首页

> 期刊论文知识库

首页 期刊论文知识库 问题

车道线检测硕士论文

发布时间:

车道线检测硕士论文

本文将对论文 Towards End-to-End Lane Detection: an Instance Segmentation Approach 进行解读。这篇论文是于2018年2月挂在arxiv上的。        文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将 语义分割 和 对像素进行向量表示 结合起来的多任务模型,负责对图片中的车道线进行 实例分割 ;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐标y对坐标x进行修正)。        根据论文中的实验结果,该算法在图森的车道线数据集上的准确率为,在NVIDIA 1080 TI上的处理速度为52FPS。        如图1所示,对于同一张输入图片,LaneNet输出实例分割的结果,为每个车道线像素分配一个车道线ID,H-Net输出一个转换矩阵H,使用转换矩阵H对车道线像素进行修正,并对修正的结果拟合出一个三阶的多项式作为预测得到的车道线。       论文中将实例分割任务拆解为 语义分割 和 聚类 两部分,如图2所示,LaneNet中decoder分为两个分支,Embedding branch对像素进行嵌入式表示,训练得到的embedding向量用于聚类,Segmentation branch负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景)。最后将两个分支的结果进行结合得到实例分割的结果。 在设计语义分割模型时,论文主要考虑了以下两个方面: 1.在构建label时,为了处理遮挡问题,论文对被车辆遮挡的车道线和虚线进行了还原; 2. Loss使用 交叉熵 ,为了解决样本分布不均衡的问题(属于车道线的像素远少于属于背景的像素),参考论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation  ,使用了boundedinverse class weight对loss进行加权: 其中,p为对应类别在总体样本中出现的概率,c是超参数(ENet论文中是,使得权重的取值区间为[1,50])。        为了区分车道线上的像素属于哪条车道,embedding_branch为每个像素初始化一个embedding向量,并且在设计loss时, 使得属于同一条车道线的像素向量距离很小,属于不同车道线的像素向量距离很大 。 这部分的loss函数是由两部分组成:方差loss(L_var)和距离loss(L_dist): 其中,x_i为像素向量,μ_c为车道线的均值向量,[x]+ = max(0,x)         为了方便在推理时对像素进行聚类,在图4中实例分割loss中设置δ_d > 6*δ_v。         在进行聚类时,首先使用mean shift聚类,使得簇中心沿着密度上升的方向移动,防止将离群点选入相同的簇中;之后对像素向量进行划分:以簇中心为圆心,以2δ_v为半径,选取圆中所有的像素归为同一车道线。重复该步骤,直到将所有的车道线像素分配给对应的车道。        LaneNet是基于 ENet 的encoder-decoder模型,如图5所示,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。        如图2所示,在LaneNet中,语义分割和实例分割两个任务 共享stage1和stage2 ,并将stage3和后面的decoder层作为各自的分支(branch)进行训练;其中, 语义分割分支(branch)的输出shape为W*H*2,实例分割分支(branch)的输出shape为W*H*N,W,H分别为原图宽和高,N为embedding vector的维度;两个分支的loss权重相同。         LaneNet的输出是每条车道线的像素集合,还需要根据这些像素点回归出一条车道线。传统的做法是将图片投影到鸟瞰图中,然后使用2阶或者3阶多项式进行拟合。在这种方法中,转换矩阵H只被计算一次,所有的图片使用的是相同的转换矩阵,这会导致地平面(山地,丘陵)变化下的误差。         为了解决这个问题,论文训练了一个可以预测转置矩阵H的神经网络H-Net, 网络的输入是图片 , 输出是转置矩阵H :         由图6可以看出,转置矩阵H只有6个参数,因此H-Net的输出是一个6维的向量。H-Net由6层普通卷积网络和一层全连接网络构成,其网络结构如图7所示: Curve fitting的过程就是通过坐标y去重新预测坐标x的过程:LaneNet和H-Net是分别进行训练的。在论文的实验部分,两个模型的参数配置如下所示: •    Dataset : Tusimple •    Embedding dimension = 4 •    δ_v= •    δ_d=3 •    Image size = 512*256 •    Adam optimizer •    Learning rate = 5e-4 •    Batch size = 8 •    Dataset : Tusimple •    3rd-orderpolynomial •    Image size =128*64 •    Adam optimizer •    Learning rate = 5e-5 •    Batch size = 10

硕士论文在线检测

目前免费论文检测网站比较多,主流的查重网站有知网学术不端查重、维普查重、万方查重,高校都有1-2次的免费查重机会,具体得看各个学校的要求而定,paper系列主流查重有PaperFree、PaperPass、PaperTime、Paperok等,以上几家paper系列都是跟wps、百度学术、360学术等都有合作,感兴趣的同学可以搜一下,每个学术平台免费查重优惠也是不一样,接下来我们逐步一一列举上面所提的查重软件具体情况:

知网查重

中国知网,始建于1999年6月,是中国核工业集团资本控股有限公司控股的同方股份有限公司旗下的学术平台。知网是国家知识基础设施(National Knowledge Infrastructure,NKI)的概念,由世界银行于1998年提出。CNKI工程是以实现全社会知识资源传播共享与增值利用为目标的信息化建设项目。

维普查重

维普论文检测系统,由重庆泛语科技有限公司自主研发,采用先进的海量论文动态语义跨域识别加指纹比对技术,通过运用云检测服务部署使其能够快捷、稳定、准确地检测到文章中存在的抄袭和不当引用现象,实现了对学术不端行为的检测服务。

万方查重

万方查重是北京万方数据股份有限公司旗下唯一独立运营的产品。万方查重致力于提供多样化的科技信息服务。公司以客户为导向,依托强大的数据采集能力,应用先进的信息处理技术和检索技术,为科技界、企业界和政府部门提供高质量的信息资源产品。并陆续推出万方查重、万方毕业论文管理系统、万方VR虚拟教育平台等一系列产品。

PaperFree

PaperFree是中英文及多语种论文相似度检测系统,特色机器人降重、在线改重功能,可以实现自动降低文章相似比例,并且在同一界面上一边修改一边检测,即时反馈查重结果,使用户体验、查重效率翻倍。PaperFree为用户人性化地完美实现了“首次免费论文检测―高效在线改重―智能机器人降重―全面再次论文检测―顺利通过论文检测“的整个全过程。

PaperPass

PaperPass是全球首个中文文献相似度比对系统,已经发展成为一个中文原创性检查和预防剽窃的在线网站。一直致力于学术论文的检测。

PaperTime

PaperTime是在“教育大数据联盟平台”的基础上,优先获取教育数据资源,采用多级指纹对比技术及深度语义识别技术,实现“实时查重、在线修改、同步降重”一步到位。

Paperok

PaperOK论文查重,基于大数据海量学术文献资源及互联网资源,坚持客观、公正、精准、全面的原则,对学术不端行为进行管理,为用户提供客观详实的查重报告,为出版、科研、学术等提供支持!

如果你想要一个准确的论文查重结果,建议你使用与学校一致的论文查重系统,不要信其他系统说的什么与知网查重结果一致,数据库都不一样,怎么可能一致!不过学校一般用的知网查重,自查的话很贵。如果你只是想了解一下论文的重复率情况,又不想花什么钱,PaperPP很适合你,长期有免费字数的活动,基本不用花钱,建议用在初稿检测。

本科,学校一般规定使用知网的标准,重复率在15%以内,超过视为抄袭。但价格贵,对于学生党不划算。因此在前期选择论文查重软件可以考虑其他的,paper系列的软件基本都可以,选择正规公司,数据库全的,客服态度好的,检测报告出来快的,还能帮助改重的,满足这些是很不错的软件了。

可以免费论文查重的系统,下面给你分享一些:1,蝌蚪论文查重(免费)专业版每天免费查重一次,非常适合初稿检测,不花钱。3,论文狗(免费)专业版每天免费查重一次,适合初稿检测4,paperpp(可免费)关注送5000字免费查重5,papertime(可免费)关注领取10000字免费查重6,渣搜paperfree(可免费)关注领取10000字免费查重7,paperOK(可免费)关注领取10000字免费查重8、paperpass(可免费)关注领取1000字免费查重,旗舰版付费检测,支持在线降重9,paperccb(免费)专业版每天免费查重一次,适合初稿检测完毕!

车道线检测发论文简单吗

1、传感器技术:自动驾驶汽车上,前后左右装有认识周围环境、道路、交通状况的各种传感器。光学摄像头包括单摄像头、多摄像头,多普勒雷达包括短距离雷达、远距离雷达,还有激光雷达就是车顶上那个旋转的机器,GPS定位装置,等等,构成汽车认识环境的眼睛。2、芯片技术:也就是能够处理多个传感器采集的数据,并能整合的类似小计算机的超级芯片,使汽车的“总计算机”体积、成本大为减小,并能应用于汽车成为可能。否则汽车里将没有人坐的地方、老百姓也买不起这些庞大计算机群的汽车。3、操作系统:计算机控制系统将处理结果与操作硬件结合起来,实现加速减速、刹车停车、变向避让,以及人机对话等等。无人驾驶汽车具备了替代人工操纵的能力。4、网络技术:无人驾驶汽车要能上路,必须具备与互联网、局域网联络和识别功能,包括车与车的联络对话、车与卫星通讯、车与天气预报的联络、车与交通指挥网的联络,才能正确识别和选择道路、正确服从交通警察的指挥、正确决定通过交叉路口、正确避让危险和安全行车。总之,万里长征刚走了第一步,距离进入百姓家庭,还相当遥远。比如,那个车顶上老是旋转的东西就让人感到很不雅观。汽车制造商真的搞无人驾驶,自己把自己推给了芯片公司、计算机公司、网络公司,沦为装配厂的一员,也是很不情愿的事。

你好,车道线检测本质上是参数估计问题。在做实际工程时,要回答两个问题:1、车道线的Mathematical Model选什么?2、检测到的车道线到底属于什么类型?对于第一个问题,常用的车道线模型分为两类,参数化模型如Line/parabola/cubic, poly-line/spline, Clothoid, 只需若干个参数,即可描述整个车道线形状;也有基于数据的,如Support Vector Regression, Gaussian Process Regression,这种方法需要有正确数据的支撑,学习出相应的参数。用于车道线的参数估计问题并不简单,因为数据本身除了noise外,还有outlier。一个外点就能让传统的最小二乘法失效。Hough Transform, RANSAC, Least Trimmed Square, Bayesian Filter都可以用来鲁棒参数估计。对于第二个问题,检测到的车道线可以分为白实线、黄实线等,要用到分类的算法,我不是很懂,就不强答了。ps:使用相机检测车道线已经是ADAS的标配了,但是,但是,但是,对无人驾驶而言,相机对环境的敏感性,导致车道线检测有时候会失效。这个时候,最好使用激光传感器作为补充。pps:更进一步,为什么一定要检测车道线呢?Stanford的博士论文就没有涉及到车道线,他们把地面上的有效信息(包含车道线、人行横道、转向箭头、甚至裂缝)拼接为高精度地图,在线定位就行了。

道路车辆检测论文

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。下面是我为大家精心推荐的汽车检测技术论文,希望能够对您有所帮助。

国内汽车检测技术概况

[摘 要]本文通过了解我国国内汽车检测技术的概念及其分类,介绍了我国一些先进前沿的汽车检测技术,阐述了我国汽车检测技术的发展概况,针对我国汽车检测技术中的不足之处,结合我国汽车检测技术的具体发展形势,提出了我国汽车检测技术的发展方向,这对我国汽车检测技术的发展具有一定的现实指导意义。

[关键词]汽车检测;检测技术;国内现状;发展概况

中图分类号: 文献标识码:A 文章 编号:1009-914X(2015)03-0056-01

1.汽车检测的概念

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。汽车检测技术则是指在汽车检测这一过程中所有与之相关的检测硬件和检测软件的研发和使用技术。

2.汽车检测技术的分类

安全环保检测

安全环保检测主要是针对汽车的安全运行和环境保护方面的检测,这种检测又分为定期检测和不定期检测。该检测的目的是为了确定车辆是否具备符合要求的外观容貌以及良好的安全性能,同时对汽车的环境污染程度进行有效控制。在汽车不解体的情况下,对汽车建立安全监控体系,确保汽车能高效、安全和低污染的运行。

综合性能检测

综合性能检测是指对汽车的综合性能实行定期或者不定期的检测。该检测的目的是为了确定汽车是否具有良好的动力性、可靠性、安全性、噪声污染性以及排气净化性。该检测主要针对汽车的故障及其原因或隐患部位实行质量监督和检测,从而建立汽车质量监控体系,来达到该检测技术的目的。

3.国内汽车检测技术的发展情况

国内汽车检测技术的发展历程

(1)20世纪60年代,我国汽车检测技术处于起步阶段。我国开始研究汽车检测技术开始于20世纪60年代,为了满足当时的汽车维修需要,我国交通部门研究和开发了发动机汽缸漏气量检测仪以及点火正时灯等一些基本的检测仪器。

(2)20世纪70年代,我国汽车检测技术进入发力发展阶段。随着我国汽车生产技术以及人们汽车使用率的飞速增长,我国交通部门开始进入大力发展汽车检测技术的阶段。汽车检测的仪器设备增多,检测项目增多,检测标准和规则也得到进一步的完善,建立了汽车性能综合检验台。

(3)20世纪80年代,我国汽车检测技术进入快速发展阶段。随着我国科学技术和国民经济的飞速发展,我国汽车制造业和交通运输业也得到了飞速发展。因此,对汽车检测技术和设备的需求也日益增涨。我国汽车检测技术因此进入其发展的蓬勃向上时期。

(4)20世纪90年代至今,我国汽车检测技术已经发展相对成熟。迈入90年代后,我国汽车检测技术从其设备的研制、开发以及生产都有了自身的一套运作体系。90年代是我国汽车检测技术的发展高潮时期。虽然目前我国的汽车检测技术与外国仍存在一定的差距,其发展的过程中也存在有一些问题和不足,但我国汽车检测技术也在不断的吸收借鉴完善自己,保证自身良好的发展态势,努力为其创造广阔的发展前景。

目前国内具有代表性的先进前沿的汽车检测技术

(1)虚拟仪器检测技术

虚拟仪器检测技术是指通过自由增减测试系统配置,利用系统配置单元器件,按照每一个项目测试的要求标准,可以直观和有效的得出监测结果,从而提高测试技术的效率。

(2)将GPS技术与车辆检测相结合

该技术主要是利用了能够接受卫星定位信号的GPS系统,将其与汽车检测技术系统相结合,从而达到快捷有效的检测过程。

(3)利用汽车四轮定位进行检测

四轮定位仪主要是依据车轮定位得到检测数据,它利用图像显示并记录汽车四轮的运作情况,与汽车检测数据结果分析相结合,从而达到检测目的。

4.国内汽车检测技术发展过程中存在的问题

国内汽车检测站的经营管理过程中存在行政干预问题

在我国,安全检测是由公安部门来建立管理的。因此我国的综合性能检测站都由交通部门直接建立并管理或者由地方企业建立但仍由交通部门管理。这种行政管理形式,往往造成了检测结果的不真实、检测过程的不规范或者检测项目不完善的情况,甚至是伪造一些监测数据。

我国汽车检测存在重复检测的问题

目前,我国有权对汽车进行检测的机构至少有三种,即安检站、机动车尾气排放检测站以及汽车综合性能检测站。这三个机构又分别归隶属于公安、环保、和交通管理部门。这些部门从各自的职能要求出发对车辆进行必要的检查和监测,容易造成车辆的重复检查,在加大汽车检测工作量的同时,给车主也带来不便。

检测技术有待进一步完善

目前,我国的进口汽车检测标准体系主要依赖于外国检测标准,因此针对我国汽车具体发展情况,我国的汽车检测技术有待进一步提高和完善。例如,我国目前的技术可以对车辆的正面、侧面、追尾等事故进行检测,但对侧面碰撞、追尾碰撞等事故却缺乏相关的检测标准。这也急需我国汽车检测技术的提高和完善。

我国汽车检测人员的整体专业能力和专业素质有待提高

一方面,我国的汽车检测人员的专业检测能力有待提高。一些检测人员本身缺乏基本的汽车知识,检测操作不规范,对检测结果的分析能力不够,不能很好的判断汽车是否达到检测标准。另一方面,我国汽车检测人员的自身素质不够,一些检测人员故意抬高检测收费标准,为了个人利益不顾集体利益,甚至为一些没有达到标准的车辆伪造数据。这些都是造成安全隐患的个人因素,也不利于我国检测技术的研发和推广。

5.解决国内汽车检测技术发展过程中的问题的有效 措施

汽车检测技术基础实现规范化

在我国汽车检测技术的发展过程中,汽车检测的硬件技术一直以来都比汽车检测技术中的软件技术更受重视。这种想法往往会导致对一些基础性技术研究的忽略。因此,我国汽车检测技术的发展方向应该注重与硬件配套的软件检测技术的完善和提高。这方面主要做到三点:一,制定并完善汽车检测项目的限值标准和检测 方法 ;二,完善汽车技术状况检测的评定细则,将全国各地的检测要求和具 体操 作技术进行统一和规范化;三,严格执行综合性能检测站对大型检测设备的认证规则,确保综合性能检测站有能力胜任并履行其检测职责。

汽车检测设备实现智能化

虽然目前我国的汽车检测技术以及检测设备的智能化与国外的检测存在一定的差距,但是我国汽车检测设备正积极学习并通过进口一些外国先进检测设备来提高并完善我国汽车检测设备的智能化。检测设备的智能化使检测设备具有专家检测和诊断系统以及智能化的功能,可以在较短时间较快较准确的对汽车状况进行检测,并诊断出汽车发生故障的部位以及故障原因,从而让维修人员能够迅速解除故障。节约了劳动成本,提高了劳动效率。

汽车检测管理实现网络化

随着计算机和 网络技术 的飞速发展,我国各个行业都在逐步实现其管理的网络化,汽车检测行业也不例外。目前,虽然我国的部分汽车综合性能检测站已经实现了计算机管理系统检测,但计算机监控系统并不完善,而且各个检测站之间采用的计算机检测方式也都一致。为了逐步实现我国汽车检测管理的一致性和有效性,我国汽车检测应该积极推进其管理的网络化。

6. 总结

随着我国经济和社会的进步以及汽车工业的发展,我国汽车检测技术也必须不断的提高和完善。为了使汽车维修人员的工作越来越轻松,提高汽车检测结果准确性,我国汽车检测技术的发展越来越趋向于自动化、网络化和智能化。汽车检测技术的完善和提高有利于我国交通事业以及环保事业的发展,从而为我国经济和社会的发展提供良好的外在环境。

参考文献

[1] 初君浩;浅析汽车检测技术的发展[J];科技致富向导;2014(08)25.

[2] 王洪亮;汽车检测技术的若干问题的思考[J];无线互联科技;2013(12)15.

作者简介

张彦(1975-)女,汉族,山东菏泽人,助理工程师,大学学历, 毕业 于山东省委党校经济管理专业,研究方向为车辆检测、维修。

点击下页还有更多>>>汽车检测技术论文

我给你发了全文不知怎么不让发。

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

我们学校的汽车检测与运营工程师专业就是大专学历的 你可以来看看 在番禺市桥这里的

车道线视觉识别检测算法综述论文

传统的检测方法与单目视觉检测都存在检测精度不高,鲁棒性不够等问题.提出了一种基于立体视觉的道路检测算法,消除了对道路的一般性假设。对三维道路状态能进行快速有效地检测与跟踪.保证行驶的安全性.关键词:立体视觉;道路识别;道路跟踪;扩展卡尔曼滤波

车道线检测算法通常分为两种类型:一种是基于基于视觉特征来做语义分割或者实例分割,例如 LaneNet 和 SCNN ;另一种是通过视觉特征来预测车道线所在位置的点,以此来解决 no-visual-clue 问题的模型,比如本文提到的 Ultra-Fast-Lane-Detection 。

offical github : paper : Ultra Fast Structure-aware Deep Lane Detection

下图展示了整个模型的结构,基本可以分为三个部分: Backbone 、 Auxiliary 部分和用于车道线候选点选择的 Group Classification 部分。可以看出,由于整个 pipeline 中参与最终 inference 的部分只进行了下采样而不像分割模型还进行了多轮的上采样,因此模型整体的计算量是相当低的,根据论文给出的结果可以达到 300FPS 。

Backbone 部分采用了较小的 ResNet18 或者 ResNet34 ,下采样到 4X 的部分作为最终的特征,这里其实是较为浅层的特征,一般分割模型要下采样到 16x 或者 32x 。论文里也提到了使用较大的感受野就可以达到不错的检测效果,这样就可以极大的提高模型的推理速度。

Auxiliary 部分对三层浅层特征进行了 concat 和上采样,用来进行实例分割。其目的是在训练过程中增强视觉特征,不参与推理。

Group Classification 部分如下所示,论文称之为 row-based selecting method based on global image features ,即在全局特征上进行行索引来计算候选点,这样的方法将先验假设融入到了车道线检测的任务中。

在分割任务上,最终的特征图的大小是 HxWxC 。分类是要沿着 C 方向的, C 方向的向量代表一个像素位置的特征向量属于哪一个类别;在本方法中,最终的特征图的大小是 hx(w+1)xC 。 h 是要在垂直方向上采样的行的数量( row anchor ), h

文章中使用的 Loss 函数分为三部分,分别是多分类损失 L_cls , 分割损失 L_seg 和车道结构化损失 L_str 。其中 L_cls 和 L_seg 是常用的分类、分割任务中常用的两种损失。

结构损失的目的是利用车道结构的先验知识来约束预测出来的车道线的形状。其中 L_sim 为相似度损失, L_shp 为形状损失。

相似度损失的出发点是同一个车道中,相邻的两个点之间的距离应该尽可能的近,这里使用 L1 范式来进行距离的约束。

形状损失的出发点是基于大多的的车道线都是直线,即使是曲线其大部分也是近似的直线。对于同一条车道线,在相邻 row achor 上的车道线的候选点的位置的选择应该尽可能的相近。理想的状况下它的值应该为 0 。

Loc 函数的含义是第 i 条车道的第 j 个 row anchor 中车道点的期望。 Prob 代表的是第 i 条车道的第 j 个 row anchor 中,第 k 个位置是车道点的概率。因为背景不被计算在内,因此 k 的取值从 1 开始。

论文给出 metric 结果如下所示,其评估硬件应该为 NVIDIA GTX 1080TI 。该方法在保证精度接近的情况下,极大的提升了推理速度,很适合实时检测的任务。

为了测试其真实的推理性能,我在 NVIDIA RTX 3070+CUDA11+ 的环境性进行了测试。模型的 backbone 为 resnet18 ,输入尺寸为 (288, 800, 3) 的情况下, Ultra-Fast-Lane-Detection 的推理性能如下所示,单 batch 推理速度约为 350FPS ,其性能与论文给出的结果基本一致。

相关百科

热门百科

首页
发表服务