑真值,可以把隐喻分为epiphor(表征性隐喻)与diaphor(暗示性隐喻)。威尔赖特( P. Wheelwright)在1962年出版的《隐喻和现实》(Metaphor and reality)中指出epiphor 的基本功能在于表达(express), 而diaphor的主要作用是暗示(suggest) [4]。隐喻所指的并置会引起语义集合的矛盾,所以有些学者把隐喻视为不合语法逻辑的实体。但是如果我们通过模糊集合论中三值逻辑来解读隐喻,我们就可以证明它的用法是正当的,合法的。根据扎德的标准, 0 <β <α < 1, 一种三值逻辑的可能性是成立的。如果我们再加入一个中间值γ,区间将变为0 <β <γ<α < 1, 这样三值逻辑就可以扩充为四值逻辑, 其真值分别为: Truth( fA (x) ≥α) 、Falsity( fA (x) ≤β) 、Diaphor (β < fA (x) <γ) 以及Epiphor (γ≤fA (x) <α) 。如果α的值趋近于1而β的值趋近于0, 并且中间区间的集合不包含任何 其它 元素, 那么这就是一个传统的二值逻辑。如果隶属函数值介于β到γ的区间,就会产生暗示性隐喻;如果隶属函数值介于γ到α的区间,就会产生表征性隐喻。隶属函数会发生变化,因为很多隐喻由于不断的重复使用,固定了所指之间的关系,暗示性隐喻也就会变成表征性隐喻,如果太过普遍,则会变成死隐喻。由此可见,模糊集合论很好的解释了隐喻解读过程中本体集合与喻体集合的冲突,使得双方在合理的范围内找到交集,而这个交集内的元素属性很可能不是唯一的,这就造成了隐喻解读的多样性与模糊性[5]。 隐喻的本质是模糊了本体集合和喻体集合之间的界限,从而来寻找两个集合的契合点。由于模糊集合论设定了三个区间边界α、β和γ, 并且0 <β <γ <α < 1,这种四值逻辑不仅有助于消除隐喻所指不同集合之间所存在的矛盾,而且揭示出隐喻的模糊性实际是固有的,客观存在的。隐喻的模糊性主要是指其解读对语境的依赖性。无论从隐喻的编码,还是解码过程来看,不同的人,不同的时期,不同的场合,同一隐喻可以被赋予不同的含义。正是隐喻的这种模糊性开启了人类的想象空间,文学作品中好的隐喻总是余音绕梁,让人回味无穷。我们的生活离不开隐喻,而在隐喻所创造的模糊世界里,我们非但没有因为模糊而影响生活,反而借用隐喻的模糊性我们能够更好地认识世界,改造世界。 【参考文献】 [1]Earl R. MacCORMAC, METAPHORS AND FUZZY SET[J].Fuzzy sets and systems. 1982(7). [2] Set. Information and (8). [3]安军.隐喻的逻辑特征[J].哲学研究,2007(2). [4]苏联波.隐喻的模糊化认知机制研究[J].成都大学学报(社科版),2011(5). [5]束定芳.论隐喻的基本类型及句法和语义特征[J].外国语,2000(1). 猜你喜欢: 1. 高中数学论文题目大全 2. 关于数学文化的论文范文 3. 数学与哲学的论文 4. 人工智能逻辑推理论文 5. 数学学术论文范文大全 6. 数学论文离散数学
01
人物简介
比尔·盖茨,全名威廉·亨利·盖茨三世,简称比尔或盖茨。1955年10月28日出生于美国华盛顿州西雅图。13岁开始计算机编程设计,18岁考入哈佛大学,1975年与好友保罗·艾伦一起创办了微软公司,比尔盖茨担任微软公司董事长、CEO和首席软件设计师。1986年,比尔·盖茨进入Fortune亿万富豪榜,约3亿1千5百万美元。1995年比尔·盖茨成为世界首富,约200亿美元。比尔·盖茨1995-2007年连续13年成为《福布斯》全球富翁榜首富 ,连续20年成为《福布斯》美国富翁榜首富。
02
人物经历
比尔·盖茨有关于计算机的天赋和洞察力是微软公司和软件业界成功的关键。
他的计算机才能崭露头角是在13岁时,独立编出了第一个电脑程序。
1970年代,还在哈佛大学读书的盖茨与伙伴保罗·艾伦一起为Altair 8800电脑设计Altair BASIC解译器。比尔·盖茨在上学期间,还主修了操作系统,数据库,编译器,计算机图形学,并且这四门都拿了A。盖兹在大二时写了一篇论文,里面用到了他设计出来的一个算法。此文四年后挂了他老师的名字发表到了该领域的顶级期刊《离散数学》上。
下附比尔盖茨大学期间《离散数学》论文
从20岁创办微软起,比尔·盖茨积极地参与微软公司的关键管理和战略性决策,并在新产品的技术开发中发挥着重要的作用。
1980年8月28日,盖茨以5万美元价格购买了一款名QDOS的操作系统软件,对其稍加改进后,将该产品更名为DOS(操作系统软件),然后将其授权给IBM使用。IBM-PC机的替及使MS-DOS取得了巨大的成功,因此80年代,它成了PC机的标准操作系统。
Windows95/98/ME/NT/2000/Me/XP/Server2003/Vista这些微软的拳头产品成功地占有了从PC机到商用工作站甚至服务器的广阔市场,为微软公司带来了丰厚的利润。公司在Internet软件方面也是后来居上,抢占了大量的市场份额。
1984年,微软公司的销售额超过1亿美元。1997年6月为止的会计年度,微软营业额为113亿美金。1999年6月,微软市场价值达到亿美元,名列全球1000大企业榜首,超过了通用电气公司(亿美元)。
微软最核心的竞争力就是可以迅速进入其他领域并且对原有市场主导力量形成威胁的 能力。在IT软件行业流传着这样一句告诫:“永远不要去做微软想做的事情”,可见,微软的巨大潜力已经渗透到了软件界的方方面面,简直是无孔不入,而是所向披靡。
03
人物评价
比尔·盖茨对全人类的影响既深且远,并不仅限于IT行业。而所有的动力都来自于他个人的信仰:「想象未来每个人的桌面上都有一台电脑」。
作为世界第一大 PC 系统的创始人远在1970年代大型主机电脑当道时,他就敢做这种梦,是因为相信自己看到了别人没看到的事情。
04
经典语录
“我深信任何可以增进人与人之间沟通的方法都具有长远的价值,人们借此相互学习,并且共同努力达到彼此认同的自由。”
“幸运之神会光顾世界上的每一个人,但如果她发现这个人并没有准备好要迎接她时,她就会从大门里走进来,然后从窗子里飞出去。”
“只要有坚强的持久心,一个庸俗平凡的人也会有成功的一天,否则即使是一个才识卓越的人,也只能偶遇失败的命运。”
“强烈的欲望也是非常重要的。人需要有强大的动力才能在好的职业中获得成功。你必须在心中有非分之想,你必须尽力抓住那个机会。”
“如果你已经制定了一个远大的计划,那么就在你的生命中,用最大的努力去实现这个目标吧。”
从退学建立微软
比尔·盖茨只用了20年
成为世界首富
蝉联13年《福布斯》榜首
离散数学是随着计算机科学的发展和计算机应用的日趋广泛而逐渐形成的一门学科, 是 20 世纪 70 年代初期形成的新兴学科, 是近代数学的一个分支 , 主要研究有限个或可数无限个离散量的结构和相互关系, 离散数量关系和离散结构数学结构模型 。由于计算机科学的迅速发展,与其有关的领域中,提出了许多有关离散量的理论问题,需要用某些数学的工具做出描述和深化。离散数学把计算机科学中所涉及到的研究离散量的数学综合在一起,进行较系统的、全面的论述,为研究计算机科学的相关问题提供了有力的工具。 离散数学的许多概念及问题自然地出现在数学的许多分支中,并且也在其它学科中发现了它的应用。这些包括在信息论和电子工程中的应用,在统计物理,在化学及在分子生物学。例如,像 Ramsey 理论、组合集合论、拟阵理论、极值图论、组合几何及相差论的组合论等论题。还包括在计算机学科的应用,如计算机科学中的数据结构、操作系统、编译理论、算法分析、逻辑设计、系统结构、容错诊断、机器定理证明等理论都是与数学和科学世界的大部分问题密切相关的,并且已经发现这些论题在其它领域中有着众多的应用。
就是把程序安装在计算机上,你按“下一步”,最后点“完成”。 你能到网络来我们很欣慰。
就是靠你输入的程序来密令机器进行自动循环工作!
是大一的计算机吧?公共课程的那个吧?夏宝岚讲得都比较仔细的,你去找上她课的学生,问他们有没有记下课堂笔记,把笔记搞定就肯定没问题了,但上面也肯定基本上没考试原题的,只是都是同样类似的方法,所以最起码要把笔记大致搞懂理解注:以上仅个人意见,挂了可不负责哦
计算机办公软件的考试属于劳动部门的技术技能考试。指的是计算机二级考试。 二级office: 按照新大纲,需要学习的内容有:计算机的基础知识,Word的功能和使用 ,Excel的功能和使用,PowerPoint的功能和使用。 二级开始内容: 计算机二级考试包含语言程序设计,包括C、C++、Java、Visual Basic、WEB程序设计;VFP,数据库程序设计(包括VisualFoxPro、Aess、MySql);MS office高级应用包括Word、EXCEL、PPT办公软件高级应用。(注:二级Delphi科目从2013年上半年开始停考,只接受补考考生报名,不再接受新考生报名。)二级C从2013年开始已从传统的笔试和上机考试改革成无纸化考试。
计算机系统分为:硬件系统和软件系统 硬件又分为:主机和外部设备 主机分为:cpu和内存储器 cpu:运算器和控制器 内存储器:DRAM和SDRAN 外部设备:外存储器、输入设备、输出设备 软件系统分为:系统软件、应用软件
每年两次报名时间,分别为5月开始,和10月开始。结束一般为一个月以上, 你可以参加10月份的报名。 如果是北京的话,你得问当地的招生电话来确定了,赶快打的问一下,别耽误了。山西的10份有一次。
以上是本人只凭以前的记忆填的,七八年没碰这些东西了,可能有误.
你说的资助可能是申请过程中国家对申请费用的减缓,另一种资助是根据你所在的地区的政策会给专利权人一定补助,每个地方不一样。还有一种就是,国家或地方为了鼓励科技创新,为企业提供各种政策优惠,资金补助,事业单位,为工作人员也有这样子的鼓励方式。
三、辨析题(10分,正确的填√,错误的填×) 1.计算机软件系统分为系统软件和应用软件两大部分( √)。 2.三位二进制数对应一位八进制数(√ )。 3.一个正数的反码与其原码相同(√ )。 4.将Windows应用程序窗口最小化后,该程序将立即关闭(× )。 5.用Word 2003编辑文档时,插入的图片默认为嵌入版式(√ )。 6.PowerPoint中的一张幻灯片必须对应一个演示文件(× )。 7.Inter中的FTP是用于文件传输的协议(√ )。 8.Windows中的文件夹实际代表的是外存储介质上的一个存储区域( √)。 9.路由器是网络中专门用来寻找路径的一种网络服务器(× )。 10.计算机病毒是一种恶意程序(√ )。 四、简答题(40分) 1.简述操作系统的功能。 操作系统是一组直接控制和管理电脑硬件资源和软件资源, 使电脑高效、协调、自动地工作,以方便用户充分而有效地利用资源的程序。 操作系统 提供 五个方面的功能:存储器管理、处理机管理、设备管理、文件管理和作业管理。 2.简述如何添加/删除Windows的组件。
(1).打开控制面板中的添加删除程序 (2).选择Windows组件 / 在打开的对话框中选择你要添加或删除的组件(提示一下,过程中要用到Windows的安装光盘(XP),VISTA不用光盘!) 3.简述IP协议如何实现互联网上任意两台计算机的通信。 在Inter中,一台计算机可以有一个或多个IP地址,就像一个人可以有多个通信地址一样,但两台或多台计算机却不能共用一个IP地址。如果有两台计算机的IP地址相同,则会引起异常现象,无论哪台计算机都将无法正常工作。 4.简述信息安全的特征 机密性、完整性、可用性 5.已知计算机的字长为8位,求十进制数—102的原码、反码和补码。 -102 [-102]原码11100110 (二进制)8位字长的话表示为E6 [-102]反码00011001 8位字长的话表示为19 [-102]补码 因为是负数 所以取反加1 10011010 8位字长的话表示为9A 希望你学习步步高升哦 好好学习计算机 呵呵 是我自己做的 可能有有失之处 请原谅 谢谢哦
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
高数论文什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。
学术堂整理了一篇3000字的计算机论文范文,供大家参考:
范文题目:关于新工程教育计算机专业离散数学实验教学研究
摘要: 立足新工科对计算机类专业应用实践能力培养的要求,分析了目前离散数学教学存在的关键问题,指明了开展离散数学实验教学的必要性。在此基础上,介绍了实验教学内容的设计思路和设计原则,给出了相应的实验项目,并阐述了实验教学的实施过程和教学效果。
关键词:新工科教育;离散数学;计算机专业;实验教学
引言
新工科教育是以新理念、新模式培养具有可持续竞争力的创新型卓越工程科技人才,既重视前沿知识和交叉知识体系的构建,又强调实践创新创业能力的培养。计算机类是新工科体系中的一个庞大专业类,按照新工科教育的要求,计算机类专业的学生应该有很好的逻辑推理能力和实践创新能力,具有较好的数学基础和数学知识的应用能力。作为计算机类专业的核心基础课,离散数学的教学目标在于培养学生逻辑思维、计算思维能力以及分析问题和解决问题的能力。但长期以来“定义-定理-证明”这种纯数学的教学模式,导致学生意识不到该课程的重要性,从而缺乏学习兴趣,严重影响学生实践能力的培养。因此,打破原有的教学模式,结合计算机学科的应用背景,通过开展实验教学来加深学生对于离散数学知识的深度理解是实现离散数学教学目标的重要手段。
1.实验项目设计
围绕巩固课堂教学知识,培养学生实践创新能力两个目标,遵循实用性和可行性原则,设计了基础性、应用性、研究性和创新性四个层次的实验项目。
(1) 基础性实验
针对离散数学的一些基本问题,如基本的定义、性质、计算方法等设计了7个基础性实验项目,如表1所示。这类实验要求学生利用所学基础知识,完成算法设计并编写程序。通过实验将抽象的离散数学知识与编程结合起来,能激发学生学习离散数学的积极性,提高教学效率,进而培养学生的编程实践能力。
(2) 应用性实验
应用性实验是围绕离散数学主要知识单元在计算机学科领域的应用来设计实验,如表2所示。设计这类实验时充分考虑了学生掌握知识的情况,按照相关知识点的应用方法给出了每个实验的步骤。学生甚至不需要完成全部实验步骤即可达到实验效果。例如,在“等价关系的应用”实验中,按照基于等价类测试用例的设计方法给出了实验步骤,对基础较差的学生只需做完第三步即可达到“巩固等价关系、等价类、划分等相关知识,了解等价关系在软件测试中的应用,培养数学知识的应用能力。”的实验目的。
(3) 研究性实验研究性实验和应用性实验一样
也是围绕离散数学主要知识单元在计算机科学领域中的应用来设计实验,不同之处在于,研究性实验的实验步骤中增加了一些需要学生进一步探讨的问题。这类实验项目一方面为了使学生进一步了解离散数学的重要性,另一方面为了加强学生的创新意识与创新思维,提高计算机专业学生的数学素质和能力。表 3 给出了研究性试验项目。
(4) 创新性实验
在实际教学中还设计了多个难度较高的创新性实验题目,例如,基于prolog语言的简单动物识别
系统、基于最短路径的公交线路查询系统、简单文本信息检索系统的实现等,完成该类实验需要花费较长的时间,用到更多的知识。通过这些实验不仅有利于培养学生分析问题、解决问题的能力和创新设计能力,也有利于培养学生独立思考、敢于创新的能力。
3.实验教学模式的构建
通过实验教学环节无疑可以激发学生对课程的兴趣,提高课程教学效率,培养学生的实践创新能力。但是,近年来,为了突出应用性人才培养,很多地方本科院校对离散数学等基础理论课的课时进行了压缩,加之地方本科院校学生基础较差,使得离散数学课时严重不足,不可能留出足够的实验教学时间。针对这种情况,采用多维度、多层次的教学模式进行离散数学实验教学。
(1) 将实验项目引入课堂教学
在离散数学的教学过程中,将能反映在计算机科学领域典型应用的实验项目引入到课堂教学中,引导学生应用所学知识分析问题、解决问题。例如在讲授主析取范式时,引入加法器、表决器的设计,并用multisim进行仿真演示,让学生理解数理逻辑在计算机硬件设计中的作用。又如讲谓词逻辑推理时,引入前一届学生用Prolog完成的“小型动物识别系统”作为演示实验。这些应用实例能够让学生体会数理逻辑在计算机科学领域的应用价值,不仅激发学生的学习兴趣,提高课堂教学效率,也锻炼了学生的逻辑思维,培养了学生的系统设计能力。
(2) 改变课后作业形式,在课后作业中增加上机实验题目
由于课时有限,将实验内容以课后作业的形式布置下去,让学生在课余时间完成实验任务。例如讲完数理逻辑内容后,布置作业: 编写 C语言程序,实现如下功能: 给定两个命题变元 P、Q,给它们赋予一定的真值,并计算P、P∧Q、P∨Q的真值。通过完成,使学生掌握命题联结词的定义和真值的确定方法,了解逻辑运算在计算机中的实现方法。又如,把“偏序关系的应用”实验作为“二元关系”这一章的课后作业,给定某专业开设的课程以及课程之间的先后关系,要求学生画出课程关系的哈斯图,安排该专业课程开设顺序,并编写程序实现拓扑排序算法。通过该实验学生不仅巩固了偏序关系、哈斯图等知识,而且了解到偏序关系在计算机程序设计算法中的应用和实现方法。
(3) 布置阅读材料
在教学中,通常选取典型应用和相关的背景知识作为课前或课后阅读材料,通过课堂提问抽查学生的阅读情况。这样,不仅使学生预习或复习了课程内容,同时也使他们对相关知识点在计算机学科领域的应用有了一定的了解。例如,在讲解等价关系后,将“基于等价类的软件测试用例设计方法”作为课后阅读材料; 在讲解图的基本概念之前,将“图在网络爬虫技术中的应用”作为课前阅读材料; 货郎担问题和中国邮路问题作为特殊图的课后阅读材料。通过这些阅读材料极大地调动学生学习的积极性,取得了非常好的教学效果。
(4) 设置开放性实验项目
在离散数学教学中,通常选择一两个创新性实验项目作为课外开放性实验,供学有余力的学生学习并完成,图1给出了学生完成的“基于最短路径公交查询系统”界面图。同时,又将学生完成的实验系统用于日后的课堂教学演示,取得了比较好的反响。
(5) 利用网络教学平台
为了拓展学生学习的空间和时间,建立了离散数学学习网站,学习网站主要包括资源下载、在线视频、在线测试、知识拓展和站内论坛五个部分模块,其中知识拓展模块包含背景知识、应用案例和实验教学三部分内容。通过学习网站,学生不仅可以了解离散数学各知识点的典型应用,还可以根据自己的兴趣选择并完成一些实验项目。在教学实践中,规定学生至少完成1-2个应用性实验项目并纳入期中或平时考试成绩中,从而激发学生的学习兴趣。
4.结束语
针对新工科教育对计算机类专业实践创新能力的要求,在离散数学教学实践中进行了多方位、多层次的实验教学,使学生了解到离散数学的重要
性,激发了学生的学习兴趣,提高了学生程序设计能力和创新能力,取得了较好的教学效果。教学团队将进一步挖掘离散数学的相关知识点在计算机学科领域的应用,完善离散数学实验教学体系,使学生实践能力和创新思维得以协同培养,适应未来工程需要。
参考文献:
[1]徐晓飞,丁效华.面向可持续竞争力的新工科人才培养模式改革探索[J].中国大学教学,2017(6).
[2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(3).
[3]蒋宗礼.新工科建设背景下的计算机类专业改革养[J].中国大学教学,2018( 11) .
[4]The Joint IEEE Computer Society/ACM Task Force onComputing Curricula Computing Curricula 2001 ComputerScience[DB / OL]. http:/ / WWW. acm. org / education /curric_vols / cc2001. pdf,2001.
[5]ACM/IEEE - CS Joint Task Force on Computing Curricula.2013. Computer Science Curricula 2013[DB / OL]. ACMPress and IEEE Computer Society Press. DOI: http: / / dx.doi. org /10. 1145 /2534860.
[6]中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程2002[M].北京: 清华大学出版社,2002.
[7]张剑妹,李艳玲,吴海霞.结合计算机应用的离散数学教学研究[J].数学学习与研究,2014(1) .
[8]莫愿斌.凸显计算机专业特色的离散数学教学研究与实践[J].计算机教育,2010(14)