首页

> 期刊论文知识库

首页 期刊论文知识库 问题

表面活性剂用于药物分析论文

发布时间:

表面活性剂用于药物分析论文

兽药中纳米乳的优点和缺点分析论文

无论在学习或是工作中,大家都不可避免地会接触到论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么一般论文是怎么写的呢?以下是我为大家整理的兽药中纳米乳的优点和缺点分析论文,仅供参考,欢迎大家阅读。

摘要:

纳米乳技术是纳米乳化技术的简称,是在乳化剂作用下将水相、油相进行乳化后获得纳米级别药物微粒的一项制药技术,其在兽药临床应用过程中的优点很多,如可使油相和水相共为一体,增加药物的溶解度,提高药物生物利用度,避开肝脏首关效应等,也存在制药成本高,保质期短,影响标准检测等缺点;相信随着科学的发展和技术的进步,纳米乳技术因缺点带来的推广困难会逐步解决,在不久的将来能广泛应用于养殖业。

关键词:

纳米乳;纳米技术;兽药;推广;应用;

引言:

纳米乳技术是纳米乳化技术的简称,纳米乳实质上是乳剂的一种,是在乳化剂作用下利用特殊的'乳化工艺,将药物制备成纳米级别的小乳粒的技术[1]。和普通剂型相比,纳米乳剂型药物微粒更小,比表面积更大,生物利用度更高,药效更加理想。为了能帮助大家更清楚地认识纳米乳技术,笔者以此为话题和大家作一下交流。

1、纳米乳

纳米乳是药物的一种剂型,由水相、油相和表面活性剂组成,有的药物中还加入了助表面活性剂而使体系更加稳定[2]。纳米乳早在上世纪90年代就有企业在兽药产品中进行了应用,但由于多种原因,如乳化设备不够先进、制造成本高、市场接受度低等,导致当时该剂型在兽药临床并未得到广泛应用。随着畜牧业的发展和时代的不断进步,兽药监察力度空前加大,市场上不规范的兽药品类越来越少,90%以上都是按照国家、地方或行业标准制成的国标药物。而国标药物临床效果要想充分体现,第一需要药物的配伍技术,第二就是对于药物本身来讲,需要提升本身的生物利用度。纳米乳技术正是基于上述背景在近些年脱颖而出,在化药领域、中兽药领域、饲料添加剂等领域都得到了应用。

2、纳米乳的优点

纳米乳在兽药临床应用过程中的优点很多,如可使油相和水相共为一体,增加药物溶解度,提高药物生物利用度,避开肝脏首关效应等。

、使油相和水相共为一体

纳米乳体系由油相、水相、表面活性剂以及助表面活性剂等成分组成,其中表面活性剂又称乳化剂,其分子结构中,一端亲水,一端亲油,这种特殊的结构可使得体系在表面活性剂作用下,将油相溶解于水或将水相溶解于油中,前者又称“水包油”型纳米乳剂,后者则称之为“油包水”型纳米乳剂。只要选择的配方得当,表面活性剂本身的亲水亲油平衡值(HLB值)和油相乳化所需的亲水亲油平衡值相同或相近,则做出来的体系就比较稳定,能使油相和水相非常均匀地共为一体,而不是油相漂浮在水相上面出现分层现象。

、增加药物溶解度

有些药物本身不溶于水,但能溶于某种油中,利用这个原理,可以先将药物溶解在油中,之后将此作为油相,通过纳米乳化技术将油相在表面活性剂的作用下溶解于水,从而增加药物在水中的溶解度。一般来讲,以纳米乳为载体制备的药物,载药量通常在~5%之间,载药量过低就会失去意义,载药量过高又会引发体系的不稳定,药物很容易在后期储藏过程中出现析出现象,尤其是耐低温性能下降,冬季很容易析出,但和普通剂型相比,纳米乳剂型已经显着提高了药物在水中的溶解度。

、提高药物生物利用度

纳米乳的乳滴粒径一般在100nm以下,有些药甚至能够做到10nm左右,如此小的粒径使其在口服后很容易穿透细胞膜或细胞间隙而进入体循环中。这种小尺寸效应是纳米乳剂型有别于其他剂型的重要一点,加上粒径变小后药物的比表面积大幅增加,和靶器官的组织细胞接触面也得到增大,最终使得药物生物利用度提高。拿临床常用的兽药替米考星来讲,通过药代动力学检测发现,普通的口服液剂型只是纳米乳剂型的~倍左右。药物生物利用度的提高有利于降低用药剂量和缩短疗程,从而降低治疗费用,也有利于减少病原菌耐药性的产生,还有利于解决因兽药残留产生的食品安全问题。

、避开肝脏首关效应

纳米乳剂型有别于其他制剂,由于药物是溶解在油相当中的,而油相成分为脂类物质,在进入肠道后,其吸收不是通过小肠血管的,而是先进入到肠淋巴管,最后再经淋巴循环汇入到血液中,如此吸收方式使得药物没有经过肠道静脉进入到肝门静脉,再经过肝脏进入到体循环,也就避免了肝药酶的灭活作用,有效避开了肝脏首关效应。这种特殊的吸收方式使得药物使用时无需首次加倍,即节约了药物使用成本,同时也降低了药物对肝脏的损害,可谓一举两得。

3、纳米乳的缺点

纳米乳临床应用过程中虽然具有多种优点,但也同样具有一些不可回避的缺点,如制备成本就比较高,纳米乳的工艺中大部分都是通过高速乳化机的乳化作用来制备的,设备的投入和对乳化过程的工艺要求都较高,加上本身表面活性剂的市场价格也不低,实际纳米乳原液中表面活性剂含量能占到18%~36%之间,这些成本加起来导致药物市场售价较高,对推广造成了一定困难。另外,纳米乳为液体制剂,和固体制剂相比稳定性会差一些,药物保质期通常在6~18个月,而固体制剂的则为2~3年。还有在中药制剂中,尤其是口服液制剂和注射液制剂,产品在按照国家标准检测过程中有一项是薄层检验,其中的有关物质通过条带的位置对照能判定产品质量,但表面活性剂的存在会影响薄层检验结果,这也是导致很多中药液体制剂无法使用纳米乳技术的原因。虽然纳米乳技术在推广和应用过程中有诸多困难,但相信随着科技的不断发展,该技术在推广过程中的困难会逐渐被克服。

4、小结

纳米乳化技术是一种新型药物制剂技术,属于纳米技术的一种,由于药物粒子达到了纳米级别,这种小尺寸效应直接解决了很多传统技术无法解决的难题[3]。在我国,目前多家兽药巨头已经将氟苯尼考、替米考星、土霉素、红霉素等药物制成了纳米乳剂应用于临床,添加剂领域则以纳米维生素应用最为广泛,植物精油领域目前薄荷油、牛至油、香芹酚、连翘油、桉叶油等也制成了纳米乳剂在无抗养殖领域得到了应用。相信通过以产品为载体的纳米乳化技术的不断普及,在不久的将来一定会给兽药行业带来革命性的改变。

参考文献

[1]吴旭锦,欧阳五庆,朱小甫,等.黄芩甙纳米乳的制备[J].精细化工,2007(5):470-472.

[2]刘岳,曹丹丹.纳米乳在兽医药剂学中的应用[J].畜牧兽医科技信息,2018(10):155.

[3]胡宏伟,李剑勇,吴培星,等.纳米乳在药剂学中的研究进展及其应用[J].湖北农业科学,2009,48(3):747-750.

某些国产试剂、试药与进口品存在一定的质量差异,《欧洲药典》收载的冲洗液配方中卵磷脂及聚山梨酯80的含量较多,当用国产品配制时,其溶解性能不好,造成溶液混浊,冲洗量大时,溶液过滤的速度缓慢,影响冲洗效果,甚至无法进行过滤。该问题通过降低配方中各成分的量可以得到有效解决。经验证,即使配方中的各成分量减少一半,效果依然可满足实验的需要,且过滤速度适宜,还可降低实验成本。

吡咯类抗真菌药物制剂微生物限度检查方法的研究摘要] 目的:研究建立吡咯类抗真菌药物制剂的微生物限度检查方法。方法:通过预试验摸索,拟以含有组氨酸、卵磷脂和聚山梨酯80的混合溶液作为稀释剂及冲洗液,采用离心沉淀集菌法与薄膜过滤法联用的方法进行此类药物的微生物限度检查并进行方法学验证。结果:按《中国药典》2005年版附录要求对拟定方法进行验证,结果验证菌株的回收率均大于70%,控制菌检查阳性菌也生长良好。结论:以含有组氨酸、卵磷脂和聚山梨酯80的混合溶液作为稀释剂及冲洗液,采用离心沉淀集菌法与薄膜过滤法联用进行吡咯类抗真菌药物制剂的微生物限度检查,方法是可行的。[关键词] 吡咯类抗真菌药物制剂;微生物限度检查;离心集菌法;薄膜过滤法吡咯类抗真菌药,如硝酸布康唑和克霉唑,具广谱抗真菌活性,对表皮癣菌、毛发癣菌、曲菌、着色真菌、隐球菌属和念珠菌属均有较好的抗菌活性。该类药物通过干扰细胞色素P-450的活性,从而抑制真菌细胞膜主要固醇类-麦角固醇的生物合成,损伤真菌细胞膜并改变其通透性,导致重要的细胞内物质外漏,还可抑制真菌的三酰甘油和磷脂的生物合成,抑制氧化酶和过氧化酶的活性,引起细胞内过氧化氢积聚,导致细胞亚微结构变性和细胞坏死。此类药物对细菌也有一定的抑制作用。根据目前国内要求,非规定灭菌的药物制剂均需建立微生物限度检查方法,包括抗细菌和抗真菌类药物制剂,但由于此类药物抗菌活性很强,因此如何消除其抑菌性,使检验得以顺利进行就成为建立方法时极为重要也是较为困难的关键点。本文作者选择目前在国内还没有适宜微生物限度检查方法的吡咯类(如硝酸布康唑和克霉唑)抗真菌药物制剂进行了试验研究,经多次试验,重点对冲洗液组成和冲洗量进行考察研究和优选,最终参考《欧洲药典》确定了以含有组氨酸、卵磷脂和聚山梨酯80的混合溶液作为稀释剂及冲洗液,采用离心沉淀集菌法与薄膜过滤法联用,从而建立了硝酸布康唑类和克霉唑类药物制剂的微生物限度检查方法,并进行了方法学验证,结果表明该方法是适宜可行的。1试药与仪器试药硝酸布康唑阴道乳膏3批,克霉唑阴道片2个厂家各3批,复方克霉唑乳膏3批,克霉唑乳膏3批,醋酸米康唑乳膏3批,均为市售药品;营养肉汤培养基,改良马丁培养基,营养琼脂培养基,玫瑰红钠琼脂培养基,胆盐乳糖培养基,溴化十六烷基三甲胺琼脂培养基,甘露醇氯化钠琼脂培养基,均购自中国药品生物制品检定所;组氨酸、卵磷脂、聚山梨酯80、蛋白胨、氯化钠、磷酸二氢钾、磷酸氢二钠均为市售分析纯试剂、试药;金黄色葡萄球菌[CMCC(B)26003],枯草芽孢杆菌[CMCC(B)63501],大肠埃希菌[CMCC(B)44102],铜绿假单胞菌[CMCC(B)10104],白色念珠菌[CMCC(F)98001],黑曲霉[CMCC(F)98003],以上菌种均购自中国药品生物制品检定所菌种室,按照《中国药典》2005年版附录的要求将以上5种验证菌配制成每1 ml中含菌量为50~100 cfu的菌液。仪器洁净工作台,医用吸引器,低速离心机等。2方法与结果药典附录收载方法试验的结果将上述各药品用《中国药典》2005年版推荐的常用稀释剂pH 无菌氯化钠-蛋白胨缓冲液制成1∶10的供试液,依次采用药典附录收载的几种消除药物抑菌性的处理方式,即培养基稀释法(取1∶10的供试液按每皿 ml或取1∶100的供试液按每皿 ml注皿)、离心沉淀集菌法和以pH 无菌氯化钠-蛋白胨缓冲液为冲洗液的薄膜过滤法、以及将离心沉淀集菌法与薄膜过滤法联用进行菌落计数试验。其中,以pH 无菌氯化钠-蛋白胨缓冲液为冲洗液,冲洗总量已达1 000 ml的离心沉淀集菌法与薄膜过滤法联用试验回收率测定结果见表1。回收率测定即使采用了处理力度较大的离心沉淀集菌法与薄膜过滤法联用,5种验证菌株中仍有4种回收率为零,说明吡咯类抗真菌药物具有很强的抑制细菌和真菌的作用,或说明滤膜对此类药物有较强的吸附作用,目前常用的冲洗液很难将其冲洗干净,国内常用的几种处理方式均不适用于此类药品。不同配方稀释剂与冲洗液的效果比较参考《中国药典》2005年版[1]、《欧洲药典》第5版[2],配制了下列5种稀释剂与冲洗液,详见表2。选用一批克霉唑阴道片,依次试验上述5种稀释剂与冲洗液,采用离心沉淀集菌法与薄膜过滤法联用,比较实验效果,详见表3。上述结果表明,采用欧洲药典配方溶液且卵磷脂为进口试剂,或采用自拟5号溶液作为稀释剂与冲洗液均对消除药品的抑菌性效果较为满意,但当卵磷脂改为国产试剂时,由于溶液呈混浊状,无法进行过滤。将卵磷脂和聚山梨酯80的量降为欧洲药典配方量的一半时,溶液澄清度可不受试剂质量影响,同时冲洗效果也可满足实验要求。建立的方法根据上述试验结果建立方法取供试品10 g,加入含有无菌组氨酸-卵磷脂-聚山梨酯80的混合溶液(配制方法见后)至100 ml,在45℃保温振摇至供试品分散均匀,制成1∶10的均匀供试品储备液。细菌计数、霉菌和酵母菌计数均采用离心沉淀集菌法与薄膜过滤法联用。取1∶10的供试品储备液50 ml,以500 r/min的速率离心5 min,取全部上清液,加上述混合溶液至50 ml,再以3 000 r/min的速率离心20 min,取底部集菌液约5 ml,加上述混合溶液至50 ml,即为1∶10的供试液(乳膏等制剂可略去沉淀步骤)。取1∶10的供试液1 ml,加至上述混合溶液100 ml中,用薄膜过滤器全部过滤,以上述混合溶液作为冲洗液,每次冲洗100 ml,共冲洗3次,取滤膜,依法检查(《中国药典》2005年版二部附录Ⅺ J)。控制菌检查(如金黄色葡萄球菌、铜绿假单胞菌等)采用离心沉淀集菌法与薄膜过滤法联用。取上述菌落计数项下1∶10的供试液10 ml,加至上述混合溶液100 ml中,用薄膜过滤器全部过滤,冲洗方式同菌落计数项下,将滤膜接种至相应的培养基中,依法检查(《中国药典》2005年版二部附录Ⅺ J)。无菌组氨酸-卵磷脂-聚山梨酯80混合溶液配制方法聚山梨酯80 15 g,卵磷脂 g,组氨酸 g,蛋白胨 g,氯化钠 g,磷酸二氢钾 g,磷酸氢二钠 g,水1 000 ml,混匀,微温溶解,分装,灭菌。验证试验按照《中国药典》2005年版附录要求对上述建立的方法进行验证。细菌计数、霉菌和酵母菌计数方法的验证菌液组:分别取上述5种菌液各1 ml,采用平皿计数法,测定制备好的菌液中每毫升的活菌数。供试品对照组:取1∶10的供试液1 ml,加入上述混合溶液100 ml,用薄膜过滤器全部过滤,冲洗方式同上,取滤膜,置规定温度培养、计数。试验组:取1∶10的供试液1 ml,按供试品对照组同法操作,在第三次冲洗液中加入1 ml上述菌液(50~100 cfu试验菌),取滤膜,置规定温度培养、计数,计算回收率,见表4。稀释剂对照组:分别取上述5种菌液各10 ml(500~1 000 cfu试验菌),按供试品对照组同法操作,计算回收率,见表4。按下列公式计算回收率(%):上述实验显示,各验证菌的回收率均达到药典附录要求,表明该类药品采用此法进行细菌、霉菌和酵母菌计数是可行的。控制菌检查方法的验证试验组:取上述1∶10的供试液10 ml,加至上述混合溶液100 ml中,用薄膜过滤器全部过滤,冲洗方式同上,将滤膜加至相应培养基100 ml中进行增菌培养,作为供试品组。空白对照组:取上述混合溶液10 ml,同法操作,作为稀释剂空白对照组。阴性菌对照组:取1∶10的供试液10 ml,加至上述混合溶液100 ml中,用薄膜过滤器全部过滤,冲洗方式同上,但在第3次冲洗液中加入适宜的阴性对照菌(如金黄色葡萄球菌检查就选用大肠埃希菌作为阴性对照菌)10~100 cfu,将滤膜加至相应培养基100 ml中作为阴性菌对照组。阳性菌对照组:取1∶10的供试液10 ml,加至上述混合溶液100 ml中,用薄膜过滤器全部过滤,冲洗方式同上,但在第3次冲洗液中加适宜的菌(如金黄色葡萄球菌检查就加入金黄色葡萄球菌)10~100 cfu,将滤膜加至相应培养基100 ml中作为阳性菌对照组。上述各组均置35~37℃培养18~24 h,分别划线于相应培养基上,再置35~37℃培养18~24 h,结果阳性菌对照组均生长良好,表明该类药物经此法处理后已无抑菌作用或其抑菌作用可以忽略不计;阴性菌均未检出,表明该控制菌检查方法的专属性好,说明方法可行。3讨论本实验研究说明吡咯类药物对细菌和真菌同时具有很强的抑菌作用,对于这类具有较强抗菌活性的药物必须首先摸索处理方式来消除其抑菌作用,然后方能顺利进行其微生物限度检查。若采用薄膜过滤法进行药品的微生物限度检查,选用的稀释液和冲洗液的种类和用量非常重要,甚至可以决定方法的适用与否。作为微生物限度检查用稀释液和冲洗液,不单应具有溶解药物的功能,同时还应具有维持菌体细胞膜的通透性、修复受损细胞、破坏药物对菌体细胞损伤等作用。本实验确定的冲洗液的处方中组氨酸是白色念珠菌生长中重要的氮源之一;卵磷脂对于细胞膜的修复可起到重要的作用;聚山梨酯80作为一种表面活性剂,可降低细菌体周围与培养基接触面之间的表面张力,使外围营养物质更快地进入细胞内,因而促进细菌较快的生长和其他活动。卵磷脂和聚山梨酯80配合使用可中和抑菌剂,中和后的产物对细菌及培养基无太大影响,因此在稀释液和冲洗液中加入这些物质可有效的降低药品对细菌和真菌的抑制作用,同时促进受损的细菌和真菌生长。某些国产试剂、试药与进口品存在一定的质量差异,《欧洲药典》收载的冲洗液配方中卵磷脂及聚山梨酯80的含量较多,当用国产品配制时,其溶解性能不好,造成溶液混浊,冲洗量大时,溶液过滤的速度缓慢,影响冲洗效果,甚至无法进行过滤。该问题通过降低配方中各成分的量可以得到有效解决。经验证,即使配方中的各成分量减少一半,效果依然可满足实验的需要,且过滤速度适宜,还可降低实验成本。[参考文献][1]国家药典委员会.中国药典[S].二部.北京:化学工业出版社,2005. 附录93.[2]欧洲药典[S].第5版.Appendix XVI .

表面活性剂论文

探究水处理陶瓷膜制备与应用技术研究进展论文

膜技术被认为是21 世纪最优前景的水处理技术之一,膜材料技术、膜分离技术在近十几年得到很大发展,在水处理领域得到了广泛应用。水处理陶瓷膜的过滤、分离性能与膜孔径大小及其分布、孔隙率、表面形貌等有密切关系。陶瓷膜的活性分离层是颗粒以任意堆积方式形成的,孔隙率通常为30 ~ 35%,且曲折因子调控较为困难,陶瓷膜的水处理效能受到局限。研究陶瓷膜制备、修饰、工艺优化新技术以提高其过滤、分离、抗污染效能是水处理陶瓷膜领域的研究重点。

1. 水处理陶瓷膜制备技术

致孔剂制备技术

致孔剂是提高水处理陶瓷孔隙率简单又经济的方法,致孔剂可分为无机物和有机物两类。无机致孔剂有碳酸铵、碳酸氢铵和氯化铵等高温易分解的盐类或无机碳如石墨、煤粉等;有机致孔剂主要包括天然纤维、高分子聚合物,如锯末、淀粉、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)等。Yang 等 以Al2O3 为膜基体,以膨润土为烧结助剂,以玉米淀粉作为造孔剂通过挤出、交联、干燥、烧结等过程制备陶瓷膜。研究发现随着淀粉含量的增加,Al2O3 支撑体的最大孔径和平均孔径均有所增大,陶瓷膜的孔隙率可有24% 提高至38%。

模板剂制备技术

模板剂可有效控制所合成材料的形貌、结构和大小,并制备出孔结构有序、孔径均一、孔隙率大的微孔、介孔和大孔材料。模板剂法具有丰富的选材和灵活的调节手段,采用模板剂法制备水处理陶瓷膜极具前景。Xia 等 以有机聚苯乙烯微球为模板剂,采用UV 聚合的方法制备出孔径为100nm 的三维有序聚氨酯大孔材料。Sadakane 等 以PMMA 为模板剂制备出具有三维有序大孔的金属氧化物材料,其孔隙率范围为66 ~ 81%。表面活性剂在溶液中可以形成胶束、微乳、液晶、囊泡等自组装体,也常被用作自组装技术中的有机物模板剂。利用表面活性剂十六烷基三甲基溴化铵为模板剂可制备出有序的介孔分子筛MCM41,具有多种对称性能的孔道,孔径在2 ~ 50nm 的.范围内。Choi 等以Tween80 为模板剂制备了具有梯度孔径结构的TiO2-Al2O3 陶瓷膜,陶瓷膜的渗透性能大大提高。

纤维层积制备技术

陶瓷纤维材料在成膜过程中可以迅速在支撑体表面沉积搭桥,明显减少了膜层的内渗,并且容易得到较高的孔隙率和比表面积,对膜材料渗透性能的提高具有显著作用。Ke 等 以TiO2 纤维为原料,通过旋涂法制备出平均孔径在50nm 的陶瓷纤维膜,对球形粒子截留率超过95%,膜通量在900Lm-2h-1 以上。

溶胶- 凝胶制备技术

溶胶- 凝胶技术主要是通过调整材料尺寸控制陶瓷膜分离层的分离精度。溶胶- 凝胶法可形成纳米级别的溶胶,得到的陶瓷膜层孔径小、孔径分布窄,适用于高渗透选择性的超滤膜和纳滤膜的制备。Tsuru 等 利用聚合溶胶路线制备出平均孔径 ~ 的TiO2 纳滤膜,对PEG 的截留分子量为500 ~ 000Da,对Mg2+ 的截留率为88%。

2. 水处理陶瓷膜修饰技术

化学气相沉积修饰技术

采用化学气相沉积法(CVD)在陶瓷膜表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及过滤性能,是一项非常有效的手段。Lin 等 采用CVD 技术对平均孔径为4nm 的Al2O3 陶瓷膜进行修饰,制备出孔径范围为 ~ 的SiO2 陶瓷膜。CVD 的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性。

原子层沉积修饰技术

原子层沉积技术(ALD)可将物质以单原子膜形式层层沉积在陶瓷膜表面,从而构建陶瓷膜表面微纳结构。Li 等 在平均孔径50nm 的陶瓷膜表面上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,改性后陶瓷膜对BSA的截留率由 升至。

表面接枝修饰技术

表面接枝技术常被用来调控膜材料的表面性质,接枝过程将改变膜的孔结构,达到减小孔径的目的。陶瓷膜表面一般会吸附水形成大量羟基,通过接枝有机硅烷的方法在介孔膜表面可以修饰一层有机分子层。通过调控接枝分子的链长与官能团等特性可以实现调控孔径大小的目的,且能获得特殊的表面性质。Singh 等 发现接枝硅烷偶联剂可以使多孔陶瓷膜孔径进一步变小。Cohen 等 将亲水性PVP 接枝在陶瓷超滤膜表面上,改性后的膜孔径减小,截留性能提高,抗污染性能得以改善,可用于油水分离。

3. 水处理陶瓷膜制备与修饰工艺优化

陶瓷膜材料、添加剂选取

水处理陶瓷膜的制备主要集中于原材料及烧结工艺,通过添加烧结助剂以降低烧结温度、采用低成本易烧结原料以降低原料成本,以及利用先进的烧结工艺以达到低成本控制是陶瓷膜的研究重点。陶瓷膜制备过程中常在基膜材料中加入一些液相型或者固相型烧结助剂。高岭土、钾长石等天然硅酸盐黏土矿物在较低温度下便能熔融形成液相,在颗粒间毛细管力的作用下润湿并包裹膜材料基体颗粒,并将颗粒黏结起来,辅以多孔陶瓷膜良好的机械强度。氧化钛、氧化锆等金属氧化物能与陶瓷膜基体形成多元氧化物固熔物而使烧结温度下降,有利于陶瓷膜制备。

陶瓷膜烧制过程优化

多孔陶瓷膜必须经过多次烧结,存在烧结工艺周期长、能耗高的问题。除采用烧结助剂或采用易烧结材料以降低烧结温度外,减少烧结时间或缩短制备周期也能达到降低烧结工艺成本的目的。在减少烧结时间方面,微波烧结技术是一种非接触技术,热通过电磁波的形式传递,可直达材料内部,最大限度地减少了烧结的不均匀性,可在缩短烧结时间的同时,降低烧结温度。微波技术大多用于制备几近致密的陶瓷复合物,同时由于其可改善材料组织、提高材料性能,亦可用于多孔陶瓷复合物的制备。在缩短烧结周期方面,一些研究者借鉴低温共烧陶瓷技术在多层结构陶瓷元器件封装领域的成功应用,提出采用共烧结技术来减少烧结次数,从而降低烧结成本。

4. 结论

水处理陶瓷膜制备技术以提高陶瓷膜整体性能为目的,通过调控陶瓷膜微结构可实现陶瓷膜制备技术的突破。目前,致孔剂制备技术、模板剂制备技术、纤维层积制备技术、溶胶- 凝胶技术、固态粒子烧结技术等陶瓷膜制备技术已日益得到关注。水处理陶瓷膜制备技术研究将引领和推动陶瓷膜技术及产业的发展,缓解水厂升级改造、提升水质品质的瓶颈压力。

我也不是很清楚的啊

《表面活性剂》论文 表面活性剂的分类及应用 摘要: 表面活性剂的应用范围涵盖了人们生活和工作的各个方面,在20事迹90年代人们已经开始系统的研究表面活性剂。可以说没有表面活性剂就没有现在干净的我们,现在我们对表面活性剂的认识只是停留在表面没有更深入的研究,下面是对表面活性剂一些基础认识。 关键词: HLB值,分类,应用 一、 HLB 值 ----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。 1~--3作消泡剂 3~--6作W/O型[乳化剂 司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60, HLB值。 7~--9作润湿剂; 8~--18作O/W型乳化剂,也叫吐温型乳化剂, 为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型, 药用: (1)可作某些药物的增溶剂。 (2)有溶血作用,以吐温-80作用最弱。 (3)水溶液加热后可产生混浊,冷后澄明,不影响质量。 (4)在溶液中可干扰抑菌剂的作用 13~-18作增溶剂。 二、分类及常用 : 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯, 脂肪酸山梨坦(司盘), 聚山梨酯(吐温) 阴离子表面活性剂: 1 、肥皂类 :碱金属皂:O/W ,碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2 、硫酸化物 :硫酸化蓖麻油,俗称土耳其红油。 十二烷基硫酸钠(SDS、月桂醇硫酸钠) 3 、磺酸化物 :二辛基琥珀酸磺酸钠(阿洛索-OT) 十二烷基苯磺酸钠 甘胆酸钠 阴离子表面活性剂 阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1 、卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料 2 、氨基酸型和甜菜碱型 : 氨基酸型 甜菜碱型: 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用; 在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1. 脂肪酸甘油酯 :单硬脂酸甘油酯;HLB为3~4主用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3. 聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯) 4. 聚氧乙烯 - 聚氧丙烯共聚物 : 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。 表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。 聚合物分散剂作用下效力由以下因素确定: 颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。 介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族片断)必须与粘接剂体系高度的相容。 类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。 根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷: ·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。 ·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。 ·干扰涂层间的粘接。 经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。 用于颜料分散作用的最常用表面活性剂有如下品种: 脂肪酸衍生物,磷酸酯,聚丙烯酸钠/聚丙烯酸,乙炔二醇和大豆卵磷脂。表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造 随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。 烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有: (1)对皮肤和眼的刺激性很小。 (2)清洗性能,受pH值和温度影响较小。 (3)对酸、碱、氯较为稳定。 (4)生物降解性能优异。 图1 表面活性剂结构示意图 烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂 Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。 (2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场台,是优良的润湿剂。 从理论上讲,在极性头基区的化学键台阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结台。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径 另一方面,由于键台产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 型嵌段高分子表面活性剂 涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。 图3 AB嵌段型高分子表面活性剂 合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。

阳离子表面活性剂在电技术上的应用—表面物理化学在微电子学上的应用摘要:阳离子表面活性剂的极性基带正电荷,因而更易在带负电的表面上吸附形成吸附膜并呈现出独特的性能:固体表面疏水化、杀菌、抗静电、柔软等。其在表面活性剂这一大类中也占着重要的位置,阳离子表面活性剂在电技术上也有一定应用,例如:制造硅片表面保护板的重要成分;作为洗涤剂用于清洗电子元件及设备。另外,全氟阳离子表面活性剂用作电子元件助焊剂; 季铵盐用于陶瓷成型及电工陶瓷的制造;在一种具有很好的电流变性效果和稳定性的电黏流体中含有~10%(w%)的阳离子表面活性剂。关键词:阳离子表面活性剂 作用 电技术前言:近年来,阳离子表面活性剂(阳离子表面活性剂)的增长速度要比阴离子和非离子快得多。阳离子表面活性剂的极性基带正电荷,因而更易在带负电的表面上吸附形成吸附膜并呈现出独特的性能:固体表面疏水化、杀菌、抗静电、柔软等。这些性能不仅构成了阳离子表面活性剂在传统应用领域中的应用基础,而且使其应用领域不断拓宽,在近年来发展起来的高新技术中获得了广泛的应用。素有“工业味精”之称的表面活性剂(表面活性剂)与高新技术的结合将是一种必然趋势,也是表面活性剂领域本身发展的一种需要。正文表面活性剂1.概念:表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。2.组成:分子结构具有两亲性非极性烃链: 8个碳原子以上烃链极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。3.吸附性:溶液中的正吸附:增加润湿性、乳化性、起泡性,固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。表面活性剂按照其极性基团的结构可分为以下几类。1、阳离子型表面活性剂 2、阴离子型表面活性剂 3、两性表面活性剂 4、非离子型表面活性剂 5、特殊类表面活性剂。阳离子型表面活性剂生产阳离子表面活性剂所用的原料: 硫酸二甲酯 。阳离子表面活性剂其分子溶于水发生电离后,与亲油基相连的亲水基是带阳电荷的。亲油基一般是长碳链烃基。亲水基绝大多数为含氮原子的阳离子,少数为含硫或磷原子的阳离子。分子中的阴离子不具有表面活性,通常是单个原子或基团,如氯、溴、醋酸根离子等。阳离子表面活性剂带有正电荷,与阴离子表面活性剂所带的电荷相反,两者配合使用一般会形成沉淀,丧失表面活性。它能和非离子表面活性剂配合使用。阳离子型具有表面活性的是阳离子部分。几乎所有的阳离子表面活性剂都是含氮化合物,就是有机胺的衍生物。主要有季铵盐、烷基吡啶盐。阳离子表面活性剂可以作为杀菌剂,也有柔软、脱脂、破乳、抗静电作用。一般来说它不具备去污能力,不能和阴离子表面活性剂配伍使用。(1)有机胺的盐酸盐或醋酸盐(RNH2•HCI或RNH2•HAC)。它可在酸性介质中用作乳化、分散、润湿剂,也常用作浮选剂以及作为颜料粉末表面改性剂。其缺点是当溶液的pH> 7时,自由胺容易析出,从而失去表面活性。(2)季铵盐(R1R2N+R3R4)。一般常用的阳离子表面活性剂为季铵盐。四个R基中,一般只有1~2个R基是长碳氢链.其余的R基的碳原子数大多为1~2个,如十六烷基三甲基溴化铵(俗称1631)季铵盐不受pH值变化的影响,不论在酸性、中性,碱性介质中,均无变化。季铵盐阳离子表面活性剂水溶性好,既耐酸又耐碱且大多数具有杀菌作用。由于大部分纤维表面带负电,用季铵盐阳离子表面活性剂可中和其电荷,因此有较好的抗静电作用。它们能在纤维表面形成疏水油膜,降低纤维的摩擦系数使之具有柔软、平滑的效果所以可作柔软剂。这种表面活,生剂除可作抗静电剂柔软剂外,还可作护发产品中的头发定型调理剂,纺织工业中的匀染固色剂。(3)吡啶盐(NC5H5的衍生物)。季铵盐的一种如十二烷基吡啶盐酸盐:C12H25(NC5H5十Cl-。在电子技术中的应用1、在电子技术中,基于阳离子表面活性剂的抗静电性和固体表面疏水化特性,阳离子表面活性剂是制造硅片表面保护板的重要成分。阳离子表面活性剂的极性基带正电荷,因而更易在带负电的表面上吸附形成吸附膜并呈现出独特的性能:固体表面疏水化。季铵盐阳离子表面活性剂水溶性好,既耐酸又耐碱且大多数具有杀菌作用。由于大部分纤维表面带负电,用季铵盐阳离子表面活性剂可中和其电荷,因此有较好的抗静电作用。2、阳离子表面活性剂也可作为洗涤剂用于清洗电子元件及设备。如:.聚氧乙烯基阳离子、双生和三生阳离子、酯基季铵盐阳离子。他们洗涤作用的基本步骤为1)吸附 洗涤剂分子或离子在污垢及纤维的界面上发生定向吸附。2)润湿与渗透 由于洗涤剂分子的定向吸附,洗涤剂渗透到污垢和纤维之间使污垢与纤维被润湿,从而减弱了污垢在纤维上的附着力。3)污垢的脱落 因洗涤剂减弱了污垢与纤维表面的附着力,再施以机械作用就促使污垢从纤维表面脱落。4)污垢的分散与稳定 由于洗涤剂的胶体性质,使脱离纤维表面的污垢分散在洗涤液中,并被乳化,或在胶束中被增溶,形成稳定的分散体系,已经乳化的污垢就不再附着于纤维上面。洗涤作用的第一步是洗涤液润湿被洗物品表面,第二步是油污的去除。液体油污的去除是通过“蜷缩”机理而实现的。对固体污垢的去除,主要是由于表面活性剂在固体污垢质点及固体表面的吸附在洗涤过程中,首先,发生的是洗涤液对污垢质点和固体表面的润湿。根据,如洗涤液中有表面活性剂存在,由于表面活性剂在固/液界面及溶液表面的吸附,γs-w、γw-G大大下降,因此铺展系数S可能变得大于零,洗涤液因此就能很好地润湿污垢质点表面,由于润湿后,表面活性剂分子会进一步插入污垢质点及织物间,使得污垢质点在织物表面的粘附力变弱,经机械作用,也比较容易自固体表面上除去。3、全氟阳离子表面活性剂用作电子元件助焊剂.如:N-[3-(二甲氨基)-丙基]全氟辛基磺酰胺碘化物结构式: C8F17SO2NH(CH2)3N+(CH3)2I-|CH3分子量: 726外观: 黄色膏体/固体离子性: 阳离子含量: 90-95% 以上稳定性: 长期存放表面张力mN/m(25°C,水溶液): 17用途: 主要用于电子元件助焊剂,降低了助焊剂的表面张力,增强被焊点的湿润性提高了表面的吸附能力,可使焊点饱满、焊剂残留物少、干燥快、消光性好、避免了虚焊、连焊、漏焊等缺陷;用于碱性电池改善电池放电、充电的循环功能,抑制电极氧化、延长电池使用寿命。表面活性剂的湿润作用:固体表面能愈高,即γs-g越大,愈易润湿。即高表面能固体比低表面能固体易于润湿。高能固体表面与一般液体接触,体系表面的吉布斯白由能将有较大降低,故能为一般液体所润湿;低能固体表面一般润湿性能不好。为了改变液体对固体表面的润湿性能,常于液体中加入某种表面活性剂。它主要起两方面的作用。(1) 在固体表面发生吸附,改变固体表面性质。(2) 提高液体的润湿能力表面活性剂的乳化作用:为了得到稳定的乳状液,常加入表面活性剂,其作用是:(1)增加界面强度。(2)降低界面张力表面活性剂在相界面上会发生吸附。由于吸附,表面活性剂分子定向、紧密地吸附在油/水界面上,使界面能降低,防止了油或水聚集。(3)界面电荷的产生。4、季铵盐用于陶瓷成型及电工陶瓷的制造。5、在一种具有很好的电流变性效果和稳定性的电黏流体中含有~10%(w%)的阳离子表面活性剂。阳离子表面活性剂的应用范围十分广泛,在电子技术上的应用只是其的冰山一角,它更广泛地应用于新材料技术、能源技术、生命科学与生物技术。阳离子表面活性剂还能直接或间接地用于其他领域,如航空航天、海洋工程等。阳离子表面活性剂成功地应用于电子技术领域仅是一系列典型的例子而已。事实上,整个表面活性剂工业将逐渐融入高新技术领域。因而,表面活性剂工业应抓住机遇,搭上高新技术产业高速发展的便车以谋求自身更大的发展。这也正是表面活性剂工业未来之希望。

表面活性剂方面期刊

Trouble Is a Friend

化工类期刊如现代盐化工,化学工程与装备。

表面活性剂可以投哪些核心期刊,容易录取的这要看你具体需要哪方面的东西多少了? 如果是有关海洋新闻、新规等看通报,如果是有关技术、科研领域的当然是科学的好些。

好些的可投Langmuir,JPC系列( The Journal of Physical Chemistry A、B、C),Journal of Colloid and Interface Science ,J. COLLOID . SURF,另外,可投JSD,JAOCS,TENSIDE SURFACTANTS DETERGENTS还有CHEMISTRY AND PHYSICS OF LIPIDS ,Advances in Colloid and Interface Science,没注意是不是SCI

表面活性剂的论文

表面活性剂概述: 1.概念: 表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性 非极性烃链: 8个碳原子以上烃链 极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性: 溶液中的正吸附:增加润湿性、乳化性、起泡性 固体表面的吸附:非极性固体表面单层吸附, 极性固体表面可发生多层吸附[编辑本段]表面活性剂的分类 表面活性剂的分类方法很多, 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等; 根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等; 有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析 。 碱金属皂:O/W 碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M 主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。 硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。 高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠) 乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。 3、磺酸化物 R-SO3 - M 属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。 常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂 该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料 2、氨基酸型和甜菜碱型: 氨基酸型:R-NH+2-CH2CH2COO- 甜菜碱型:R-N+(CH3)2-COO—。 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1.脂肪酸甘油酯: 单硬脂酸甘油酯; HLB为3~4,主要用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3.聚氧乙烯型:Myrij(长链脂肪酸酯);Brij (脂肪醇酯) 4.聚氧乙烯-聚氧丙烯共聚物: Poloxamer 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂[编辑本段]表面活性剂的基本性质 1.临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。 2.亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。 混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb) 理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7 表面活性剂的基本性质 3、增溶作用 1)胶束增溶:水不溶性、微溶性药物在胶束溶液中溶解度显著增加 非洛地平吐温-----10倍 (表)亲水基团---亲油基团, (药)极性基团---非极性基团 cmc,“表”的量,胶束,增溶量,最大增溶浓度(MAC)[编辑本段]表面活性剂的应用 1.增溶:C>CMC ( HLB13~18) 增溶体系为热力学平衡体系 CMC越低、缔合数越大,增溶量(MAC)就越高 温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度 Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小 昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。 2.乳化: HLB:3-8 W /O型乳化剂:Tween;一价皂 HLB:8-16 O/W型乳化剂:Span;二价皂 3.润湿:(HLB:7-9) 4.助悬: 5.起炮和消泡 6.消毒、杀菌 7.去污剂[编辑本段]表面活性剂的结构 传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。 无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。[编辑本段]表面活性剂的历史发展 表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增培,这是一个令人鼓舞的数字。 中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。 表面活性剂的化学结构与性能的关系 1.亲疏平衡值与性能之间的关系 H·L·B值:表示表面活性剂的亲水疏水性能 (Hydrophile-Lipophile Balance) 表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。 石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水) 对阴离子表面活性剂,可通过乳化标准油来确定HLB值。 HLB值 15~18 13~15 8~8 7~9 用途 增溶剂 洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂 HLB值可作为选用表面活性剂的参考依据。 3. 疏水基种类与性能 疏水基按应用分四种 (1) 脂肪烃: (2) 芳烃: (3) 混合烃: (4) 带有弱亲水性基 (5) 其他:全氟烃基 疏水性大小:(5)>(1)>(3)>(2)>(4) 3.亲水基的位置与性能 末端:净洗作用强,润湿性差;中间:相反。 4.分子量与性能 HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差; 分子量大,润湿作用差,去污力好。 5.浊点 对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。 当温度↑,水分子逐渐脱离醚建,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。

可去知网找,自己不会找的话,我baidu空间里找论文的去处和步骤

表面活性剂在化妆品中的应用摘要:论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,以及在化妆品中的作用。介绍了表面活性剂和化妆品的分类情况,化妆品的原料以及化妆品对表面活性剂的要求。详细介绍了化妆品中常用的几种表面活性剂。对化妆品中用的表面活性剂的发展趋势进行了阐述。关键词:表面活性剂;化妆品;功能;应用表面活性剂在化妆品中的主要功能包括乳化、分散、增溶、起泡、清洗、润滑和柔软等。表面活性剂在化妆品中具有广泛的用途,起着重要的作用。化妆品中所利用的表面活性剂的性能不仅仅是其单一的性能,而是利用其多种性能,因此,表面活性剂是化妆品生产中不可缺少的原料,广泛应用于化妆品中。化妆品是指以涂抹、喷、洒或者其他类似方法,施于人体(皮肤、毛发、指趾甲和口唇齿等),以达到清洁、保养、美化、修饰和改变外观,或者修正人体气味,保持良好状态为目的的产品。目前,化妆品的发展趋势是向疗效性、功能性和天然性方向发展。1表面活性剂的分类表面活性剂的分类方法有很多种,根据表面活性剂的来源进行分类,通常把表面活性剂分为合成表面活性剂、天然表面活性剂和生物表面活性剂三大类。合成表面活性剂合成表面活性剂是指以石油、天然气为原料,通过化学方法合成制备的表面活性剂。表面活性剂在性质上的差异,除与烃基的大小和形状有关外,主要与亲水基团类型有关。一般以亲水基团的结构为依据来分类,按亲水基团是否带电可将表面活性剂分为离子型和非离子型两大类,其中离子型表面活性剂又分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。天然表面活性剂20世纪70年代的石油危机对以石油为基本原料的表面活性剂工业产生了巨大的冲击,引起人们对能源消耗、工艺生产过程、生态学和石油制品安全性等一系列问题的思考,从而引发了以天然油脂为原料生产表面活性剂的重大变革。由于生物新技术的应用,油脂分离精制技术的发展,植物油脂品种的改良及增产,使得大量获得价格较低的高纯度的天然油脂成为可能,新的抗氧化剂的开发成功,解决了天然油脂腐败变质的问题,再加上人们对安全及环保意识的提高,以油脂为原料的天然表面活性剂的开发引起人们的高度重视。目前在天然油脂中最受重视的要数棕榈油和棕榈仁油。生物表面活性剂生物表面活性剂是指由细菌、酵母和真菌等多种微生物产生的具有表面活性剂特征的化合物。用微生物生产表面活性剂是20世纪70年代后期国际生物工程领域中研究的新课题。用微生物制取生物表面活性剂可以得到许多难以用化学方法合成的产物,在结构中引进了新的化学基团,而制得的产物易于被生物完全降解,无毒性,在生态学上是安全的。生物表面活性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸系、磷脂系、脂肪酸系和高分子表面活性剂五类。2表面活性剂的功能表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等多种功能。当液体与固体表面接触时,气体被排斥,原来的固-气界面消失,代之以固-液界面,这种现象称为润湿。从普遍意义而言,润湿是一种流体被另一种流体自表面取代的过程。通常把一种物质的颗粒或液滴以及微小的形态分散到另一介质中的过程叫分散。所得到的均匀、稳定的体系叫分散体。乳化是一种液体以微小液滴或液晶形式均匀分散到另一种不相混溶的液体介质中形成的具有相当稳定性的多相分散体系的过程。表面活性剂在水溶液中形成胶束后,具有能使不溶或微溶于水的有机化合物的溶解度显著增大的能力,且溶液呈透明状,这种作用称为增溶作用。由液体薄膜或固体薄膜隔离开的气泡聚集体称为泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,液体和气体的界面起主要作用。一般地说,当表面张力低,膜的强度高时,不论是稳定泡沫还是不稳定泡沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面起作用:一方面是增强泡沫液膜的强度;另外,表面黏度大,膜液体不易流动排出,延缓了液膜破裂,而增强了泡沫的稳定性。消泡作用分为破泡和抑泡两种。具有破泡能力的物质称为破泡剂。有效的消泡剂既要能迅速破泡,又要能在相当长的时间内防止泡沫生成。洗涤去污作用是表面活性剂应用最广泛、最具有实用意义的基本特性。洗涤去污过程是极为复杂的,与污垢种类、基本性能、表面活性剂和助剂的种类和结构密切相关,而其过程又是多种表面现象,如吸附、润湿、渗透、乳化、分散、泡沫和增溶等在不同情况下的综合效应。3化妆品的分类化妆品能对人体面部、皮肤表面、毛发和口腔起清洁保护和美化作用。化妆品的品种多种多样,分类方式也各不相同。按使用部位可分为:皮肤用化妆品、毛发用化妆品、指甲用化妆品和口腔用化妆品。按使用目的可分为:洁净用化妆品、基础保护化妆品、美容化妆品和芳香制品,还可根据化妆品本身的剂型分类。4化妆品的原料制造化妆品所用的原料有很多种,据统计大概有3 000多种。根据化妆品原料在化妆品中所含比例的大小,可分为基质原料和配合原料。基质原料是调配各种化妆品的主体,也成为基础原料。膏霜类的油脂,香粉类的滑石粉等均属基质原料;配合原料是用来改善化妆品的某些性质和赋予色、香等的辅助原料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配合原料。配合原料在化妆品中的比例虽小,但对化妆品的质量影响却很大。它们之间没有绝对的界限,某一种原料在化妆品中起着基质原料的作用,而在另一化妆品中可能仅起着辅助原料的作用。基质原料1)油脂类油脂是组成膏霜类化妆品的基本原料,主要起护肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物油脂的主要成分,在常温下呈液态的称为油,呈固态的称为脂。根据来源又可分为植物性油脂和动物性油脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏仁油、花生油、大豆油和棕榈油等。动物油脂包括牛油、猪油、貂油和海龟油等。这些动植物油脂加氢后的产物称为硬化油。在化妆品中常用的硬化油有:硬化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。2)蜡类蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化妆品中主要作为固定剂,增加化妆品的稳定性,调节其黏度,提高液体油的熔点,使用时对皮肤产生柔软的效果。依据来源的不同,蜡类也可分为植物性蜡和动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫蜡等。3)高碳烃类用于化妆品原料中的烃类主要包括烷烃和烯烃,它们在化妆品中的主要作用是其溶解作用,净化皮肤表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤表面水分的蒸发,提高化妆品的功效。在化妆品中用的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。4)粉类粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等粉类化妆品的基质原料。一般是不溶于水的固体,经

关于表面活性剂的毕业论文

《表面活性剂》论文 表面活性剂的分类及应用 摘要: 表面活性剂的应用范围涵盖了人们生活和工作的各个方面,在20事迹90年代人们已经开始系统的研究表面活性剂。可以说没有表面活性剂就没有现在干净的我们,现在我们对表面活性剂的认识只是停留在表面没有更深入的研究,下面是对表面活性剂一些基础认识。 关键词: HLB值,分类,应用 一、 HLB 值 ----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。 1~--3作消泡剂 3~--6作W/O型[乳化剂 司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60, HLB值。 7~--9作润湿剂; 8~--18作O/W型乳化剂,也叫吐温型乳化剂, 为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型, 药用: (1)可作某些药物的增溶剂。 (2)有溶血作用,以吐温-80作用最弱。 (3)水溶液加热后可产生混浊,冷后澄明,不影响质量。 (4)在溶液中可干扰抑菌剂的作用 13~-18作增溶剂。 二、分类及常用 : 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯, 脂肪酸山梨坦(司盘), 聚山梨酯(吐温) 阴离子表面活性剂: 1 、肥皂类 :碱金属皂:O/W ,碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2 、硫酸化物 :硫酸化蓖麻油,俗称土耳其红油。 十二烷基硫酸钠(SDS、月桂醇硫酸钠) 3 、磺酸化物 :二辛基琥珀酸磺酸钠(阿洛索-OT) 十二烷基苯磺酸钠 甘胆酸钠 阴离子表面活性剂 阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1 、卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料 2 、氨基酸型和甜菜碱型 : 氨基酸型 甜菜碱型: 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用; 在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1. 脂肪酸甘油酯 :单硬脂酸甘油酯;HLB为3~4主用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3. 聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯) 4. 聚氧乙烯 - 聚氧丙烯共聚物 : 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。 表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。 聚合物分散剂作用下效力由以下因素确定: 颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。 介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族片断)必须与粘接剂体系高度的相容。 类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。 根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷: ·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。 ·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。 ·干扰涂层间的粘接。 经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。 用于颜料分散作用的最常用表面活性剂有如下品种: 脂肪酸衍生物,磷酸酯,聚丙烯酸钠/聚丙烯酸,乙炔二醇和大豆卵磷脂。表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造 随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。 烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有: (1)对皮肤和眼的刺激性很小。 (2)清洗性能,受pH值和温度影响较小。 (3)对酸、碱、氯较为稳定。 (4)生物降解性能优异。 图1 表面活性剂结构示意图 烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂 Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。 (2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场台,是优良的润湿剂。 从理论上讲,在极性头基区的化学键台阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结台。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径 另一方面,由于键台产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 型嵌段高分子表面活性剂 涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。 图3 AB嵌段型高分子表面活性剂 合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。

洗发水的主要成分是表面活性剂(SAA),其主要成分为阴离子乳化剂中的直链烷基苯磺酸盐(LAS)及部分非离子乳化剂(NIH),以及少量功能性组分如生物活性物质,香精,防腐剂等。有关SAA对环境的危害您可以参阅这篇论文:表面活性剂环境危害性分析 王宝辉;张学佳;纪巍;匡丽;韩会君 全面分析了表面活性剂存在时对土壤、水体环境的危害,研究了表面活性剂对植物、动物、人体以及微生物的影响,同时还探讨了表面活性剂的生物降解。表明全面了解表面活性剂环境安全性对推动表面活性剂工业的持续发展具有重大意义。【作者单位】:大庆石油学院化学化工学院 黑龙江大庆163318任何事物都可以从化学范畴分析的。

最主要的化学成分是表面活性剂那些,关于”表活“的知识分享如下:

化妆品,洗涤用品用,优质表面活性剂有哪些?

可以用来配制各种优质的化妆品,洗涤用品,医药品及工业用助剂。

工具/原料

【摘要】体育科学横跨自然科学与社会科学两大门类,具有极强的综合性特征,有其独特的研究对象和科学方法,体育科研论文的写作亦有自己的特点与要求。本文仅就体育科研论文的文章结构、基本格式以及内容与要求作一探讨。【关键词】科研论文;文章结构;基本格式;内容与要求OntheBasicStructureandFormofSportsScienceThesis【Keywords】Thesis;StructureandForm;ContentandRequirement***1前言从事体育科学研究活动,必须具备多学科的知识、多方面的能力和科学的方法。体育科技写作,不仅是体育工作者应具备的知识和能力,而且是必须把握的一种具体的科研方法。因为,一切体育科学研究之成果最后大都以科研论文这种书面表达形式,经科技信息载体传播于世的。体育科研成果如不能最后写成科技作品(论文),公布于众,那么一切个人的科学见解和观点,一切创造和发明,都不可能得到传播和利用,产生应有的社会效益,而只能是研究者头脑里的一些思维活动罢了,世人是无法知晓的,如然,也就失去了科学研究的意义了。诚然,人们衡量体育科研论文质量的标准主要取决于其理论和实践价值的大小,然而,论文所反映的研究成果能否迅速的向社会传播并准确的被人们所理解则取决于论文写作水平的高低。这表明,一篇高质量的体育科研论文要求其内容和形式的统一。随着体育科学的迅速发展,科技信息量与日俱增,据报道,目前全世界体育期刊已达5000余种,每年问世的体育科技文献约25000—30000篇,平均天天有80余篇。体育科研成果的传播、贮存与利用,引起了人们的高度重视,借助于现代科技工具——计算机对体育科技成果、信息进行贮存、检索,使之迅速地传播与利用,已成为一种先进的传播交流手段。微机贮存与检索,要求体育科技学术期刊编排实现规范化,而期刊编排规范化首先要求论文写作的规范化。要实现体育科研论文写作的规范化,就必须了解体育科技写作知识,把握其写作方法和技巧。笔者因职业之原故,拜读体育科研论文原稿颇多,从研读原稿论文感到许多科研论文的选题和所研究的内容颇有价值,但论文写作不符合期刊编排规范化和科研论文撰写的要求。其中最为普遍的突出的问题是文章结构层次混乱、写作格式极不统一(尤其是理论型和实验型的“定量化”研究论文)。这不仅给编者和读者熟悉和理解论文之精髓增加了难度,也直接影响了体育科研成果的传播、贮存和利用。体育科技写作,作为一种科研方法,涉及的知识结构内容颇多,不同文体的体育科技作品有不同的写作要求。本文仅对体育科研论文的文章结构和基本撰写格式的内容与要求作一探讨。2体育科研论文的文章结构根据写作目的的不同、研究对象和方法的差别,体育科研论文大致分为两类,一类是学位论文,一类是学术论文。学位论文,是体育院校的学生或体育科研院(所)研究人员旨在取得学位而写作的论文。如学士论文、硕士论文、博士论文。学术论文,是广大体育工作者在体育实践中为研究和解决某一问题而写作的论文。目前,体育科学技术、理论研究的新成果大部分都是以学术论文的形式发表在体育科技学术刊物上。由于研究对象和方法的差别,学术论文又分为两种类型,即理论型论文和实验型论文。虽然体育科研论文的种类很多,构成的形式多样,但就其文章的主体结构有它的基本型,即序论、本论、结论的三段式。2。1序论部分的写作内容与要求序论,是论文的开头、引子,好比一出长剧的序幕,要有吸引力。通常以引言、导言、绪言、前言等小标题冠之,也可以不冠以任何小标题。该部分的写作内容主要有三个方面:①介绍课题研究的背景材料,前人的工作和现在的知识空白;②研究的理由、目的,理论依据和实验基础,预期结果及其在相关领域里的地位、作用和意义;③交待课题研究的范围、任务。这一部分要写得简明扼要,在整篇文章中它所占的比例要小。具体要求是背景材料的介绍要准确、具体,紧扣课题;研究的说明要实事求是,对作用意义不可夸大和自我评价;任务的交待应具体、明确。2。2本论部分的写作内容与要求本论也称正论,它是体育科研论文的主体,课题的“创造性”主要在这一部分表达出来,它反映了论文所建立的学术理论、采用的技术路线和研究方法达到的水平,简言之,本论水平决定了整个论文的水平。

相关百科

热门百科

首页
发表服务