首页

> 期刊论文知识库

首页 期刊论文知识库 问题

数学小论文五年级解方程

发布时间:

五年级数学小论文解方程

网上可以直接搜索找到参考文章,祝你成功

真的写了400字吗

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?” 我思索了一会儿,不慌不忙地说:“可以这样算:200➗5等于40度。 40大于30。200小时小时还可以这样算:小时)30小时小时由这几步可得出结论,节能灯泡省钱。”妈妈又问我:“很好。再想想看,还有没有别的办法来算?”我又想了一会儿,一个字一个字地说:“可以用我这学期才学的〝百分数〞来 算。也可以这样算:或者这样算:因此,也是节能灯泡便宜我和妈妈买了比较划算的节能灯泡回去了。经过这件事,我明白了:“生活处处有数学”这个道理。各门科学的数学化数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

1.去分母:在方程两边都乘以各分母的最小公倍数; 2.去括号:先去小括号,再去中括号,最后去大括号; 3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号 4.合并同类项:把方程化成ax=b(a≠0)的形式; 5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a. 同解方程 如果两个方程的解相同,那么这两个方程叫做同解方程。 方程的同解原理: ⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 做一元一次方程应用题的重要方法: ⒈认真审题 ⒉分析已知和未知的量 ⒊找一个合适的等量关系 ⒋设一个恰当的未知数 ⒌列出合理的方程 ⒍解出方程 ⒎检验 ⒏写出答案(自己组织语言)

数学小论文五年级解方程

数学是一门基础学科,能够很好的锻炼人的思维头脑,学好数学对于学习物理和化学有很好的帮助。第一:不管学习什么基础都是最重要的,万事都是开头难,打好基础,学习起来就很轻松。概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。第二:上课要认真听讲,积极回答老师的提问,课后作业要认真完成,遇到不会的题目经过自己的思考想不出答案,一定要敢于开口向老师请教,弄清解题的思维方法。第三:学数学重在积累,课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握积累。做错了的题目要反复做几遍以加深记忆,数学没有捷径,要靠自己的积累。第四:每天作业前先复习当天数学课所学习的内容,然后再完成作业,做完作业要认真检查,做一题要对一题。

这个世界上的自己一个人的时候就会觉得自己很好的人都会有自己的选择权在你的身边有一个人的生活方式的确是一个人的生活方式的一一个回复人我家的的孩子东西王都的会好议起来论文了的解时候决有些些人什么的时候时候才

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了.于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿.这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺.奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角.”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误.算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了.”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了.回到家,我把这件事告诉给妈妈.妈妈听了之后又问了一遍价钱.我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五.”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”.“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮.妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!

给你两篇范文,你参考一下吧。找等量关系“五法”顺昌县实验小学五年(4)班陈宇馨列方程解应用题的关键是找出题目中的等量关系。怎样找等量关系呢?经过思考我总结出以下五种方法:一、 根据生活经验找出等量关系。例如:一辆公共汽车原来车上有28人,在电影院下车了一些人,在文化馆又上来了9人,这时车上人数是30人,在电影院下车了多少人?在乘车中我们知道:车上原有人数-下车的人数+又上车的人数=车上现有的人数。根据这一等量关系,设在电影院下车了X人,则容易列出方程:28-X+9=30二、 运用基本的数量关系找等量关系。例如:客、货两车同时从相距237千米的甲乙两站相向开出,经过3小时相遇。客车每小时行38千米,货车每小时行多少千米?这是一道行程应用题,它基本的数量关系是:速度和×相遇时间=总路程。设货车每小时行X千米,可列出方程:(38+X)×3=387。三、 抓住关键词语找等量关系。例如:学校饲养小组今年养兔25只,比去年养的只数的3倍少8只。去年养兔多少只?本题的核心部分为:“今年养兔25只,比去年养的只数的3倍少8只。”从中可找出:去年养兔的只数×3-8只=今年养兔的只数。设去年养兔X只,得方程:3X-8=25。四、 运用计算公式找等量关系。有些应用题可以运用某一计算公式所提供的等量关系列出方程。如:一个三角形的面积是平方米,底是米,高是多少米?解答时可把三角形的面积公式做等量,设三角形的高是X米,可列出方程:÷2=。五、 借助线段图示找等量关系。例如:校园里的杨树和柳树共有36棵,杨树的棵数是柳树的2倍。柳树有多少棵?根据题意可画出线段图:柳树:杨树:从线段图中可清楚地看出:柳树的棵数+杨树的棵数=总棵数。设柳树的棵数为X棵,得方程:X+2X=36(指导教师:张学明)注:此文2006年五月发表于农村孩子报一类乘法题的巧算顺昌县实验小学四年(5)班赖佳雨你能很快的说出88×64的积是多少吗?让我把这类题的巧算告诉大家吧!88 64=56 328×(6+1)(首加1,头乘头)8×4(尾乘尾)你明白了吗?当两个两位数相乘时,如果一个因数的十位数与个位数字相同,另一个因数的十位数与个位数字之和是10时,我们可以采取头乘头,尾乘尾的方法。不过有一种特殊的情况要注意,如77×91=70 077×(9+1)7×1(在“7”前补“0”)就是说,如果两个因数的个位数之积是一位数时,应在前边补“0”。你学会了吗?试着说出下面各题的积:66×46= 73×88 = 19×44=(指导教师:张海灿)

数学小论文五年级方程

0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。

写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。

今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。

我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。

1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”

通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。

在日常学习、工作生活中,大家都接触过论文吧,通过论文写作可以培养我们的科学研究能力。还是对论文一筹莫展吗?以下是我为大家整理的数学论文作文4篇,希望对大家有所帮助。

一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。

算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000

答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.

简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!

今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。

”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”

我思索了一会儿,不慌不忙地说:“可以这样算:

5/1=5

30*5=150(小时)200小时>150小时

还可以这样算:

5/1=5

200/5=40(小时)30小时<40小时

由这几步可得出结论,节能灯泡省钱。”

妈妈又问我:“很好。再想想看,还有没有别的办法来算?”

我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:

5/200*100=*100=

1/30*100≈*100=

>

或者这样算:

200/5*100=40*100=4000

30/1*100=30*100=3000

4000>3000

因此,也是节能灯泡便宜。。”

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:“生活处处有数学”这个道理。

生活中,处处有数学,只要你善于观察,就一定能发现它蕴含的无穷奥秘。

我很喜欢数学,平常很爱探究,数学是我生活中的'一部分,也是我唯一的爱好。我梦想就是成为一名数学家,成为一名伟大的数学家。

在四年级时,数学老师周老师教了我们商不变的规律,刚学习这个规律的我感到很好奇,有一些不相信。

商不变的规律就是:在除法中,被除数和除数同时扩大若干倍或缩小若干倍,商不会变,但余数会变。

我围绕着这个规律展开了实验。我用40和6两个数进行了实验。40除以6等于6,余数是4,。我将40和6同时扩大相同的倍数100,变成4000除以600,我计算了一下,商是6,余数是400,它的商没有变,余数扩大了相同的倍数100,变成了400。我吃了一惊,商居然真的没有变,还是6,而余数却变了。

我还是有一些不相信,又用50和4试验了一下。50除以4等于12,商是2。这次我将50和4同时扩大到原来的2倍,变成100和8,100除以8,商是12,余数是4。商还是没有变,但余数扩大了相同的倍数2倍,变成了4。我彻彻底底的震惊了,再一次体会到了数学的神奇。

五年级时,我又接触到了方程,方程其实就是含有未知数的等式。在学习商不变的规律后,我再次对方程产生了浓厚的兴趣。我找了许多方程来做,并学会从中发现规律。

3x?2=302计算方法是:先将302减去2,变成3x=302-2,那么3x=300,再将300除以3,变成x=300÷3,结果变成x=100。没想到只需几步就可以将这个方程解开,得到答案。

我又找了一个方程来计算。5x-6÷3=38,先将6÷3算出变成5x-2=38,再将38?2等于40,式子就变成了5x=40,最后将40除以5等于8,结果就是x=8。

数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!

让我们一起来探索数学的奥秘吧!

百度知道该回答正在审核中,请您耐心等待数学小论文五年级小学五年级数学小论文查看全部18个回答小学五年级数学小论文热心网友1 分钟前买西瓜的数学那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误。算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”

数学小论文五年级500

原来小学也开始写论文了,看来这是一大进步。不过论文必须自己写。论文抄袭比考试作弊更加恶劣,因为牵涉到知识产权等法律问题。所以,论文要自己写,没人能帮你。

你可以谈谈关于分数乘法的一些简便运算

五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

这个难度比较大

数学小论文五年级550

五年级数学小论文范文如下:

伟大的数学王国由0—9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。

把—条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似,这就是黄金分割点。

从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。

一、画图的应用。

1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近,这样画出的图形更美。

2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目。

二、人体的应用。

1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是,这样的身材堪称最美。

2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点。

三、建筑物的应用。

古今中外,许多建造师都偏爱,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔等等。

四、生活上的应用。

1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。

2、我们家里大多数门窗的宽和长的比也是,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。

大千世界,美轮美奂,到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!

数学简介:

数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。 数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。 在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

作文标题: 数学小论文 关键词: 数学 小论文 小学五年级 本文适合: 小学五年级 作文来源: 本作文(600字)是关于小学五年级的作文(600字),题目为:《数学小论文》,欢迎大家踊跃投稿。数学小论文 五七班 田雨锟 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼;掌握了一种解题方法,就犹如拥有了一张网。所以,“学数学”与“学好数学”的区别就在于你是拥有了一条鱼,还是拥有了一张网。只有真正拥有一张网的人,才能学好数学,掌握数学。 我曾经碰到了这样一道题:“一个长方体的前面与上面面积之和为77平方厘米,它的长、宽、高都是整数,且为质数,求这个长方体的表面积与体积。”看到这道题,我认为先要想办法算出长方体的长、宽、高,可是……该怎么算呢?我尚未思考,直接去问妈妈,妈妈看了看题目,微笑着对我说:“这道题并不难,你自己再想想,你一定能独立做出来的!” 我想了想,先将长方体的长用a表示,将长方体的宽用b表示,将长方体的高用h表示,便把“一个长方体的前面与上面面积之和为77平方厘米”这句话改成了ah+ab=77,则a×(h+b)=77=7×11,11不可以拆成两个质数相加,那么a+b便等于7,a、b分别为2和5。这道题很快就解出来了,我很高兴。 还有一次,星期天,我在家里做奥数题目,忽然,有一道题目把我给难住了,题目是这样的:白兔和灰兔比赛拔萝卜,田里共有54个萝卜,每人每次只能拔1-4个萝卜,谁拔到最后一个萝卜谁输。灰兔先拔,它怎样才能确保获胜呢?我左思右想,反正这个题目我怎么也弄不懂,我心想:怪了,我平时在学校里蛮聪明的,可这个题目为什么我就不会呢!唉......我是这样理解的:既然每人每次最多只能拔4个,那2个人,最多就能拔8个萝卜。会不会是54÷8,可是,我的心里总是把这个算式给画一个错,那到底应该是54÷?呢?我脑子里又出现了一种想法:谁拔到最后一个就输了,一定要把最后一个给别人,应该是54-1=53个,剩下的53怎么弄呢?真让人伤脑筋啊!我想啊想啊,忽然,眼前一亮,“哦,原来是这样的啊!哈哈哈,我终于知道了!”我开心地说。原来,剩下的53要除以4+1也就是5,你们肯定会问:“为什么要除以5?”其实5是每人每次拔得最多的和最少的,加起来就是5了。53÷5=10次......3个,这样一来,灰兔先拔3个萝卜,以后白兔每次拔的数要和灰兔加起来是5,不管白兔每次拔几个,白兔拔1个灰兔拔4个,白兔拔2个灰兔拔3个,这样最后剩下来的1个萝卜就是白兔的了。答案终于被我解出来了,我暗暗高兴。 ­ 数学,就像一座直插云霄的高峰,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去。所以,站在数学的高峰上的人,都是发自内心喜欢数学的,然而站在峰脚的人是望不到峰顶的。

我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种……当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。

我列几题来看:第一题,86×84=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,8×9=72,末尾4×6=24,8×9的结果是积的百位和千位,4×6的结果是积的十位和个位。这题的积是7224。第二题,34×52,属于第三种,可以将它乘法变加法,三步完成,第一步,2×4=8,个位相乘,积的末尾为8。第二步用4×5+3×2=26,交叉相乘加起来,写6进2。第三步,十位相乘3×5=15,15加进的2,等于17,这题的积是1768。第三题,68×48,属于第二种,十位数相加等于10,个位数字相同。用6×4=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,8×8=64,十位和个位是6和4,这题的积是3264。

当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”

我思索了一会儿,不慌不忙地说:“可以这样算:

5÷1=5 30×5=150(小时) 200小时>150小时

还可以这样算:

5÷1=5 200÷5=40(小时) 30小时<40小时

由这几步可得出结论,节能灯泡省钱。”

妈妈又问我:“很好。再想想看,还有没有别的办法来算?”

我又想了一会儿,一个字一个字地说:“可以用我这学期才学的"百分数″来算:

5/200×100=×100=

1/30×100≈×100=

>

或者这样算:

200/5×100=40×100=4000

30/1×100=30×100=3000

4000>3000

因此,也是节能灯泡便宜。。”

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:“生活处处有数学”这个道理。

生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。

我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要元,多了3毛钱,所以套装比散装更贵。

我来到饮料货台,一瓶250ml的凉茶元,但是货柜上整箱16瓶装的却标价元,如果按元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用元。310ml王老吉罐装饮料一瓶元,整箱12瓶装的标价42元,如果以元的单价买12瓶则只需元,比整箱购买便宜了元;而同样的该品种,24瓶装一箱标价元,如按元的零售价买24瓶才元,比整箱购买整整少了元。旁边的啤酒每罐单价元,24瓶应收元,但是超市收款元。整整多出元,都可以多买2罐啤酒了。

同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗

相关百科

热门百科

首页
发表服务