首页

> 期刊论文知识库

首页 期刊论文知识库 问题

石油地球物理勘探论文格式

发布时间:

石油地球物理勘探论文格式

地球物理研究所硕士论文研究是主动和系统方式的过程,是为了发现、解释或校正事实、事件、行为、或理论,或把这样事实、法则或理论作出实际应用。地球物理学是地球科学中的新兴学科,也是人类深入认识地球的主要工具。地球物理学以物理学研究的发展为依托,运用物理学的理论和方法探索地球内部的结构,动力系统及演化。其范围涉及地壳,地幔和地核,尤其是岩石层和软流层发生的各种物理现象,成因及其过程。通过地球物理场的观测、资料处理和模型计算已达到深入认识地球、造福人类的目的。地球物理学由固体地球物理学、应用地球物理学、大地测量学、空间物理学、大气物理学、海洋地球物理学等分支学科组成。其中应用地球物理学的主要任务是应用地球物理原理和方法开展能源、资源的勘探与开发,地震灾害预测预防、地球环境的保护和污染检测。

王兆峰1,2 王 鹏2 陈 鑫2 李 强2

(1.中国地质大学地球物理与信息技术学院,北京 100083; 2.中国石油集团东方地球物理公司研究院,河北涿州 072751)

作者简介:王兆峰,男,在读博士后,高级工程师,主要从事油气藏评价与开发工作。

摘 要:缝洞型碳酸盐岩油气藏是全球油气增储上产的重要领域之一。然而,碳酸盐岩储集体形态复杂,非均质性强,难以准确预测。本文以哈萨克斯坦A油田Pz段储集体为研究对象,采用井震协同进行精细连井 标定,提高了目的层横向上的连续性和可靠性。引入现代岩溶理论指导基底顶面构造解释,落实尖灭线及圈 闭规模,增加了研究区勘探开发的面积。利用断层建模技术将断层面立体刻画,确保断层解释的精度。利用 三维可视化技术进行古地貌分析,将研究区古地貌分为峰从洼地、峰林谷地和古侵蚀沟3种,并预测了有利 岩相带的空间展布。综合地质、测井和地震响应特征,宏微观相结合将储集体分为溶洞孔隙型、裂缝孔隙型 和裂缝型3种。综合地震属性、地震反演和蚂蚁体追踪建模技术,刻画了储集体的空间展布特征,并指出了 下一步滚动勘探开发的潜力区。

关键字:缝洞型储层;碳酸盐岩;储集体预测;A油田

The Characteristics and Prediction of Fissure-cavern Carbonate Reservoirs of PzLayer in NWKYZ Oil field in Kazakhstan

Wang Zhaofeng1,2,Wang Peng2,Chen Xin2,Li Qiang2

( and Information Technology Institute of China University of Geosciences,Beijing 100083,China; Geophysical Research Institute,CNPC,Zhuozhou 072751,China)

Abstract:Fissure-cavern carbonate reservoirs is one of the most important areas of increasing oil and gas production in the is hard to forecast because the reservoir rock has complex form and fissure-cavern carbonate reservoirs of the Pz layer in NWKYZ oil field in Kazakhstan as the target,we demarcate the well tie with integration of well and seismic to heighten the consistence and reliability of the horizon draw recent karst theory to direct the structure elucidation of the top surface of the define the wedge out and structural trap,and increase the exploratory development area of the region of show the fault plane audio-visual with the method of fault model technology and make sure the quality of fault divide the palaeogeomorphology into 3 kinds with 3D visualization:peak cluster,peak forest and fossil erosion forecast the distribution of the beneficial the characteristic of geology,logging and seismic response,we divide the reservoirs into 3 kinds:vag hole,fracture pore and clarify the distribution of the 3 types reservoirs with the method of seismic attribution,seismic inversion and ant tracking modeling,and then we point out the potential area for exploratory development.

Key words:Fissure-cavern reservoir;carbonate;reservoir prediction;NWKYZ oil field

引言

缝洞型碳酸盐岩油气藏是全球油气增储上产的重要领域之一[1~2]。由于该储集体形态复杂,非均质性强,钻探成功率一直不高,使得缝洞型碳酸盐岩油气藏的勘探开发成为一项世界级难 题[3~7]。多学科综合应用进行储集体的预测是解决这项难题的有效途径[8~9]。本文以哈萨克斯坦 A油田Pz层的缝洞型碳酸盐岩储集体为例,探索综合应用地质、地震、测井及生产动态资料来预 测缝洞型碳酸盐岩储集体特征的方法,希望能抛砖引玉,促进多学科在缝洞型碳酸盐岩储集体预 测中的广泛应用。

图1 A油田位置(据胡向红,2011[7],有修改)

1 区域地质概况

A油田位于哈萨克斯坦共和国境内南图尔盖盆地南部的Aryskum凹陷的aksay凸起上(图1)[1]。A 油田主要在M-Ⅱ层、侏罗系层和基底Pz层发现了工业油气流。本次研究的基底Pz层主要为灰岩和白 云质灰岩(Kz43、Kz47井),部分井含少量硬硅酸岩和软硅酸岩(Kz51),是典型的缝洞型碳酸盐岩储 集体。

南图尔盖盆地基底固结于早古生代末,根据基底组成及变质程度的差异,可进一步将其划分为 两套构造层,即前元古宇-下古生界深变 质褶皱基底,为盆地之真正基底,另一套 为泥盆-石炭系碳酸盐岩-基底Pz,为盆 地过渡性质基底,研究区的基底属于碳酸 盐岩过渡性基底[1]。基底之上主要发育侏 罗系、白垩系、第三系(古近-新近系) 和第四系,上覆地层与基底间以大角度不 整合接触(表1)。

南图尔盖盆地位于哈萨克斯坦中南部,处于乌拉尔-天山缝合线转折端剪切带,是 在海西期基底隆起上发育的中生代裂谷盆 地[10]。按地层构造标志序列,可将其中新 生界划分出反映区域构造演化特征的5个阶 段,即初始张裂阶段、断陷发育阶段、断坳 转换阶段、坳陷发育阶段和后期隆起阶 段[10]。研究区目的层基底Pz固结于古生代 末,并且遭受了抬升和强烈的剥蚀。A油田 基岩岩性复杂,据岩心、录井、镜下资料分 析,储层主要岩性可以分为4类:灰岩、白 云质灰岩、角砾岩和硅质岩。测井曲线特征 表现为高电阻率、高速度、低中子、高密度的特征。

表1 南图尔盖盆地地层简表

2 精细构造解释

井震联合连井精细标定

精细的地震地质层位标定是地震构造解释的基础,在标定时确保每一个地质界面和地震同相轴相对 应,匹配好储层段的每个同相轴,使时间域地震资料和深度域的测井资料能够正确地结合[11]。本次层 位标定采用“井震结合连井精细标定” 方法,即综合利用研究区29口完钻井的钻井、录井和测井资料 在进行了精确地层划分与对比的基础上,进行层位的连井标定与对比。通过多井合成地震记录的制作及 研究区纵横向联井剖面的对比验证,保证了层位标定横向上的连续性和可靠性(图2)。在标定过程中 根据测井曲线在纵向上的变化规律来确定标准层。其中白垩系阿雷斯库姆组泥岩段在工区内分布相对稳 定,可作为标准层。

图2 NWKYZYJIA50-58-54-48-57-32-51-31联井标定剖面

引入现代岩溶理论指导基底顶面构造解释

利用现代岩溶形成的喀斯特地貌特征(图3-A)和研究区的地震剖面(图3-B)进行对比来指导地 震解释,将古地貌复杂的上覆地层与基底的接触关系分为U形、V形和楔形3种,并对研究区古地貌复杂 的研究区进行重新解释。重新落实MII、J3ak尖灭线及构造、落实碳酸盐古潜山构造。

图3 引入现代岩溶指导缝洞型碳酸盐岩的基底顶面构造解释

断裂模型确保断层解释精度

在运用相干、地层倾角、时间切片、三维可视化等多种方法进行断层识别的基础上,进行断层建 模,利用断裂模型来确保断层解释精度(图4)。全区共解释断层50条,穿过基底断层30条,其中10 条延伸距离在以上(图5)。

图4 A油田断面模型

图5 A油田Pz层顶面断裂平面分布图

构造落实与古地貌的三维可视化展现

在精细解释Pz顶面反射层的基础上,利用研究区29口井的时深关系建立三维速度场,对层位进行 时深转换,然后对井进行校正,得到了目的层顶面构造图(图6)。基底Pz顶面主要分为东、西两个隆 起,局部发育一些小背斜圈闭,本次研究共落实圈闭16个,面积。

图6 A油田Pz层顶面构造图

在构造落实的基础上,进行古地貌恢复,并利用三维可视化技术展现研究区的古地貌特征(图7)。研究区的古地貌可分为峰从洼地、峰林谷地和古侵蚀沟3种类型。

图7 A油田Pz层古地貌分析图

3 储集体特征及预测

储层岩相特征

岩心、薄片及录井资料显示基底Pz主要岩性为灰岩、白云质灰岩、硅质岩和角砾岩4类。由单井 岩相分析图(图8)可以看出,基底岩性的电测特征主要分为两类:一类灰岩和白云质灰岩为低伽马、 中高电阻率、低声波时差、高密度;另一类硅质岩和角砾岩刚好相反,中高伽马、低电阻率、高声波时 差、低密度。同类岩性的曲线形态基本一致,多为线型。从接触关系上看,灰岩和白云质灰岩与上覆碎 屑岩的测井曲线接触关系为突变,硅质岩和角砾岩与上覆碎屑岩的接触关系为渐变。储层岩相在横向和 纵向上都具有很强的非均质性,角砾岩、硅质岩和白云质灰岩呈块状分布,利用属性建模技术能够很好 地将岩相的空间展布形态直观地展示(图9)。

储层分类特征

A油田Pz段的缝洞型碳酸盐岩储集体次生孔隙较为发育,非均质性强,储层物性好,是该区的主 力产层。根据岩心、测井及地震响应特征,研究区的储集体主要可以分为溶洞孔隙型、裂缝孔隙型和裂 缝型3种类型(表2)。

(1)溶洞孔隙型储集体。溶洞被硅质岩、角砾岩全充填,储集空间以溶洞充填物之间的孔隙为主。一般具有一定的构造背景,地震响应呈透镜状异常强反射,下部呈凹形的不连续强反射。测井响应呈箱 形或漏斗形,中低GR、高DT和低密度。

图8 A油田NWKYZYJIA49井Pz段岩相分析综合柱状图

图9 A油田Pz段岩相模型

表2 A油田Pz段储层分类特征

(2)裂缝孔隙型储集体。裂缝和基质孔隙比较发育,是典型的双重介质型储集体。地震响应上常 呈不连续反射,特征不明显,多与缝洞和较大的断裂相邻。测井曲线变化较小,低GR、低DT和高 密度。

(3)裂缝型储集体。储集空间主要是微裂缝。在地震响应上主要表现为连续强振幅界面,测井曲 线变化较小,低GR、中高DT和中高密度。

地震属性进行储层预测

地震属性分析是预测碳酸盐岩孔洞缝分布的重要技术手段。孔洞缝体系的规模和充填程度不同均会 引起地震响应细微的变化,而这种变化靠肉眼从地震同相轴的变化上来识别是非常困难的[12]。但是,在地震属性的差异中可能隐含了这种变化,每一种地震属性都从不同的侧面反映地下的变化,不同的属 性对缝洞的敏感程度是不同的。反射振幅包含了单个界面的速度、密度及其厚度信息,用它预测横向的 岩层变化和碳氢化合物存在的可能性,利用振幅类的属性可以帮助识别缝洞储层的分布[13]。频率是地 震脉冲的特性,它和地质因素如反射层的厚度或速度的横向变化及气体的存在有关:通常低频更多反映 厚的特征,高频对薄的特征敏感,油气和储层的变化会引起高频的吸收衰减。由于缝洞型碳酸盐岩储层 在大套的碳酸盐岩地层中相对而言是微观的,因此,在碳酸盐岩缝洞型储层的预测中,分频信息对刻画 储层的非均质性是很有帮助的[14]。反射连续性和地层连续性有密切的关系,是评价地震同相轴横向延 伸能力的物理参数,通常用相位类的属性来刻画。

(1)分频属性。分频解释技术是一种新的地震资料解释方法,它是以傅里叶变换、最大熵法及小 波变换等为核心算法的频谱分解技术[14-15]。分频属性结合三维可视化,是精细描述非均质储层的有力 手段。该方法在对三维地震资料时间厚度、地质不连续性成像和解释时,可在频率域内对每一个频率所 对应的振幅进行分析,这种分析方法排除了时间域内不同频率成分的相互干扰,从而可得到高于传统分 辨率的解释结果。通过对分频数据体的过井点剖面分析,总结研究区储层的分频响应有以下规律:有利 储层的分频响应为相对高(暖色)的调谐振幅,差储层分频属性响应往往表现为较低(冷色)调谐振 幅(图10)。通过该方法研究,认为基底碳酸盐岩有利储层主要分布于研究区中部,以侵蚀沟谷为界东 西分布的两大古岩隆周围面积约20km2。

图10 NWKYZYJIA地区基底50Hz分频属性可视化效果图

(2)振幅类属性。振幅是岩性界面阻抗差异的响应,上下地层阻抗差异越大,形成的反射振幅越 强[16]。研究区基底碳酸盐岩表现为弱振幅特征,当内部出现孔、洞、缝的时候,相当于在其内部出现 新反射界面,容易表现出振幅异常,形成局部强反射。

在NWKYZYJIA地区基底反射强度交流分量平面图上(图11),中部反射强度较强(橙、黄等暖色 调)区域代表了孔洞等Ⅰ类储集体发育的地区,其周边反射强度较弱(蓝、绿等冷色调)区域则代表 孔洞不发育的地区。可以看到,强反射区域可大致分为东、西两个部分,与分频技术预测结果基本一 致。在此基础上,每部分又可分为多个沿NW-SE方向展布的条带,与研究区主要断层展布方向基本 一致,说明孔洞发育情况受区域应力和断裂影响。

图11 NWKYZYJIA地区基底反射强度交流分量平面图

用地震反演进行储层预测

地震反演技术是充分利用测井、钻井、地质资料提供的丰富的构造、层位、岩性等信息,从常规的 地震剖面推导出地下地层的波阻抗、密度、速度、孔隙度、渗透率、砂泥岩百分比、压力等信息[17]。本次反演用Jason软件中约束稀疏脉冲反演(Constraint Sparse Spike Inversion)来完成的。

根据研究区基底Ⅰ、Ⅱ类储集体发育规律,利用Jason软件的体雕刻模块(Volume View)对 距潜山顶面120m厚度范围内的Ⅰ、Ⅱ类储集体进行了雕刻(图12,图13),Ⅰ类储集体波阻抗值 界定为5000~10000g/cm3 *m/s,Ⅱ类储集体波阻抗值界定为10000~13800g/cm3 *m/s。结合研 究区的构造特征可以看出,Ⅰ类储集体主要沿古构造高部位发育,而且位置越高的地方储层厚度越 大,NWKYZYJIA56井附近,Ⅰ类储集体厚度达70m。Ⅱ类储集体发育于构造斜坡部位,其他地方 也有小范围的零星分布。

利用蚂蚁体追踪建模技术进行储层裂缝预测

裂缝预测一直是缝洞型储层研究的难点。本次裂缝预测采用蚂蚁追踪技术,该技术的原理就 是在地震数据体中播撒大量的蚂蚁,在地震属性体中发现满足预设断裂条件的断裂痕迹的蚂蚁将 “释放” 某种信号,召集其他区域的蚂蚁集中在该断裂处对其进行追踪,而其他不满足断裂条件 的断裂痕迹将不进行标注[18]。最后,获得一个低噪音、具有清晰断裂痕迹的数据体。根据研究区 Pz顶面以下0~120m蚂蚁体追踪的裂缝模型(图14)可以看出,Ⅲ类裂缝型储集体受断裂影响 明显,发育于断裂附近。

图12 NWKYZYJIA工区Pz顶面以下0~120m Ⅰ类储集体厚度图

图13 NWKYZYJIA工区Pz顶面以下0~120m Ⅱ类储集体厚度图

图14 NWKYZYJIA工区Pz顶面以下0~120mⅢ类裂缝型储层展布特征

4 结论

(1)采用井震联合技术进行精细连井标定可以增强层位标定横向上的连续性和可靠性。

(2)引入现代岩溶理论指导基底顶面构造解释,落实尖灭线及构造圈闭。研究区重新落实MII、 J3ak尖灭线及构造,落实碳酸盐古潜山构造,增加了勘探开发的面积。

(3)断层建模技术可以将断层面直观地展现,有利于确保断层解释的质量。

(4)利用三维可视化技术展现古地貌特征,有助于古地貌的分析。研究区的古地貌主要可以分为 峰丛洼地、峰林谷地和古侵蚀沟3种类型。

(5)综合地质、测井和地震响应特征,将研究区储集体分为溶洞孔隙型、裂缝孔隙型和裂缝型三 种类型。

(6)综合地震属性、地震反演和蚂蚁体追踪建模技术,弄清了研究区3类储集体的空间展布特征。认为Ⅰ类溶洞孔隙型储集体主要沿古构造高部位发育,而且位置越高的地方储层厚度越大;Ⅱ类裂缝孔 隙型储集体发育于构造斜坡部位,其他地方也有小范围的零星分布;Ⅲ类裂缝型储集体受断裂影响明 显,发育于断裂附近。

参考文献

[1]康玉柱.中国海相油气田勘探实例之四:塔里木盆地塔河油田的发现与勘探.海相油气地质,2005,10(4):31~38.

[2]张抗,王大锐.中国海相油气勘探的启迪[J].石油勘探与开发,2003,30(2):9~16.

[3]Clyde 著,姚根顺,沈安江,潘文庆等译.碳酸盐岩储层-层序地层格架中的成岩作用和孔隙演化(M).石油工业出版社,2008:1~393.

[4]Loucks, carbonate reservoirs:Origins,burial-depth modification,spatial complexity,and reservoir im Bulletin,1999,83(11):1795-1834.

[5]M cM echan .,Loucks,.,M Escher,P.,et al., of a paleocave reservoir analog using GPR and well-core ,67(4):1148-1158.

[6]Loucks,.,M escher,.,M cM echan,., architecture of a coalesced,collapsed- paleocave system in the Lower Ordovician Ellenburger Group,Central Bulletin,88(5):545-564.

[7]Yaacov and karst in hard carbonates in northern Israel[J].Geological Survey of Israel,1996,10:90-94.

[8] Grammer,Paul M “Mitch” Harris,Gregor 编,蔡希源,李思田,郑和荣,马永生等译,储层模拟 中露头和现代沉积类比的综合研究,AAPG论文集80(C),地质出版社,2008:1~367.

[9]陈鑫,钟建华.塔里木盆地奥陶系碳酸盐岩储集体井下和露头对比研究[D].中国石油大学(华东),:1~140.

[10]胡向红等.Kolzhan油田概念设计[R].中石油集团国际研究中心,2007,:1~22.

[11]曾正明.合成地震记录层位标定方法改进[J].石油地球物理勘探,2005,40(5):576~581.

[12]王光付.碳酸盐岩溶洞型储层综合识别及预测方法[J].石油学报,2008,29(1):47~51.

[13]Gislain G History:Seismic impedance inversion and interpretation of a gas carbonate reservoir in the Alberta Foothills,western Canada[J].Geophysics,September-October 2003,Vol 68(5),1460-1469.

[14]Greg Partyka,JamesGridly,著.张忠伟,马劲风,译.频谱分解在油藏描述中的解释性应用[J].国外油气勘探,2000,12(1):94~101.

[15]Michael J, 3-D visualization will change interpretation strategies in future oil companies[J].The Leading Edge,December2001:54.

[16]曲寿利,李群,姚弘,等.国内外物探技术现状与展望[M].北京:石油工业出版社,2003:33 ~41.

[17]杨晓春,李小凡,张美根.地震波反演方法研究的某些进展及其数学基础[J].地球物理学进展,2001,16(4): 96~109.

[18]史军.蚂蚁追踪技术在低级序断层解释中的应用[J].石油天然气学报,2009,31(2):257~259.

1、题目2、摘要3、关键词4、正文5、参考文献 这是一般论文的格式要求,具体的论文如本硕博毕业论文或者给某学术刊物投稿的论文等,都要看他们相关的具体规定。

石油地球物理勘探期刊目录

1、石油勘探与开发 2、石油学报 3、天然气工业 4、石油与天然气地质5、石油化工 6、石油实验地质 7、石油大学学报.自然科学版(改名为:中国石油大学学报.自然科学版) 8、石油钻采工艺 9、油田化学 10、新疆石油地质11、西南石油学院学报(改名为:西南石油大学学报) 12、石油机械 13、钻采工艺14、石油炼制与化工 15、大庆石油地质与开发 16、西安石油大学学报.自然科学版17、石油地球物理勘探 18、油气地质与采收率 19、油气储运 20、石油天然气学报 21、中国海上油气 22、石油钻探技术 23、大庆石油学院学报 24、石油物探 25、油气田地面工程 26、天然气地球科学 27、石油学报.石油加工28、测井技术 29、断块油气田

刊名: 海相油气地质Marine Origin Petroleum Geology主办: 中国石油集团;杭州地质研究所周期: 季刊出版地:浙江省杭州市语种: 中文;开本: 大16开ISSN: 1672-9854CN: 33-1328/P创刊时间:1993复合影响因子:综合影响因子:首先肯定一点该刊是核心期刊。最新11版中文核心期刊目录有,统计源核心期刊目录内也有该刊。11版中文核心目录(部分):TE石油、天然气工业类核心期刊表序号 刊名1 石油勘探与开发2 石油学报3 石油与天然气地质4 石油实验地质5 天然气工业6 石油化工7 石油物探8 中国石油大学学报.自然科学版9 天然气地球科学10 西南石油大学学报.自然科学版11 石油钻采工艺12 新疆石油地质13 测井技术14 油气地质与采收率15 大庆石油地质与开发16 钻采工艺17 油田化学18 石油钻探技术19 石油炼制与化工20 石油地球物理勘探21 特种油气藏22 石油机械23 西安石油大学学报.自然科学版24 钻井液与完井液25 石油学报.石油加工26 大庆石油学院学报27 油气田地面工程28 海相油气地质29 中国海上油气统计源期刊目录(部分):G941 海南医学G416 海南医学院学报L037 海相油气地质E651 海洋测绘E155 海洋地质与第四纪地质E131 海洋工程E312 海洋湖沼通报Z010 海洋环境科学如果需要核心期刊目录可发邮件跟我索取,我发你一份电子版的,以便查询。

这是国内中文核心一些石油相关期刊,供您参考一下:1. 石油勘探与开发2. 石油学报3. 天然气工业 4. 石油与天然气地质 5. 石油化工 6. 石油实验地质7. 石油大学学报.自然科学版(中国石油大学学报.自然科学版)8. 石油钻采工艺9. 油田化学10. 新疆石油地质 11. 西南石油学院学报(改名为:西南石油大学学报) 12.石油机械 13.钻采工艺 14. 石油炼制与化工15. 大庆石油地质与开发16.西安石油大学学报.自然科学版17. 石油地球物理勘探18. 油气地质与采收率19. 油气储运20. 石油天然气学报21.中国海上油气22. 石油钻探技术 23. 大庆石油学院学报24. 石油物探25. 油气田地面工程26.天然气地球科学27. 石油学报.石油加工28.测井技术29.断块油气田 其中石油学报是EI部分收录。 国外SCI收录期刊主要有:1. AAPG BULLETIN 《美国石油地质学家协会通报》美国 2. BULLETIN OF CANADIAN PETROLEUM GEOLOGY 《加拿大石油地质学通报》加拿大 3. CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS 《燃料与石油化学和工艺学》美国 4. CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY 《中国炼油与石油化工》中国 5. GEOARABIA 《中东石油地球科学杂志》巴林 6. HYDROCARBON PROCESSING 《烃加工》美国 7. INTERNATIONAL GAS ENGINEERING AND MANAGEMENT 《国际天然气工程与管理》英国 8. JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY 《加拿大石油技术杂志》加拿大 9. JOURNAL OF GEOPHYSICS AND ENGINEERING 《地球物理学与工程学》英国 10. JOURNAL OF PETROLEUM GEOLOGY 《石油地质学杂志》英国 11. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING《石油科学和石油工程杂志》荷兰 12. JOURNAL OF THE JAPAN PETROLEUM INSTITUTE 《日本石油学会志》日本 13. OIL & GAS JOURNAL 《石油与天然气杂志》美国 14. OIL & GAS SCIENCE AND TECHNOLOGY REVUE DE L INSTITUT FRANCAIS DU PETROLE 《石油、天然气的科学与技术;法国石油研究所杂志》法国 15. OIL GAS-EUROPEAN MAGAZINE 《欧洲石油气杂志》德国 16. OIL SHALE 《油页岩》爱沙尼亚 17. PETROLEUM CHEMISTRY 《石油化学》美国 18. PETROLEUM GEOSCIENCE 《石油地质科学》英国 19. PETROLEUM SCIENCE 《石油科学》德国 20. PETROLEUM SCIENCE AND TECHNOLOGY 《石油科学与技术》美国 21. PETROPHYSICS 《岩石物理学》美国 22. SPE DRILLING & COMPLETION 《石油工程师协会钻井与完井》美国 23. SPE JOURNAL 《石油工程师协会杂志》美国 24. SPE PRODUCTION & OPERATIONS 《石油工程师协会生产和操作》美国 25. SPE RESERVOIR EVALUATION & ENGINEERING 《石油工程师协会油藏评估与工程》美国 26. VISION TECNOLOGICA 《技术视野》委内瑞拉 SPE相对容易一些

2012北大核心目录有它。是核心期刊。

石油地球物理勘探投稿难吗

地球物理勘探领域的期刊,双核心,EI检索,比较可以

etalibaba(站内联系TA)核心期刊有这些,具体哪个快不知道,希望有用 1. 石油勘探与开发2. 石油学报3. 天然气工业 4. 石油与天然气地质 5. 石油化工 6. 石油实验地质7. 石油大学学报.自然科学版(中国石油大学学报.自然科学版)8. 石油钻采工艺9. 油田化学10. 新疆石油地质 11. 西南石油学院学报(改名为:西南石油大学学报) 12.石油机械 13.钻采工艺 14. 石油炼制与化工15. 大庆石油地质与开发16.西安石油大学学报.自然科学版17. 石油地球物理勘探18. 油气地质与采收率19. 油气储运20. 石油天然气学报21.中国海上油气22. 石油钻探技术 23. 大庆石油学院学报24. 石油物探25. 油气田地面工程26.天然气地球科学27. 石油学报.石油加工28.测井技术29.断块油气田tangbohejin(站内联系TA)石油天然气学报相对好投一些。。。。

《石油地球物理勘探》创刊于1966年,是伴随关我国石油工业的飞速发展而迅速成长起来的优秀科技期刊。于l992年、1997年蝉联全国优秀科技期刊一等奖;1999年荣获首届国家期刊奖;2001年进入中国期刊方阵,获“双高期刊”荣誉 ;2003年、2005年蝉联第二届和第三届国家期刊奖百种重点期刊。当前已是美国工程引文索引(EI)收录的源刊。 《石油地球物理勘探》主要报道内容有石油勘探的新理论 、新方法、新技术 、新经验 ,范围涉及地震资料采集 、处理 、综合解释、非地震勘探 、物探仪器及装备的研制应用等,为从事石油勘探及相关领域的广大科研生产人员服务。以上是百度中查到的,我稍稍补充一下吧,它中文核心期刊目录中的期刊,属于国家级期刊,影响因子是,相对来说不是很容易发的(比新疆石油地质、特种油气藏等同类的核心期刊要难发一些)

石油勘探与开发期刊格式

石油勘探与开发见刊大概一个月左右可以见刊。

《石油勘探与开发》是1974年创办的中文学术期刊,中国石油天然气集团公司主管,中国石油勘探开发研究院、中国石油集团科学技术研究院主办。

期刊主要刊登石油勘探、开发及工程领域具有创新性、能够反映国内外石油工业重大成果的高水平学术论文。

《石油勘探与开发》设有“油气勘探”、“油气田开发”、“石油工程”、“综合研究”和“学术讨论”等栏目。

期刊主要刊登石油勘探、开发及工程领域具有创新性、能够反映国内外石油工业重大成果的高水平学术论文。

期刊发行对象主要是国内外相关石油公司的高级管理层,各油气勘探、开发及工程研究机构,地质及油气相关科学研究机构、大专院校、各大图书馆和能源信息研究、咨询部门,读者对象主要是中高级科研、技术及管理人员。

这是国内中文核心一些石油相关期刊,供您参考一下:1. 石油勘探与开发2. 石油学报3. 天然气工业 4. 石油与天然气地质 5. 石油化工 6. 石油实验地质7. 石油大学学报.自然科学版(中国石油大学学报.自然科学版)8. 石油钻采工艺9. 油田化学10. 新疆石油地质 11. 西南石油学院学报(改名为:西南石油大学学报) 12.石油机械 13.钻采工艺 14. 石油炼制与化工15. 大庆石油地质与开发16.西安石油大学学报.自然科学版17. 石油地球物理勘探18. 油气地质与采收率19. 油气储运20. 石油天然气学报21.中国海上油气22. 石油钻探技术 23. 大庆石油学院学报24. 石油物探25. 油气田地面工程26.天然气地球科学27. 石油学报.石油加工28.测井技术29.断块油气田 其中石油学报是EI部分收录。 国外SCI收录期刊主要有:1. AAPG BULLETIN 《美国石油地质学家协会通报》美国 2. BULLETIN OF CANADIAN PETROLEUM GEOLOGY 《加拿大石油地质学通报》加拿大 3. CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS 《燃料与石油化学和工艺学》美国 4. CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY 《中国炼油与石油化工》中国 5. GEOARABIA 《中东石油地球科学杂志》巴林 6. HYDROCARBON PROCESSING 《烃加工》美国 7. INTERNATIONAL GAS ENGINEERING AND MANAGEMENT 《国际天然气工程与管理》英国 8. JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY 《加拿大石油技术杂志》加拿大 9. JOURNAL OF GEOPHYSICS AND ENGINEERING 《地球物理学与工程学》英国 10. JOURNAL OF PETROLEUM GEOLOGY 《石油地质学杂志》英国 11. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING《石油科学和石油工程杂志》荷兰 12. JOURNAL OF THE JAPAN PETROLEUM INSTITUTE 《日本石油学会志》日本 13. OIL & GAS JOURNAL 《石油与天然气杂志》美国 14. OIL & GAS SCIENCE AND TECHNOLOGY REVUE DE L INSTITUT FRANCAIS DU PETROLE 《石油、天然气的科学与技术;法国石油研究所杂志》法国 15. OIL GAS-EUROPEAN MAGAZINE 《欧洲石油气杂志》德国 16. OIL SHALE 《油页岩》爱沙尼亚 17. PETROLEUM CHEMISTRY 《石油化学》美国 18. PETROLEUM GEOSCIENCE 《石油地质科学》英国 19. PETROLEUM SCIENCE 《石油科学》德国 20. PETROLEUM SCIENCE AND TECHNOLOGY 《石油科学与技术》美国 21. PETROPHYSICS 《岩石物理学》美国 22. SPE DRILLING & COMPLETION 《石油工程师协会钻井与完井》美国 23. SPE JOURNAL 《石油工程师协会杂志》美国 24. SPE PRODUCTION & OPERATIONS 《石油工程师协会生产和操作》美国 25. SPE RESERVOIR EVALUATION & ENGINEERING 《石油工程师协会油藏评估与工程》美国 26. VISION TECNOLOGICA 《技术视野》委内瑞拉 SPE相对容易一些

地球物理勘探仪器论文参考文献

机械论文参考文献

在学习和工作中,大家都有写论文的经历,对论文很是熟悉吧,通过论文写作可以提高我们综合运用所学知识的能力。怎么写论文才能避免踩雷呢?以下是我收集整理的机械论文参考文献,仅供参考,大家一起来看看吧。

[1]尤世杰.试论机械加工中的工装夹具定位设计[J].工业技术,.

[2]张树勋.机械加工中的工装夹具定位设计方法[J].工业技术,.

[3]王存荣.机械加工中的工装夹具的定位设计及其价值研究[J].工程机械,.

[4]梁荣坚.机械加工中的工装夹具定位设计方法[J].机械管理开发,.

[5]胡建中,等.工程机械机群远程故障诊断系统研究.制造业自动化,2005(12):22-25,39.

[6]梁兰娇.浅谈工程机械油耗定额的制定[J].北方交通,2008(7):160-162.

[7]李兴,张礼崇,郜祥,等.机械设备状态监测及诊断技术[J].技术与市场,2012(01):49-50.

[8]杨晓强,张梅军,苏卫忠.机械设备状态监测系统[J].振动.测试与诊断,1999(03):29-32.

[9]张利群,朱利民,钟秉林.几个机械状态监测特征量的特性研究[J].振动与冲击,2001,20(1):20-21.

[10]徐敏,等.设备故障诊断手册-机械设备状态监测和故障诊断[M].西安交通大学出版社,1998.

[11]靳晓雄,胡子谷.工程机械噪声控制学[M].上海:同济大学出版社,1997.

[12]蒋真平,周守艳.工程机械噪声与控制分析[J].建筑机械,2007(4):79-82.

[13]张性伟,王世良,付光均.工程机械驾驶室内的降噪方法[J].工程机械,2008(1):61-63.

[14]廉红梅,朱武强.某型平地机噪声测试分析及降噪改进措施[J].工程机械,2019(7):40-45.

[15]邵杰,张少波,刘宏博.某型平地机作业时发出异响的原因及改进措施[J].工程机械与维修,2019(1):60-61.

[16]杨林.一种新型高精密机械密封的研究[J/OL].装备制造与教育,2017,(03):60-61+80(2017-10-30).

[17]许艾明,赵柱,陈琨,等.非确定工作状态下机械系统可靠性分析[J].机械设计与制造,2012(1):100-102.

[18]韩萍,张彦生.高新技术在工程机械上的应用及发展[C].北京:中国工程机械学会年会,2003.

[19]李志刚.矿山机械的润滑管理与保养分析[J].中国新技术新产品,2017,(21):128-129.

[20]武志敏.水泥机械液压系统液压油污染的危害与控制[J].内燃机与配件,2017,(20):88-89.

[21]白永,张啸晨.化工机械设备管理及维护保养技术分析[J].内燃机与配件,2017,(20):97-98.

[22]徐晓光,喻道远,饶运清,等.工程机械的智能化趋势与发展对策[J].工程机械,2002,33(6):9-12.

[23]王世明,杨为民,李天石,等.国外工程机械新技术新结构和发展趋势[J].工程机械,2004(1):4,65-70.

[24]邵杰,张勇.自动化技术在工程机械使用中的应用效用探讨[J].中国石油和化工标准与质量,2011(9):148.

[25]赵红,烟承梅,严纪兰.我国机械自动化技术的应用与发展前景展望[J].安阳师范学院学报,2014(5):65-67.

[26]毛安石.探析农业机械设计制造中自动化技术的应用[J].山西农经,2019(24):112+114.

[27]李杰.农业机械设计制造中自动化技术的应用[J].南方农机,2019,50(18):41.

[28]席猛.农业机械设计制造中自动化技术的应用探析[J].山西农经,2019(4):127.

[29]张永宽.全面应用自动化技术提升农业机械制造水平探究[J].南方农机,2018,49(20):33.

[30]黄东升.适用于中国非公路设备发展的液力传动油技术[J].润滑油,2016,31(5):10-13.

[31]李良敏,何超,宋成利,袁帅,张志阳,陈力.微创手术机器人机械臂结构设计与工作空间分析[J].医用生物力学,2019,01:40-46.

[32]梁东岚,张钺烔,吴嘉汶,姚翠兰.突破性机械义肢[J].中国科技教育,2019,02:22-23.

[33]郭磊.现代化医疗机械通气装置的应用[J].计算机产品与流通,2019,03:63.

[34]徐生龙,崔玉萍金属复合材料在机械制造中的应用研究[J/OL].世界有色金属,2017,(16):70+72(2017-10-25).

[35]刘浩浩,李洁,徐亦陈.基于粗糙集的起重机械安全风险评价[J/OL].土木工程与管理学报,2017,(05):154-158+169(2017-10-25).

[36]何帆,肖锡俊.心脏机械瓣膜置换术后早期患者抗凝治疗的进展[J/OL].中国胸心血管外科临床杂志,2017,(11):1-6(2017-10-25).

[37]刘文波.汽车控制中机械自动化技术的应用[J/OL].电子技术与软件工程,2017,(20):112(2017-10-26).

[38]刘坤,吉硕,孙震源,徐洪伟,刘勇,赵静霞.多功能坐站辅助型如厕轮椅机械结构设计与优化[J].吉林大学学报(工学版),2019,03:872-880.

[39]乔宇,姚运萍,马利强,杨小龙,陈继鹏,陈惠贤.重离子放疗辅助医用机械臂避撞路径规划研究[J].中国医疗设备,2019,06:61-65.

[40]龙腾.一种六自由度机械臂的控制系统设计[J].信息技术与网络安全,2019,06:65-68.

[41]赵海贤.探析机械工程智能化的现状及发展方向[J].江西建材,2017,(20):236+239.

[42]王恒宗.我国现代机械制造技术的发展趋势[J].信息记录材料,2017,18(11):5-6.

[43]徐沛锋.机械电子工程综述[J].信息记录材料,2017,18(11):14-15.

[44]韩宁.机械制造工艺与机械设备加工工艺要点[J].信息记录材料,2017,18(11):39-40.

[45]梁万吉.浅谈计算机辅助技术与机械设计制造的结合[J].信息记录材料,2017,18(11):64-65.

[46]罗校清.基于人工神经网络的工业机械故障诊断优化方法研究[J].科技创新与应用,2017,(30):106-107+110.

[47]张司颖.航空装备机械原因事故主要特点及预防措施[J].内燃机与配件,2017,(20):78-79.

[48]李光志,张营.《机械制图》教学改革创新[J].现代商贸工业,2017,(30):170.

[49]马占平.机械自动化在机械制造中的应用分析[J].内燃机与配件,2017,(20):47-48.

[50]程彬.关于我国工程机械机电一体化发展的探讨[J].内燃机与配件,2017,(20):138-139.

[51]韦邦国,宋韬,郭帅.基于最小二乘法的移动机械臂激光导航标定[J].工业控制计算机,2019,06:47-49.

[52]徐雅微,韩畅,赵子航,姚圣.基于VIVE的虚拟现实交互式机械臂仿真运动平台搭建[J].现代计算机,2019,14:68-72.

[53]马波,赵祎,齐良才.变分自编码器在机械故障预警中的应用[J].计算机工程与应用,2019,12:245-249+264.

[54]孙晓金,刘洪波.机械自动化设备设计的安全控制[J].南方农机,2020,51(04):132.

[55]葛兆花.机械制造及自动化的设计原则和发展趋势分析[J].南方农机,2020,51(04):134.

[56]柏洪武.机械工程自动化技术发展之我见[J].河北农机,2020(02):32.

[57]郭兰天,尚艳竣,蔡凤帅,韩祥晨,胡耀增.机械设计制造领域中自动化技术应用探索[J].中国设备工程,2020(03):35-36.

[58]王岩.农业机械自动化技术的应用探讨[J].农机使用与维修,2020(02):40.

[59]周海江.基于现代化的机械装配自动化应用及发展研究[J].农家参谋,2020(03):186.

[60]董佩.机械自动化设备的安全控制管理[J].机械管理开发,2020,35(01):233-234.

[61]王晗.机械自动化技术及其在机械制造中的`应用探讨[J].农家参谋,2020(02):203.

[62]刘梦,李娜.浅谈机械自动化在机械制造中的实践[J].科技风,2020(01):131.

[63]曹祥辉,宋瑞瑞.机械自动化与绿色理念相融合的应用分析[J].科技风,2020(01):145.

[64]张丽红,郝俊珂.机械自动化设计与制造问题及改进方法探究[J].科技风,2020(01):155.

[65]柏洪武.机械工程自动化技术存在的问题及解决策略[J].河北农机,2020(01):31.

[66].机械行业启动全面质量管理升级行动[J/OL].装备制造与教育,2017,(03):11(2017-10-30).

[67].2017机械行业经济运行形势分析[J/OL].装备制造与教育,2017,(03):14-16(2017-10-30).

[68].我省首评"机械工业50强"东汽、二重、川开等入选[J/OL].装备制造与教育,2017,(03):17(2017-10-30).

[69].2017年四川省机械工业联合会联络员会议在峨眉山召开[J/OL].装备制造与教育,2017,(03):17(2017-10-30).

[1]郑文纬,吴克坚.机械原理[M].北京:高等教育出版社,1997

[2]濮良贵.纪名刚.机械设计[M].北京:高等机械出版社.2006

[3]杨家军.机械系统创新设计[M].武汉:华中科技大学出版社.2000

[4]高志.黄纯颖.机械创新设计[M].北京:高等机械出版社.2010

[5]王晶.第四届全国大学生机械创新设计大赛决赛作品选集.北京:高等教育出版社,2011

[6]黄华梁、彭文生.创新思维与创造性技法.北京:高等教育出版社,2007

[7]李学志.计算机辅助设计与绘图[M].北京:清华大学出版社.2007

[8]吴宗泽.机械设计手册[M].北京:机械工业出版社.2008

[9]颜鸿森.姚燕安.王玉新等译.机构装置的创造性设计(creativedesignofmechanicaldevices)[M].北京:机械工业出版社.2002

[10]邹慧君.机械运动方案设计手册[M].上海:上海交通大学出版社.1994

[11]王世刚.张春宜.徐起贺.机械设计实践[M].哈尔滨:哈尔滨工程大学出版社.2001

[12][美]厄儿德曼.桑多尔著.机构设计--分析与综合.第一卷(1992),第二卷(1993).庄细荣等译.北京:高等教育出版社.1994

[13]温建民.Pro/三维设计基础与工程范例[M].清华大学出版社.2008

[14]赵瑜.闫宏伟.履带式行走机构设计分析与研究[M].东北大学出版社.2011

[15]秦大同.谢里阳.现代机械设计手册.第三卷.化学工业出版社[M].2011

[16]闻邦椿.机械设计手册.第二卷.第三卷.第四卷.机械工业出版社.2011

[17]陈敏.缪终生一种新型滚动四杆螺母副的研究与应用[J].江西理工大学南昌校区.江西.南昌2009.

[18]彭国勋.肖正扬.自动机械的凸轮机构设计[M].机械工业出版社.1990

[19]孙志礼.机械设计[M].东北大学出版.2011

[20]张也影.流体力学[M].高等教育出版社.1998

[21]吴涛、李德杰,彭城职业大学学报,虚拟装配技术,[J]2001,16(2):99-102.

[22]叶修梓、陈超祥,ProE基础教程:零件与装配体[M],机械工业出版社,2007.

[23]邓星钟,机电传动控制[M],华中科技大学出版社,2001.

[24]朱龙根,简明机械零件设计手册[M],机械工业出版社,2005.

[25]李运华,机电控制[M].北京航空航天大学出版社,2003.

1金会庆.驾驶适性.合肥:安徽人民出版社,1995.

2蔡辉、张颖、倪宗瓒等.Delphi法中评价专家的筛选.中国卫生事业管理,1995,1:49~55.

3侯定丕.管理科学定量分析引论.合肥:中国科技大学出版社,1993.

4王有森.德尔菲法.医学科研管理学(刘海林主编.第一版),北京:人民卫生出版社,1991:279~289.

5安徽省劳动保护教育中心编.劳动安全、卫生国家标准及其编制说明汇编第三辑,1987.

[1]王遐.随车起重机行业扫描[J].工程机械与维修,2006(3):68-71

[2]王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002

[3]卢章平,张艳.不同有限元分析网格的转化[J].机械设计与研究,2009(6):10-14

[4]朱秀娟.有限元分析网格划分的关键技巧[J].机械工程与自动化,2009(1):185-186

[5]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,

[6]桥斌.国内外随车起重机的对比[J].工程机械与维修,2006(7):91-92

[7]王欣,黄琳.起重机伸缩臂截面拓扑优化[J].大连理工大学学报,2009(3):374-379

[8]须雷.国外起重机行业未来的发展趋势[J].中国科技博览,2012(32):241

[9]张质文,王金诺.起重机设计手册[M].北京:中国铁道出版社,2000

[10]杨育坤.国外随车起重机的生产与发展[J].工程机械,1994(11):31-34

[11]刘宇,黄琳.起重机伸缩臂最优截面形式的研究[J].中国工程机械学报,2013(1):65-69

[12]张青,张瑞军.工程起重机结构与设计[M].北京:化学工业出版社,2008

[13]邓胜达,张建军.汽车起重机吊臂旁弯现象的分析[J].建筑机械化,2010(11):39-41

[14]李志敏.伸缩吊臂滑块局部应力分析及变化规律研究[D].成都:西南交通大学.2009

[15]蒋红旗.汽车起重机吊臂有限元优化设计[J].煤矿机械,2005(2):9-11

[16]中国机械工业联合会.GB/T3811-2008起重机设计规范[S].北京:中国标准出版社,2008

[17]张宇,张仲鹏.类椭圆截面吊臂的约束扭转特性研究[J].机械设计与制造,2012(3):237-239

[18]江兆文,成凯.基于ANSYS的全地面起重机吊臂有限元参数化建模与分析[J].建筑机械,2012(7):89-92

[1]邹银辉.煤岩体声发射传播机理研究[D].山东:山东科技大学硕士论文,2007

[2]贾宝新,李国臻.矿山地震监测台站的空间分布研究与应用[J].煤炭学报,2010,35(12):2045-2048

[3]柳云龙,田有,冯晅,等.微震技术与应用研究综述[J].地球物理学进展,2013,28(4):1801-1808

[4]徐剑平,陈清礼,刘波,等.微震监测技术在油田中的应用[J].新疆石油天然气,2011,7(1):89-82

[5]汪向阳,陈世利.基于地震波的油气管道安全监测[J].电子测量技术,2008,31(7):121-123

[6]何平.地铁运营对环境的振动影响研究[D].北京:北京交通大学,2012

[7]陆基孟.地震勘探原理[M].山东:中国石油大学出版社,1990

[8]崔自治.土力学[M].北京:中国电力出版社,2010

[9]许红杰,夏永学,蓝航,等.微震活动规律及其煤矿开采中的应用[J].煤矿开采,2012,17(2):93-95、16

[10]李铁,张建伟,吕毓国,等.采掘活动与矿震关系[J].煤炭学报,2011,36(12):2127-2132

[11]陈颙.岩石物理学[M].北京:北京大学出版社,2001

[12]秦树人,季忠,尹爱军.工程信号处理[M].北京:高等教育出版社,2008

[13]董越.SF6高压断路器在线监测及振动信号的分析[D].上海:上海交通大学,2008

[14]张谦.基于地脉动观测的城市地区工程场地动参数及反演地下结构的研究[D].北京:北京交通大学,2012

[15]刘振武,撒利明,巫芙蓉,等.中国石油集团非常规油气微地震监测技术现状及发展方向[J].石油地球物理勘探,2013,48(5):843-853

[16]聂伟荣.多传感器探测与控制网络技术-地面运动目标震动信号探测与识别[D].南京:南京理工大学,2001(6).

马胜中

(广州海洋地质调查局 广州 510760)

作者简介:马胜中,男,1968生,1990年毕业于中国地质大学(武汉),工程硕士,高级工程师,从事海洋环境地质、灾害地质和综合地质地球物理研究工作。E-mail:sz-m@。

摘要 海洋石油钻井平台的安全就位和稳定施工,与井场区海底的工程地质条件密切相关。地球物理探测技术作为一门综合性较强的科学技术,在海洋工程地质和海洋灾害地质调查中有着不可替代的作用。实践证明,采用测深、侧扫声呐扫描、浅地层剖面、单道地震、高分辨率2D地震和海洋磁力测量等地球物理探测手段进行综合调查,对钻井平台场址周围海域的地形变化和潜在地质灾害因素,具有很好的揭示作用。

关键词 平台场址调查 海洋地球物理探测 海洋地质灾害

1 前言

随着我国经济的发展和战略储备的需要,我国原油勘探开发的重点由陆地逐渐转向海域。我国近海海底蕴藏着丰富的矿产资源,现已探明石油资源量达246×108 t,天然气×1012m3,占全国油气总资源量的23%。然而在油气开发中,屡屡遭到海洋地质灾害的破坏,不均一的持力层多次造成渤海、珠江口盆地钻井平台的倾斜和位移,使国家蒙受重大经济损失。

钻井平台场址灾害调查在石油钻井之前进行,既要探测诸如断层、浅层气地层情况以应对钻井或采油时发生的井架倒塌、井喷、着火和溢油等灾害,又要调查与钻井平台基础有关的土工问题,以避免事故和灾害发生。据资料,1955~1980年间,美国每年发生钻井船基础严重破坏的事故3~4起,经济损失和人员伤亡巨大。海洋结构物场地调查是确定影响固定式平台和海底管线等工程结构物的设计、布局、施工及安全操作的工程地质条件。1969年,卡米尔飓风袭击密西西比河三角洲,引起海底大面积土体滑移,造成3个平台破坏,损失1亿多美元[1]。可见,海洋石油钻井平台场址调查研究在油井钻探开发中有着重要的作用。我国海洋石油开发工作起步较晚,直到20世纪80年代初,我国才真正开始海洋工程地质勘察工作,近十年来,我们对石油钻井平台场址调查研究做了许多实验工作,随着调查技术的不断进步,研究正向深海挺进。

海洋平台的设计和建造需对平台场地进行包括海底地形地貌、海底表层、浅地层结构等内容的海洋工程地质勘察,从地貌、沉积物特征和地质测年等方面,利用实测的和平台设计用的海洋水文资料以及场地内土的物理力学参数,对海底稳定性进行分析计算,并在分析研究的基础上,进行场地的海底稳定性评价。

2 海洋常见灾害地质类型

海洋常见的灾害地质类型[2-5]如下:

活动断层、地震和火山等。它们不仅可能对海底构筑物造成直接破坏,而且地震可能诱发滑坡、浊流、沙土液化等其他灾害。

滑坡、崩塌、浊流和泥流等,它们的活动可能对钻井平台、海底管线构成直接破坏。

海底沙丘、海底沙波、潮流沙脊、冲刷槽、凹凸地和浅谷等,属于地貌类型的灾害,其分布和气象水文条件有关。

浅层气、泥底辟、软弱夹层、可液化砂层等。它们呈承压流体、塑性体状态存在于第四纪浅地层中。当海底构筑物基础触及这些地质体时,都有可能发生灾害。

埋藏古河道、埋藏古湖沼、埋藏起伏基岩面、埋藏珊瑚礁等。它们一般是浅地层中的透镜体,当钻井平台桩脚插入不同地质体时,由于持力不均会导致平台歪斜,甚至倾覆。

3 地球物理方法对平台场址调查的应用和研究

海底地形地貌探测

海底地形地貌探测包括单波束测深、多波束测深和旁侧声呐等,是通过探测声波在水下或岩土介质内的传播特征来研究岩土性质和完整性的一种物探方法,只是它们使用的声波频率和强度有差异,高频能提高分辨率,而低频则能提高声波的作用距离和穿透深度[6~9],目前很多探测系统都采用双频或多频探头结构,提高仪器的探测能力。

单波束测深和多波束测深

单波束测深系统是利用其换能器从水面向海底发射一束声脉冲,声波传到水底界面被反射,再回到换能器被接收,通过时间函数的转换,形成一组时间离散的数字量系列,进行实时处理,而在记录纸上直接显示测线上连续起伏变化的海底剖面。反映了海底表面形态的凸凹性质、高差大小和延伸范围(发育规模)。

多波束测深系统是一种由多个传感器组成的复杂系统,在测量断面内可形成十几个至上百个测点点条幅式测深数据,几百个甚至上千个反向散射数据,能获得较宽的海底扫幅和较高的测点密度,它具有全覆盖、高精度、高密度和高效率的特点。测深资料反映了海底表面起伏变化、高差大小和延伸范围,利用计算机处理和绘图技术,可制成所测海区海底地形图。

侧扫声呐扫描

侧扫声呐技术运用海底地物对入射声波反向散射的原理来探测海底形态,能直观地提供活动形态的声成像。旁侧声呐是一种高分辨率、多用途的水声设备,在海洋测绘、海底目标探测(如探测沉入水底的船、飞机、导弹、鱼雷及水雷等)、大陆架和海洋专属经济区划界、海洋地质、海洋工程、港口建设及航道疏浚等方面有广泛的应用。

侧扫声呐采用深拖型侧扫声呐系统,使用双频频率100/500 kHz,量程100/200 m,拖体距离海底10~30 m,可以获取海底表面的各种目标探测物,获取的声呐图像质量较高,可以分辨出海底表面的管道和电缆,海底物体的高度可以根据物体的阴影来确定。几种地球物理方法同步作业可以相互印证(图1)。

图1 侧扫声呐和单道地震剖面显示的灾害地质类型

中、浅地层探测

浅地层剖面测量

浅地层剖面测量系统是探测海底以下30 m内的浅层结构、海底沉积特征和海底表层矿产分布的重要方法之一。浅地层剖面系统的发射频率较低,一般在~23 kHz之间,产生声波的电脉冲能量较大,发射声波具有较强的穿透力,能够有效穿透海底数十米的地层[10~11],地层分辨率在8 cm以上。它可以提供调查船正下方地层的垂直剖面信息,它可以准确地反映出地层界面及可能存在的浅层气、浅断层和古河道等海底地质灾害因素或其他物体(如管线)。浅地层剖面仪的穿透深度则因工作频率和海底沉积物类型的不同而异。

浅地层剖面测量系统采用德国INNOMAR公司SES-96参量浅层剖面系统,外接涌浪补偿系统,可输出水深数据。采用发射功率18 kw,主频100 kHz,差频4~12 kHz,在平台场址调查中一般使用差频8 kHz,探测到的地层分辨率较高,浅海可以探测管道,可以与磁力探测相互验证。

单道地震剖面测量

单道地震记录系统由单道数据采集处理系统、震源系统、信号接收电缆、EPC记录仪组成。主要用于了解海底以下200 m范围内的中、浅地层结构、沉积特征。

单道地震与油气地震勘探技术具有相同的工作原理。单道地震探测采用的震源能量小、频带宽(几十赫兹到几千赫兹)、主频高(几百赫兹到上千赫兹),一般选用电火花和气枪作为震源,能量从几十焦耳到几千焦耳,地层的穿透深度从几十米到数百米。

海上最常用的震源有空气枪和电火花二种,在平台场址调查中一般使用电火花震源,震源系统由震源控制箱、声源装置(电极、声脉冲发生器)组成。

如英国的CSP1500震源系统,主要包括CSP1500震源控制箱、SQUID500型电极、SQUID2000型电极或AA200型BOOMER组成电火花震源,该震源的激发能量级别为100~1500J,而且重复激发所需的时间较短。法国的SIG800J震源系统,采用120或200极鱼骨型电火花电极,能量输出270J、540 J和800J。在平台调查中一般选择250~800J的激发能量,激发间隔 s(图2)。荷兰的GEO-SPARK 10kJ震源系统,GEO-SPARK2×800型电极能量输出在100~10000 J之间,最大工作水深为4500 m,最大穿透深度为750 ms,可以满足深水井场调查的需要。

我们选用法国的SIG16 型和SIG16 型水听器,英国的AAE20单道信号接收电缆,荷兰的GEO-Sense信号接收电缆,检波器按~1 m的间隔并联组成,该接收电缆具有较高的灵敏度和较宽的频率响应,适用于高频反射信号的数据采集。

记录仪器与以上震源和水听器配套使用的是DELPHSEISMIC数据采集系统。该系统不仅可以主动控制震源每秒的激发次数,而且通过连接GPS导航系统,能够时时记录每一炮道的经纬度坐标,便于精确定位。该仪器的动态范围90db,16位模数转换,而且具有极高的采样频率,在与BOOMER震源配合使用时,其采样率高达6000~10000 Hz,极高的采样频率更有利于高频有效信号的接收。在海上单道地震数据采集过程中,可以通过控制测量船的速度来调整记录道间的距离,船速越慢,道间距越小,地震波组的连续性越好。在震源每秒激发二次的情况下,测量船体以节的速度航行,地震记录道间的距离小于1 m,可见,该方法更适用于高精度的浅层地震勘探。

在资料处理流程中,采用有效的方法技术对数据进行信噪分离,削弱多次及绕射等干扰波的影响,可进一步提高单道地震记录的信噪比和分辨率,图3(左)清楚显示了浅层气及其沿着断层上升,红色椭圆圈着的反射波为强振幅,反射同相轴反转,具明显的反相特征;图3(右)显示了各种形态的埋藏古河道。

图2 单道地震剖面

图3 单道地震剖面显示的浅层气和埋藏古河道

高分辨率2D多道地震剖面测量

高分辨率2D地震资料的采集一般使用48道或96道多道地震电缆,为了避免虚反射对高频成分的压制作用,震源和检波器电缆的沉放深度比较浅,一般震源的沉放深度3m,一般电缆的沉放深度4 m,地震震源一般是小容量GI气枪震源或套筒枪组合震源,以保证产生高频率的地震子波。这种方法采集到的地震资料频带可达20~350 Hz,比常规的地震采集资料的频带(20~50 Hz)要高得多,完全可以满足识别薄层及地层结构的需要,提高了精度。

海洋磁力测量

磁法是利用地下岩矿石或者岩土介质之间的磁性差异所引起的磁场变化(磁异常)来寻找有用矿产,查明地下构造和解决其他地质问题的一种探测方法。磁力是解决工程地质调查中探测含磁性物体的有效手段。在各种调查中,我们使用GS880铯光泵磁力仪和SeaSPY海洋磁力仪,针对不同的研究目的分别采用不同的调查方法,均能获得满意的效果。它的优势在于不仅能够探测暴露于海底的磁性异常体,同时对于覆盖于海底以下的磁性异常体也有效。

在调查中的应用,由于海底光缆路由海域存在着已经敷设过的海缆(包括海底通讯电缆、电力电缆和光缆等),经过岁月的变迁,这些海缆在海域中的坐标有了变化,有的是否还存在也不明确;另外,过去敷设海缆时的定位仪存在较大的误差,为了探明光缆路由线交汇的海底电缆的精确位置,必须对光缆路由进行探测。在平台场址调查中,使用加拿大MarineMagnetics公司生产的SeaSPY海洋磁力仪进行勘察,结合旁侧声呐和浅地层剖面共同进行探测。图4是浅地层剖面探测到的管道,当磁力仪探头穿过电缆时测得的磁异常曲线,旁侧声呐扫描到的电缆和平台,磁异常的幅值一般可达几十到上百nT。

图4 浅层剖面、磁力和侧扫声呐探测到的管道、电缆和采油平台

4 结论与讨论

平台场址地质调查的方法主要有两种:一种为地球物理方法,另一种为地质取样方法。目前地球物理方法应用得比较广泛的是单波束测深或多波束测深、侧扫声呐、浅层剖面探测、单道地震、高分辨率2D地震和磁力测量等,以上六种水下探测系统在高精度的定位系统的支持下配合使用,可使我们获得平台场址内三维的工程地质条件,特别是危害工程建设的各种灾害地质现象的形态、规模、位置及其发展趋势等性质。其优点是比较经济、快速,对各种地球物理勘探方法都有各自解决某一方面地质问题的能力,各有优势和局限性。因此,在调查时要视调查的目的与要求,采用多种方法进行综合调查,使各种方法优势互补,以便取得最佳的成果。根据20多年来的实践经验,采用以高分辨率地震为主的综合浅层物探技术,同时在井位和预计抛锚位置进行2~3 m长的地质重力取样和地质浅钻,物探和地质取样相互结合,是了解海洋地质灾害因素、灾害的类型以及海洋工程地质有关问题的行之有效的调查方法,它能够既经济又快捷地为业主提供资料。

参考文献

[1]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(1):40~45.

[2]金庆焕,李唐根.南沙海域区域地质构造[J].海洋地质与第四纪地质,2000,20(1):1~8.

[3]刘光鼎,陈洁.中国前新生代残留盆地油气勘探难点分析及对策[J].地球物理学进展,2005,20(2):273 ~275.

[4]陈洁,温宁,李学杰,南海油气资源潜力及勘探现状[J].地球物理学进展,2007,22(4):1285~1294.

[5]刘锡清,刘守全,等.南海灾害地质发育规律初探[J].中国地质灾害与防治学报,2002,13(1):12~16.

[6]Spiess F research and ocean technology[J].MTS Journal,1987,21(2):5~17.

[7]Wille Peter Images of the Ocean in Research and Monitoring [M].Berlin:Springer,2005.

[8]Fish J P,Carr H Reflections(Advanced Applications of Side Scan Sonar).Oreans:Lower CapePublishing,2001.

[9]金翔龙,海洋地球物理研究与海底探测声学技术的发展.地球物理学进展,2007,22(4):1243~1249.

[10]Dybedal Defence &Aerospace Course TOPASPS 018 Parametric Sub-bottom Profiler System,2003.

[11]Dybedal J .Kongsberg Defence &Aerospace 018 Operator Manual,2002.

Marine Geophysical Survey Techniques and Their Applications to Well Site Survey

Ma Shengzhong

(Guangzhou Marine geological Survey,Guangzhou,510760)

Abstract:The safety of marine oil drilling platform is closely related to the submarine engineeringgeological conditions of the well technique has an irreplaceable role in marineengineering and hazard geological proves that,using geophysical instruments in-cluding echo sounder,sidescan sonar,sub-bottom profiler,single-channel seismic,high resolu-tion 2D seismic and marine magnetometer carry out a comprehensive survey can efficientlyreveal the topography and potential geo-hazards of the well site area.

Key words:Well site survey Marine geophysical survey Submarine geo-hazards

几个典型的地球物理学原理论文

在现实的学习、工作中,大家总少不了接触论文吧,论文是描述学术研究成果进行学术交流的一种工具。那么,怎么去写论文呢?以下是我整理的几个典型的地球物理学原理论文,希望能够帮助到大家。

题目:

浅谈几个典型的地球物理学原理

摘要:

地球物理学是以从固体内核至大气圈边界的整个地球为研究对象的地矿类学科,所涉及的基本原理涵盖物理学、地球化学、地质学等多个学科的综合内容,对学生的逻辑思维能力和数值计算能力要求很高。本文重点对解决地球物理学问题所必需的几个基本原理进行了总结性的论述。

关键词:

典型;地球物理;原理

从地球物理学的组成来看,主要分两种,其一是研究大尺度和一般原理的,叫理论地球物理学;其二是勘查石油、金属、非金属矿或解决其它地质问题的,叫应用地球物理学。显然,理论地球物理学是实际应用的前提,而有关地球物理学的基本原理则是理论内容最基础的部分。

一、地球形状与重力分布的重力学基本原理

地球是太阳系中的一颗行星,它有自转和公转运动。通俗说地球形状是两极稍扁,赤道略鼓的椭球体。对地球形状的研究是大地测量学和固体地球物理学的一个共同课题,其目的是运用几何方法、重力方法和空间技术,确定地球的形状、大小、地面点的位置和重力场的精细结构,地球的形状主要是由地球的引力和自转产生的离心力决定的,且地球非常接近于一个旋转椭球,其长半轴为6378136米,扁率为1∶。严格而言,地球形状应该是指地球表面的几何形状,但是地球自然表面极其复杂,所以从科学上,人们都把平均海水面及其延伸到大陆内部所构成的大地水准面作为地球形状的研究对象,因为大地水准面同地球表面形状十分接近,又具有明显的物理意义。但是大地水准面还不是一个简单的数字曲面,无法在这样的面上直接进行测量和数据处理。而从力学角度看,如果地球是一个旋转的均质流体,那么其平衡形状应该是一个旋转椭球体。于是人们进一步设想用一个合适的旋转椭球面来逼近大地水准面。要确定这一椭球,只需知道其形状参数(长半轴a,扁率α)和物理参数(地心引力常数GM和旋转角速度ω)即可。同大地水准面最为接近的椭球面称为平均地球椭球面。如果能确定大地水准面与该椭球面之间的偏差,亦即大地水准面与椭球面之间的差距(大地水准面差距N)和倾斜(垂线偏差θ),则大地水准面的形状可完全确定。

地球的重力源于牛顿的万有引力定律,即宇宙空间任意两质点,彼此相互吸引,其引力大小与他们的质量成积成正比,与他们之间的距离平方成反比。地面点重力近似值980Gal,赤道重力值978Gal,两极重力值983Gal。由于地球的极曲率及周日运动的原因,重力有从赤道向两极增大的'趋势。地球上重力的大小与方向只与被吸引点的位置有关,理论上应该是常数,但重力是随时间变化而变化,即相同的点在不同的时刻所观测到的重力不相同。

二、地震及弹性波在地球内部的传播规律

地震波是地下传播的震动,必然与岩石的弹性有关,一般都假定岩石是一种完全弹性体。科技小论文在地震波计算中,地球介质可以做为各向同性的完全弹性体来对待。而在地震波理论中,通常把地球介质当作均匀、各向同性和完全弹性介质来处理,只是一种简化的假定。实践证明,这种假定可以使分析大大简单,并且在多数情况下可以得到与观测结果颇为符合的结果。研究地震波在地球内部传播的问题,主要有动力学和运动学两种方法。动力学方法是直接求解波动方程,研究平面波在平界面上的反射、折射,均匀半空间及平行分层空间中的地震面波,以及球对称模型的地球的自由振荡。该方法相对繁琐,本书不做介绍。我们介绍的是第二种方法:运动学方法,就是将波动方程的求解简化成波传播的射线理论,用地震射线这一概念,研究地震波在地球内部传播的运动学特征。

地震波在地球内部的传播研究,主要是基于以下几个基本原理,其一是惠更斯原理,即在均匀弹性介质中,点振源产生球面波向周围传播,当距离r趋向无穷大时,球面波前的半径很大,曲率很小,此时球面波蜕变成了平面波;其二是费马原理,即地震波沿射线的旅行时间(传播)与沿其它任何路径的旅行时间相比为最小,换言之,波总是沿所使用旅行时间最少的路径传播,又叫费马最小原理和射线原理。

总结来讲,惠更斯是从波前面的角度来描述波在介质空间中传播的规律,而费马原理则从波射线的角度来描述波的传播规律。

三、地球磁现象和地球电性质

地球磁现象是指地球周围空间分布的磁场。地球磁场近似于一个位于地球中心的磁偶极子的磁场。它的磁南极(S)大致指向地理北极附近,磁北极(N)大致指向地理南极附近。其磁力线分布特点是赤道附近磁场的方向是水平的,两极附近则与地表垂直,地球表面的磁场受到各种因素的影响而随时间发生变化,地磁的南北极与地理上的南北极相反。地磁场包括基本磁场和变化磁场两个部分。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,属于静磁场部分。变化磁场包括地磁场的各种短期变化,主要起源于地球内部,相对比较微弱。地球变化磁场可分为平静变化和干扰变化两大类型。地磁场强度大约是—高斯。

根据大气电现象的探测,从静电角度来看,地球和大气近似形成一个漏电的球状电容器。由大气电测量表明:接近地球表面的电场是垂直指向地球表面,在晴天情况下,其数值约为E=100V/m,而地球表面上的电荷密度—×10—10C/m2,由此可计算得知,地球表面上携带总负电荷量为×105C,大气的电流密度约为—3×10—12A/m2。总电流约为1350安培,大气中消耗的总电功率P=亿瓦。整个地球由于自转使正负电荷分开,正电荷分布在地核,负电荷分布在地表,进而在外层产生一个环形电流,电流方向自东向西(电流方向与负电荷运动方向相反),由此产生了由南向北的地磁。

四、结语

了解地球物理学的基本理论和基本原理,有助于学生自我知识框架的建立,同时对地球物理学的整体内容有非常好的梳理作用,笔者也建议广大在校学生能够从最基础的内容开始研究,以便于后期在深造上具备一定的优势。

参考文献:

[1]滕吉文.中国地球物理学研究面临的机遇、发展空间和时代的挑战[J].地球物理学进展,2007,04:1101-1112.

[2]汤井田,任政勇,化希瑞.地球物理学中的电磁场正演与反演[J].地球物理学进展,2007,04:1181-1194.

[3]陈运泰,滕吉文,张中杰.地球物理学的回顾与展望[J].地球科学进展,2001,05:634-642.

[4]霍振华,戴世坤,蒋奇云.地球物理学中的电磁场积分方程正演[J].地球物理学进展,2014,02:742-747.

相关百科

热门百科

首页
发表服务