首页

> 期刊论文知识库

首页 期刊论文知识库 问题

河南工程学院学报审稿

发布时间:

河南工程学院学报审稿

好投。根据查询郑州大学官方可知,学报工学版好投。郑州大学(Zhengzhou University),简称“郑大”,位于郑州市,是教育部与河南省人民政府合建高校;是世界一流大学建设高校,国家“211工程”、“一省一校”重点建设高校。

核心期刊从你要的方面看 中国科技论文统计源期刊 是最好的,太差的期刊投了也没有意义。楼上的其中一些你倒是可以考虑

不会。根据查询新乡医学院官网得知,论文终审通过后,论文只需等待发表即可,不会产生退稿情况,所以不会被退稿。乡医学院位于新乡市,是河南省属普通本科院校、国家“十三五”中西部高校基础能力建设工程(二期)支持高校、教育部卓越医生教育培养计划建设高校。

湖南工程学院学报审稿

Sensorless torque control scheme ofinduction motor for hybrid electric vehicleYan LIU 1,2, Cheng SHAO1( Institute of Advanced Control Technology, Dalian University of Technology, Dalian Liaoning 116024, China; of Information Engineering of Dalian University, Dalian Liaoning 116622, China)Abstract: In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle(HEV) applications is addressed. Because motor parameter variations in HEV applications are larger than in industrialdrive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-basedextension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed inorder to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme isrobust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor ischosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy lossesshown by : Hybrid electric vehicle; Induction motor; Torque tracking; Sliding mode1 IntroductionBeing confronted by the lack of energy and the increasinglyserious pollution, the automobile industry is seekingcleaner and more energy-efficient Hybrid ElectricVehicle (HEV) is one of the solutions. A HEV comprisesboth a Combustion Engine (CE) and an Electric Motor(EM). The coupling of these two components can be inparallel or in series. The most common type of HEV is theparallel type, in which both CE and EM contribute to thetraction force that moves the vehicle. Fig1 presents a diagramof the propulsion system of a parallel HEV [1].Fig. 1 Parallel HEV automobile propulsion order to have lower energy consumption and lower pollutantemissions, in a parallel HEV the CE is commonlyemployed at the state (n > 40 km/h or an emergency speedup), while the electric motor is operated at various operatingconditions and transient to supply the difference in torquebetween the torque command and the torque supplied bythe CE. Therefore fast and precise torque tracking of an EMover a wide range of speed is crucial for the overall performanceof a induction motor is well suited for the HEV applicationbecause of its robustness, low maintenance and lowprice. However, the development of a drive system basedon the induction motor is not straightforward because of thecomplexity of the control problem involved in the IM. Furthermore,motor parameter variations in HEV applicationsare larger than in industrial drive system during operation[2]. The conventional control technique ranging from theinexpensive constant voltage/frequency ratio strategy to thesophisticated sensorless control schemes are mostly ineffectivewhere accurate torque tracking is required due to theirdrawbacks, which are sensitive to change of the parametersof the general, a HEV operation can be continuing smoothlyfor the case of sensor failure, it is of significant to developsensorless control algorithms. In this paper, the developmentof a sensorless robust torque control system for HEVapplications is proposed. The field oriented control of the inductionmotor is commonly employed in HEV applicationsdue to its relative good dynamic response. However the classical(PI-based) field oriented control (CFOC) is sensitive toparameter variations and needs tuning of at least six controlparameters (a minimum of 3 PI controller gains). An improvedrobust PI-based controller is designed in this paper,Received 5 January 2005; revised 20 September work was supported in part by State Science and Technology Pursuing Project of China (No. 2001BA204B01).Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 43which has less controller parameters to be tuned, and is robustto parameter variable parameters modelof the motor is considered and its parameters are continuouslyupdated while the motor is operating. Speed andflux observers are needed for the schemes. In this paper,the speed-flux observer is based on the sliding mode techniquedue to its superior robustness properties. The slidingmode observer structure allows for the simultaneous observationof rotor fluxes and rotor speed. Minimization of theconsumed energy is also considered by optimizing operatingflux of the The control problem in a HEV caseThe performance of electric drive system is one of thekey problems in a HEV application. Although the requirementsof various HEV drive system are different, all thesedrive systems are kinds of torque control systems. For anideal HEV, the torque requested by the supervisor controllermust be accurate and efficient. Another requirement is tomake the rotor flux track a certain reference λref . The referenceis commonly set to a value that generates maximumtorque and avoids magnetic saturation, and is weakened tolimit stator currents and voltages as rotor speed HEV applications, however, the flux reference is selectedto minimize the consumption of electrical energy as it is oneof the primary objectives in HEV applications. The controlproblem can therefore be stated as the following torque andflux tracking problems:minids,iqs,we Te(t) − Teref (t), (1)minids,iqs,we λdr(t) − λref (t), (2)minids,iqs,we λqr(t), (3)where λref is selected to minimize the consumption of electricalenergy. Teref is the torque command issued by thesupervisory controller while Te is the actual motor (3) reflects the constraint of field orientation commonlyencountered in the literature. In addition, for a HEVapplication the operating conditions will vary changes of parameters of the IM model need to be accountedfor in control due to they will considerably changeas the motor changes operating A variable parameters model of inductionmotor for HEV applicationsTo reduce the elements of storage (inductances), the inductionmotor model used in this research in stationary referenceframe is the Γ-model. Fig. 2 shows its q-axis (d-axisare similar). As noted in [3], the model is identical (withoutany loss of information) to the more common T-model inwhich the leakage inductance is separated in stator and rotorleakage [3]. With respect to the classical model, the newparameters are:Lm = L2mLr= γLm, Ll = Lls + γLlr,Rr = γ. 2 Induction motor model in stationary reference frame (q-axis).The following basic w−λr−is equations in synchronouslyrotating reference frame (d - q) can be derived from theabove model.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩dλdrdt= −ηλdr + (we − wr)λqr + ηLmids,dλqrdt= −(we − wr)λdr − ηλqr + ηLmiqs,didsdt= ηβλdr+βwrλqr−γids+weiqs+1σLsVds,diqsdt=−βwrλdr+ηβλqr−weids−γiqs+1σLsVqs,dwrdt= μ(λdriqs − λqrids) −TLJ,dθdt= wr + ηLmiqsλdr= we,Te = μ(λdriqs − λqrids)(4)with constants defined as follows:μ = npJ, η = RrLm, σ = 1−LmLs, β =1Ll,γ = Rs + RrLl, Ls = Ll + Lm,where np is the number of poles pairs, J is the inertia of therotor. The motor parameters Lm, Ll, Rs, Rr were estimatedoffline [4]. Equation (5) shows the mappings between theparameters of the motor and the operating conditions (ids,iqs).Lm = a1i2ds + a2ids + a3, Ll = b1Is + b2,Rr = c1iqs + c2.(5)4 Sensorless torque control system designA simplified block diagram of the control diagram isshown in Fig. Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 3 Control PI controller based FOC designThe PI controller is based on the Field Oriented Controller(FOC) scheme. When Te = Teref, λdr = λref , andλqr = 0 in synchronously rotating reference frame (d − q),the following FOC equations can be derived from the equations(4).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ids = λrefLm+ λrefRr,iqs = Terefnpλref,we = wr + ηLmiqsλref.(6)From the Equation (6), the FOC controller has lower performancein the presence of parameter uncertainties, especiallyin a HEV application due to its inherent open loopdesign. Since the rotor flux dynamics in synchronous referenceframe (λq = 0) are linear and only dependent on thed-current input, the controller can be improved by addingtwo PI regulators on error signals λref − λdr and λqr − 0 asfollowids = λrefLm+ λrefRr+ KPd(λref − λdr)+KId (λref − λdr)dt, (7)iqs = Terefnpλref, (8)we = wr + ηLmiqsλref+ KPqλqr + KIq λqrdt. (9)The Equation (7) and (9) show that current (ids) can controlthe rotor flux magnitude and the speed of the d − q rotatingreference frame (we) can control its orientation correctlywith less sensitivity to motor parameter variations becauseof the two PI Stator voltage decoupling designBased on scalar decoupling theory [5], the stator voltagescommands are given in the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩Uds = Rsids − weσLsiqs = Rsids − weLliqs,Uqs = Rsiqs + weσLsids + LmLrweλref= Rsiqs + weσLsids + weλref .(10)Because of fast and good flux tracking, poor dynamics decouplingperformance exerts less effect on the control Speed-flux observer designBased on the theory of negative feedback, the design ofspeed-flux observer must be robust to motor parameter speed-flux observer here is based on the slidingmode technique described in [6∼8]. The observer equationsare based on the induction motor current and flux equationsin stationary reference frame.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩d˜idsdt= ηβ˜λdr + β ˜ wr˜λqr − γ˜ids +1LlVds,d˜iqsdt= −β ˜ wr˜λdr + ηβ˜λqr − γ˜iqs +1LlVqs,d˜λdrdt= −η˜λdr − ˜ wr˜λqr + ηLm˜ids,d˜λqrdt= ˜wr˜λ dr − η˜λqr + ηLm˜iqs.(11)Define a sliding surface as:s = (˜iqs − iqs)˜λdr − (˜ids − ids)˜λqr. (12)Let a Lyapunov function beV = . (13)After some algebraic derivation, it can be found that when˜ wr = w0sgn(s) with w0 chosen large enough at all time,then ˙V = ˙s · s 0. This shows that s will converge tozero in a finite time, implying the stator current estimatesand rotor flux estimates will converge to their real valuesin a finite time [8]. To find the equivalent value of estimatewr (the smoothed estimate of speed, since estimate wr is aswitching function), the equation must be solved [8]. Thisyields:˜ weq = wr˜λqrλqr + λdr˜λdr˜λ2qr +˜λ2dr −ηnp˜λqrλdr − λqr˜λdr˜λ2qr +˜λ2dr. (14)The equation implies that if the flux estimates converge totheir real values, the equivalent speed will be equal to thereal speed. But the Equation (14) for equivalent speed cannotbe used as given in the observer since it contains unknownterms. A low pass filter is used instead,˜ weq =11 + s · τ˜ wr. (15)Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 45The same low pass filter is also introduced to the systeminput,which guarantees that the input matches the feedbackin selection of the speed gain w0 has two major constraints:1) The gain has to be large enough to insure that slidingmode can be ) A very large gain can yield to instability of the simulations, an adaptive gain of the slidingmode observer to the equivalent speed is = k1 ˜ weq + k2. (16)From Equation (11), the sliding mode observer structureallows for the simultaneous observation of rotor Flux reference optimal designThe flux reference can either be left constant or modifiedto accomplish certain requirements (minimum current,maximum efficiency, field weakening) [9,10]. In this paper,the flux reference is chosen to maximum efficiency at steadystate and is weaken for speeds above rated. The optimal efficiencyflux can be calculated as a function of the torquereference [9].λdr−opt = |Teref| · 4Rs · L2r/L2m + Rr. (17)Equation (17) states that if the torque request Teref iszero, Equation (8) presents a singularity. Moreover, theanalysis of Equation (17) does not consider the flux fact, for speeds above rated, it is necessary toweaken the flux so that the supply voltage limits are not improved optimum flux reference is then calculatedas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩λref = λdr-opt,if λmin λdr-opt λdr-rated ·wratedwr-actual,λref = λmin, if λdr-opt λmin,λref = λdr-rated ·wratedwr-actual,if λdr-opt λdr-rated ·wratedwr-actual.(18)where λmin is a minimum value to avoid the division SimulationsThe rated parameters of the motor used in the simulationsare given byRs = Ω, Rr = Ω, Lls = 75 H,Llr = 105 H, Lm = mH, Ls = Lls + Lm,Lr = Llr + Lm, P = 4, Jmot = kgm2,J = Jmot +MR2tire/Rf, ρair = , Cd = = m2, Rf = , Cr = = m, M = 3000 kg, wbase = 5400 rpm,λdr−rated = shows the torque reference curve that representstypical operating behaviors in a hybrid electric . 4 The torque reference torque is modeled by considering the aerodynamic,rolling resistance and road grade forces. Its expression isgiven byTL = RtireRf(12ρairCdAfv2 +MCr cos αg +M sin αg).Figures in [5∼8] show the simulation results of thesystem of (considering variable motor parameters).Though a small estimation error can be noticed on the observedfluxes and speed, the torque tracking is still achievedat an acceptable level as shown in Figs. [5, 6, 8]. The torquecontrol over a wide range of speed presents less sensitivityto motor parameters presents the d and q components of the rotor flux λr is precisely orientated to d-axis because of theimproved PI shows clearly the real and observed speed in thedifferent phases of acceleration, constant and decelerationspeed with the motor control torque of . The variablemodel parameters exert less influence on speed shows the power loss when the rotor flux keeps constantor optimal state. A significant improvement in powerlosses is noticed due to reducing the flux reference duringthe periods of low torque . 5 Motor rotor flux λ Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 6 Motor . 7 Power . 8 Motor ConclusionsThis paper has described a sensorless torque control systemfor a high-performance induction motor drive for aHEV case. The system allows for fast and good torquetracking over a wide range of speed even in the presence ofmotor parameters uncertainty. In this paper, the improvedPI-based FOC controllers show a good performance in therotor flux λdr magnitude and its orientation tracking. Thespeed-flux observer described here is based on the slidingmode technique, making it independent of the motor adaptation of the speed -flux observer is used tostabilize the observer when integration errors are present.

Robotics education in the university* Rafael M. Inigo and Jose M. Angulo School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22901, USADept. de Informatica, Universidad de Deusto, Bilbao, Spain Available online 28 October 2004. The importance of automation and robotics in modern factories has required the introduction of courses on these subjects at the graduate and undergraduate levels in engineering schools. A comprehensive course on robotics must include the following subjects of fundamental importance: kinematics, dynamics, computer hardware and software, automatic control and machine vision. This paper describes the authors' experience in teaching a graduate robotics course at the University of Virginia and a short summer course at the Universidad de Deusto in Spain. Hands-on experience is a must in courses on robotics, and some simple yet effective systems designed and constructed by students are described. These include a program for transformation matrix manipulation, an operating system for manipulator control, and a simple three degrees of freedom programmable manipulator. The majority of the students who took both courses were electrical engineers, but mechanical engineers and computer scientists were also enrolled. Author Keywords: Robotics Education; Robotics Laboratory; Hardware; Software Development For Robotics Education *Parts of this paper were presented at the Second annual workshop on interactive computing, CAD/CAM: Electrical Engineering Education Washington,

我也,用彭坤,胡健,张姣,彭利等名字,冒充湖南工程学院学报,湖南科技学院学报,湖南城市学院学报等到处钱

性 别: 男出生年月: 1965年8月民 族: 汉职称职务: 教授最后学历学位: 博士研究方向学科专业领域: 机械设计制造主要研究方向: 磨削技术及其数控装备;汽车设计制造,摩擦学。主要工作经历1980年至1984年, 在湖南大学机械与汽车工程学院学习;1985年至1988年,在东南大学研究生院学习;1989年至1992年,在西安交通大学研究生院获博士学位;1993年至1994年,在清华大学研究生院做博士后;2007年1月至2008年3月, 在英国Nottingham 大学工作;2002年9月至2004年9月 在英国 London大学作高级访问学者。主要社会兼职有: 湖南大学学术骨干,湖南省后备学术带头人,中国机械工程学会高级会员,国家科技部863项目评委, 国家自然科学基金评审专家, 科技部中国科技信息所中国科技期刊评审专家,国家教育部科技项目、科技奖励评审专家,湖南省科技奖励评审专家,湖南省自然科学基金评审专家,国家高效磨削工程技术研究中心研究员,硕士研究生导师,国家985高技术研究(汽车先进设计与制造创新团队)学术骨干。中国科技论文在线评审专家,全国中文科技核心期刊《精密制造与自动化》杂志编委。国际著名科技期刊[特约审稿人,全国一级科技期刊《振动工程学报》、《湖南大学学报》审稿人。湖南省一级科技期刊《湖南文理学院学报》特约审稿人。英国国际制造科学研究会理事,英国Sheffield大学兼职教授等。

河南工程学院学报初审时间

您好,河南工学院是一所位于河南省新乡市的省属公办高校,其前身是原河南机电高等专科学校升格后更名的一所本科公办高校。

1~2个月郑州大学学报(医学版)目前以双月刊周期出版中,初审周期15天左右,初审通过后2-3周进入外审阶段,外审阶段大概2个月,外审通过后终审阶段1个月左右;如果遇到专家时间不充裕的情况,外审周期还会延长。学报是由河南省教育厅主管、郑州大学主办的综合性医药卫生学术期刊整个审稿流程为诶:初审→外审→等待责任编辑处理→终审,外审阶段如果没有修改意见,除了论文质量非常高,直接进入终审阶段会很容易被拒稿,这点大家也要注意~

郑州大学学报(工学版)创刊于1980年,原名《郑州工业大学学报》,是郑州大学主办的国内外公开发行的综合性学术期刊,双月刊。国内外发行,128页,定价:元。报道内容主要刊登工学各学科基础理论、应用科学及工程技术的最新研究成果,包括:机械、电气、信息、水工、化工、土木、交通、材料、环境工程等学科领域的学术论文。收录情况本刊是中文核心期刊、中国科技核心期刊、RCCSE中国核心学术期刊和《中国科学引文数据库》来源期刊。已经被美国《化学文摘》(CA)、《数学评论》(MR)、《剑桥科学文摘》(CSA)、俄罗斯《文摘杂志》(AJ)、波兰《哥白尼索引》(IC)、英国《科学文摘》(SA)及国内近20家重要数据库和文摘固定收录。获奖情况本刊曾获全国高校优秀科技期刊一等奖。 刊名:郑州大学学报(工学版)Journal of Zhengzhou University(Engineering Science)主办:郑州大学周期:双月出版地:河南省郑州市语种:中文;开本:大16开ISSN:1671-6833CN:41-1339/T邮发代号:36-232历史沿革:现用刊名:郑州大学学报(工学版)曾用刊名:郑州工业大学学报(工学版);郑州工业大学学报;郑州工学院学报创刊时间:1980该刊收录:CA 化学文摘(美)(2009)SA 科学文摘(英)(2009)Pж(AJ) 文摘杂志(俄)(2009)中国科学引文数据库(CSCD—2008)核心期刊:中文核心期刊(2008)期刊荣誉:Caj-cd规范获奖期刊 1 刊登内容本刊主要刊登化工、电气、机械、水工、信息工程、工程力学、土木建筑、材料工程、环境工程、数学、物理、化学及交叉学科等方面的学术论文。2 来稿要求 1 要求论点明确、数据可靠、文字简练。 2 来稿一式两份,打印稿为优。若系基金资助课题、攻关项目或博士论文,请在首页地脚处注明(包括项目编号),本刊将优先刊登。 3 文稿格式要求规范、项目齐全,按顺序给出:题目(不超过20字),作者(包括工作单位、地址、邮编),摘要(包括研究目的、方法、结果和结论四要素,200~300字),关键词(3~8个),中图分类号,正文(包括图、表,6000字左右为宜),参考文献,英文摘要(与中文摘要一一对应,包括英文题目、作者姓名、单位、地址、邮编及英文关键词),并在首页地脚处注明第一作者简介(包括出生年、性别、籍贯、职称、学位、从事的研究方向)。 4 物理量的符号和单位必须符合国家标准、国际标准,文中的各种符号、单位、脚标及大小写均要书写清楚,容易混淆的外文字母、符号,请用铅笔注明。 5 文中图、表只附必要的,图、表应有中英文图题和表题,小图宽度小于 75 mm,大图宽度 120~150 mm,插图的纵、横坐标的标目(物理量的符号和单位)要齐全。表格应采用三线表。 6 参考文献须在文中标引,并按在文中出现的次序编排,参考文献按下列方式著录: 期刊 [序号] 作者。题名[J]。刊名,年,卷(期):起止页码。专著 [序号] 作者。题名[M]。出版地:出版社,出版年。起止页码。学位论文 [序号] 作者。题名[D]。保存地:保存单位,年份。论文集[序号] 作者。题名[C]。出版地:出版社,出版年。 起止页码。标准 [序号] 标准编号,标准名称[S]。专利 [序号] 专利所有者。题名[P]。国别:专利号,出版日期。论文集中析出文献 [序号] 作者。析出文献题名[A]。原文献责任者。 原文献题名[C]。出版地:出版者,出版年。起止页码。电子文献[序号] 作者。电子文献题名[电子文献及载体类型标识]。电子文献的出版或可获得地址,发表或更新日期/引用日期(任选)。 7 稿件文责自负(包括政治、学术、保密等),但编辑部有权进行技术性和文字性的修改。 8 请勿一稿两投。 来稿请写清通讯地址、联系电话、E-mail。稿件一经刊用,即付稿酬,并赠当期期刊。 在3个月未收到本刊通知者,可自行处理。 来稿一律不退,请作者自留底稿。 3 其它声明 1 本刊已经加入中国学术期刊(光盘版)、中国期刊网、万方数据资源系统、中文科技期刊数据库,所付作者稿酬中已包含其著作权使用费,不再另付。如作者不同意,请在来稿时说明,本刊将做适当处理。 2 来稿请寄:(450001)郑州市高新技术开发区科学大道100号

湖南工程学院学报审稿费

我也,用彭坤,胡健,张姣,彭利等名字,冒充湖南工程学院学报,湖南科技学院学报,湖南城市学院学报等到处钱

据说不要审稿费,别的就不知道了有听说是1100

就是一个学校的校报,不是核心期刊

80块一篇。中南大学(Central South University)坐落在中国历史文化名城——湖南省长沙市,是中央直管、教育部直属的湖南省唯一副部级全国重点大学,国家“211工程”、“985工程”、“2011计划”首批重点建设的大学,是“111计划”、“卓越工程师教育培养计划”、“卓越医生教育培养计划”、“卓越法律人才教育培养计划”入选高校,是教育部、工业和信息化部、湖南省三方重点共建大学。中南大学由原湖南医科大学、长沙铁道学院与中南工业大学于2000年4月合并组建而成。原中南工业大学的前身为创建于1952年的中南矿冶学院;原长沙铁道学院的前身为创建于1953年的中南土木建筑学院,享有中国土木工程学科“三驾马车”的美誉;原湖南医科大学的前身为1914年创建的湘雅医学专门学校,是我国创办最早的西医高等学校之一,享有“南湘雅、北协和”的盛誉。

河南工程学院学报期刊

发表论文的话一般看期刊类别,按高级等级分为1类,2类到5类。一般发表在3类以上就不错了。像这样的期刊很多,我仅就三类的列出来,当然只是自然科学版的,(社科版的如果需要再说):ISTP收录、国外刊物,自然科学进展,天津大学学报(原名为:天津大学学报.自然科学与工程技术版),华东师范大学学报(自然科学版),东北大学学报(自然科学版),四川大学学报(自然科学版),中南大学学报.自然科学版(原名为:中南工业大学学报. 自然科学版) ,同济大学学报(自然科学版),北京理工大学学报,华南理工大学学报(自然科学版),北京工业大学学报,西北工业大学学报,南京大学学报(自然科学版),武汉大学学报(工学版),重庆大学学报(自然科学版),东南大学学报(自然科学版),北方交通大学学报,内蒙古大学学报(自然科学版),北京师范大学学报(自然科学版),中山大学学报(自然科学版),陕西师范大学学报(自然科学版),南京理工大学学报(自然科学版),太原理工大学学报,厦门大学学报(自然科学版),空军工程大学学报(自然科学版),海军工程大学学报,吉林工业大学学报.工学版,武汉理工大学学报,上海理工大学学报,合肥工业大学学报. 自然科学版,甘肃工业大学学报(改名为:兰州理工大学学报),桂林工学院学报,广西师范大学学报(自然科学版),四川大学学报(工学科学版),郑州大学学报(自然科学版),苏州大学学报(工科版),高技术通讯,云南大学学报(自然科学版),东北师范大学学报(自然科学版),上海大学学报,中国科学基金,兰州大学学报(自然科学版),西北大学学报(自然科学版),南京师范大学学报(自然科学版),中国科学技术大学学报,福建师范大学学报(自然科学版),湖南师范大学学报(自然科学版),江西师范大学学报(自然科学版),复旦学报(自然科学版),福州大学学报(自然科学版),湖南大学学报(自然科学版),山东大学学报(自然科学版),应用科学学报,华侨大学学报(自然科学版),吉林大学学报(理学版),宁夏大学学报(自然科学版),西南师范大学学报(自然科学版),湖北大学学报(自然科学版),河北大学学报(自然科学版),河南大学学报(自然科学版),南昌大学学报(理学版),四川师范大学学报(自然科学版),辽宁师范大学学报(自然科学版),山西大学学报(自然科学版),安徽大学学报(自然科学版),黑龙江大学(自然科学版),暨南大学学报(自然科学与医学版),河北师范大学学报(自然科学版),河南师范大学学报(自然科学版),湘潭大学学报(自然科学版),应用数学和力学,应用概率统计,工程数学学报,运筹学学报,数学的实践与认识,高校应用数学学报A辑,应用数学,数学杂志,生物数学学报,数学研究与评论,高等学校计算数学学报,固体力学学报,力学与实践,应用力学学报,实验力学,力学季刊,模糊系统与数学,系统工程,系统工程理论方法应用,系统科学与数学,量子光学学报,高能物理与核物理,强激光与粒子束,物理,工程热物理学报,核聚变与等离子体物理,量子电子学报,液晶与显示,波谱学杂志,应用声学,计算物理,原子核物理评论,原子与分子物理学报,红外与毫米波学报,高压物理学报,低温与超导,低温物理学报,声学技术,质谱学报,噪声与振动控制,光子学报,光谱学与光谱分析,环境化学,分析试验室,化学通报,色谱,分子催化,功能高分子学报,物理化学学报,催化学报,燃料化学学报,电化学,有机化学,分析测试学报,化学试剂,无机化学学报,煤炭转化,化学研究与应用,结构化学,生物多样性,昆虫学报,中国生物化学与分子生物学报,动物学研究,遗传,水生生物学报,应用与环境生物学报,兽类学报,人类学学报,植物生理学通讯,实验生物学报,植物学通报,植物研究 ,菌物系统(改名为:菌物学报),生物化学与生物物理进展,微生物学通报,武汉植物学研究,西北植物学报,广西植物,生命的化学,植物分类学报,动物学杂志,云南植物研究,昆虫分类学报 ,植物生理学报,四川动物,动物分类学报,新型炭材料,复合材料学报,中国腐蚀与防护学报,玻璃钢/复合材料,稀有金属材料与工程,材料导报,稀土,材料热处理学报,材料工程,材料科学与工艺,稀有金属,腐蚀科学与防护技术,宇航材料工艺,材料保护,兵器材料科学与工程,机械工程材料,耐火材料,功能材料与器件学报,煤炭学报,中国矿业大学学报,湘潭矿业学院学报,中国钨业 ,煤田地质与勘探,金属矿山,矿山机械,煤炭科学技术,铀矿冶,煤矿自动化,矿业研究与开发,理化检验——化学分册,钢铁,粉末冶金工业,北京科技大学学报,钢铁研究学报,矿冶工程,硬质合金,冶金自动化,冶金能源,铁合金,焊接学报,特种铸造及有色金属,机械科学与技术,铸造,机械设计,金属热处理,机械传动,振动与冲击,无损检测,制造技术与机床,真空,机械设计与研究,机械强度,传感技术学报,真空科学与技术学报,光学技术,金刚石与磨料磨具工程,润滑与密封,液压与气动,铸造技术,工具技术,低温工程,继电器,热加工工艺,机床与液压,流体机械,机械设计与制造,锻压技术,模具工业,压力容器,变压器,焊接,起重运输机械,轴承,工程机械,仪表技术与传感器,内燃机学报,电网技术,电池,电力自动化设备,微特电机,华北电力大学学报,中国电力,动力工程,电力电子技术,电气传动,高电压技术,小型内燃机与摩托车,燃烧科学与技术,微电机,水力发电学报,电气自动化,高压电器,电机与控制学报,车用发电机,中小型电机,热能动力工程,低压电器,电工技术杂志,汽轮机技术,水力发电,大电机技术,机器人,制造业自动化,光电子•激光,武汉大学学报(信息科学版),电子科技大学学报,电波科学学报,探测与控制学报,激光杂志,西安电子科技大学学报,信号处理,压电与声光,应用激光,电子技术应用 ,数据采集与处理,系统工程与电子技术,红外技术,光电工程,电子元件与材料,光通信技术,微波学报,弹箭与制导学报,激光技术,现代雷达,红外与激光工程,电力系统及其自动化学报,北京邮电大学学报,自动化学报,半导体技术,半导体光电,通信技术,微电子学,固体电子学研究与进展,武汉理工大学学报(信息管理版),微电子学与计算机,模式识别与人工智能,计算机应用,中文信息学报,计算机与应用化学,计算机集成制造系统(CIMS),计算机工程与应用,计算机应用研究,小型微型计算机系统,计算机工程与设计,计算机工程,微型机与应用,计算机应用与软件,中国塑料,塑料工业,合成树脂及塑料,塑料,现代化工,膜科学与技术,合成纤维,合成纤维工业,化学工程,天然气化工.C1.化学与化工,硅酸盐通报,无机盐工业,合成橡胶工业,日用化学工业,涂料工业,过程工程学报,林产工业,农药,中国医药工业杂志,北京化工大学学报,化学反应工程与工艺,橡胶工业,离子交换与吸附,海湖盐与化工,中国陶瓷,棉纺织技术,中国粮油学报,食品科学,印染,制冷学报,中国造纸,中国乳品工业,中国油脂,纺织学报,中国皮革,粮食与饲料工业,北京服装学院学报(自然科学版),丝绸,东华大学学报(自然科学版),郑州轻工业学院学报(自然科学版),酿酒技术,粮油加工与食品机械,城市规划汇刊,建筑结构,给水排水,暖通空调,工业建筑,工程勘察,建筑科学,西安建筑科技大学学报(自然科学版),建筑机械,施工技术,建筑技术,四川建筑科学研究,筑路机械与施工机械化,水处理技术,应用生态学报,环境污染治理技术与设备,化工环保,环境科学研究,生态学杂志,工业水处理,长江流域资源与环境,资源科学,海洋环境科学,环境科学与技术,农业环境保护,农村生态环境,环境工程,环境与健康杂志,环境污染与防治,中国环境监测,地震工程与工程振动,西北地震学报,地震研究,地球物理学进展,地球科学,地学前缘,地球化学,第四纪研究,地球学报,地球科学进展,古生物学报,中国沙漠,地质科技情报,地质与勘探,现代地质,成都理工学院学报,高校地质学报,地层学杂志,矿物岩石,岩石矿物学杂志,水文地质工程地质,中国岩溶,地理学报,地理研究,地理科学,干旱区地理,冰川冻土,地理学与国土研究,山地学报,地理科学进展,大地构造与成矿学,干旱区研究,中国新药与临床杂志,中国药理学通报,中国药理学与毒理学杂志,中国新药杂志,中国抗生素杂志,中国药房,中国医院药学杂志,中国临床药理学杂志,沈阳药科大学学报,中国药科大学学报,华西药学杂志另外,团IDC网上有许多产品团购,便宜有口碑

提问的意图何在?

这个整理起来是比较费时间的。我知道,眼科研究是中文核心期刊。医学类的可以找时间整理下。

华中师范大学学报(核心,sci间接收录)燕山大学学报(核心)西北师范大学学报(核心)河南师范大学学报���福建师范大学学报(核心) 青岛科技大学学报 (自然科学版)岩土工程技术 建筑结构 施工技术 贵州师范大学学报河北科技师范学院学报(社科版、自然科学版) 辽宁师范大学学报 核心刊物 鞍山师范学院学报 北京联合大学学报石河子大学学报贵州师范大学学报兰州理工大学学报

相关百科

热门百科

首页
发表服务