首页

> 期刊论文知识库

首页 期刊论文知识库 问题

函数毕业论文难吗

发布时间:

函数毕业论文难吗

看自己能力和平时积累了。不是特别难。

方法:

1、论题要大小适中。题目不要太大,尽量"小题大做"。

2、注意研究角度要有新意。进行科学研究,就是找问题,没有新问题就谈不上研究,更谈不到创新,论文也就没有写作的价值,因此,确定研究方向只有从新的角度去研究、研究以前没有人研究过的问题,或者是研究过探讨过但说法不一的问题去分析论证,才会得出与众不同的结论,才会见出新意。

3、要知己知彼。在选题中,要了解本专业本领域中已有的科研成果,了解别人已经解决了什么问题,还存在什么问题;是否有争论,争论的焦点是什么;那些方面的研究较薄弱,那些方面的研究尚待开拓等等。只有知己知彼才能避免重复和雷同。

二、根据论题,拟定论文提纲

根据论文题目,充分、大量的搜集查找资料。可以通过图书馆各类藏书和情报机构电脑文件检索,国际互联网络的远程登陆、查询、浏览或阅读大量文献资料来获取论文素材。还可以进行实地调查,可通过开会、访谈、观察、统计、论证、实验学习等方法来获取资料。

收集资料主要注意三种:1、与论题直接相关的原始材料;2、他人对该论题或相关论题的研究成果材料;3、与论题有关的社会、文化、语言、历史背景等方面的材料。

收集资料既要有历史材料,也要有现实的材料;既要有正面材料,也要有反面的材料;既要有面上的材料,也要有点上的材料;只有全面地拥有材料,才有可能产生正确而富有创见的观点,展开深刻而周密的论述。

有了充分的材料,还要进行整理分析比较,"去粗取精,去伪存真"对资料进行推敲、筛选,留下最能反映本质、最有说服力的材料,同时提炼和形成自己的观点也就是论点,明确拟定论文提纲。

形成论点时应注意:

1、论点要鲜明,不能含糊其词,同时论点又要辩证,不能走极端;

2、论点要科学正确,不与常理和事实相背离;

3、论点要准确,不要夸大其词,防止偏颇。

拟定论文提纲可以是简单提纲,也可以是详细提纲。简单提纲只是概括地提示论文的要点;详细提纲则是把论文的主要论点和展开部分较详细的列出来,这样写作时就能更顺利完成。

提纲可以采用标题式、提要式和图表式三种,一般标题式较为常用,用简洁的标题形式把论文各部分的内容要点概括出来,同时这些标题可直接作为论文中各部分的小标题。

一、函授本科论文需要检测吗?虽然函授不同于其他的学习层次,只有专科和本科,但是都需要完成毕业论文,对于论文的查重检测一般是不查的,但是会抽查一部分的论文,进行评判,所以为了稳妥起见,还是建议进行论文检测,预防万一。二、函授毕业论文检测重复率的要求对于论文的重复率检测需要根据不同的因素来确定,有些学校对本科论文查重率会要求在30%左右,而有些严格的会要求在20%左右,函数毕业论文不同于其他全日制的毕业论文检测,其检测要求相对松懈一点,一般在30-40%左右。

一般都会查的,只是数据库不一样,要求低一点

对于论文写作来讲,因人而异,对于擅长写作的人来讲,其实相对容易,毕竟论文写作带来的好处,是大部分人都想要的,没有付出哪来的回报呢?对于那些自身平能力比较差的人来讲,的确比较难,有可能对于论文写作是一头雾水,这里就难倒一大片,有的人为了走捷径直接在互联网上抄袭。

函授毕业论文难度

函授本科论文答辩相对较容易过。答辩的时间在5分钟左右,只要分数在80分以上就能够获得申请学士学位的资格。在答辩之前,学生需要理清自己的答辩思路,并且深入研究自己的论文选题,这样才能够提升自己的答辩水平。函授本科的考生,在校期间,自己专业的主要课程,在平时的考试中,成绩的平均分是不能低于70~75分,还有一点就是,想要申请学士学位证书,需要完成毕业论文的答辩,而且论文答辩的成绩要求是良好及以上,所以大家平时要有一个比较好的成绩,还有顺利的通过毕业论文的答辩。函授的本科生,如果自己报考的不是英语专业,是需要参加全国统一组织的英文学位考试的。想要了解更多有关函授本科的相关信息,推荐咨询盛世明德教育。盛世明德教育是综合性教育集团,由2005年11月成立的深圳市跨世纪培训中心发展壮大而来,集团以培训为核心,课程有一对一辅导,一对一老师教务跟进,全程负责到毕业,含金量高,学历国家认可,学信网终身可查。业务涵盖学历提升、职业资格证书培训、职业技能培训和入户咨询等多个领域。【点击获得测评方案】

容易。答辩的时间在5分钟左右,只要分数在80分以上就能够获得申请学士学位的资格。在答辩之前,学生需要理清自己的答辩思路,并且深入研究自己的论文选题,这样才能够提升自己的答辩水平。

想要获得函授本科的学士学位证书,其实也不难,但是也不是说很容易。大家想要拿到学士学位证书,就得靠自己的真本事了,尤其是学位英语的考试,是必须要通过的,不通过,是不能拿到学士学位证书的。

成人高考函授本科

可以拿到学士学位证书的。但是并不是所有的考生都可以拿到毕业证,是需要符合一些申请的条件的。

函授本科的考生,在校期间,自己的专业的主要课程,在平时的考试中,成绩的平均分是不能低于70~75分,还有一点就是,想要申请学士学位证书,需要完成毕业论文的答辩,而且论文答辩的成绩要求是良好及以上,所以大家平时要有一个比较好的成绩,还有顺利的通过毕业论文的答辩。

函授的本科生,如果自己报考的不是英语专业,是需要参加全国统一组织的英文学位考试的,如果所学的专业是英语的话。

好需要参加一个第二外语的考试,英语的考试成绩要达到合格,符合以上这些条件的考生,才可以获得学士学位证书。但是还有一点需要注意的是,除了以上这些条件以外,一些高校可能还会有其他的条件。

成人高考的毕业论文答辩一般都只有一次机会只要你熟悉自己的毕业论文,答辩一般都会过,具体可以参考江西成人高考网~

没人查没难度只要过了成人高考就肯定有毕业证,走个形式而已。

数学专业毕业论文难吗

不会啊,我就是数学与应用数学的。数学很多人都说难,我觉得还好啊,只要你认真学,没啥是学不好的。就这个专业而言,大一的时候,把基础打扎实,数分高代学好,之后的课程就会更轻松。

第一批投拍的江西组《陆判》制作完成。

发表论文很难。博士发表论文难度挺大的,整体比其他学科要难,现代数学的分支太多,首先是字数和页数的要求,通常要求不低于150页、10万字,再一个就是必须要有创新点,要有理论深度。总之比较困难。数学博士论文发表至少要发表两篇到三篇以上的SCI论文,所以难度是非常高的,作为数学博士,发表论文的难度是极高的,通常来说,数学博士都会延迟毕业第四年或者第五年才能够将所有的论文完成,作为数学博士,在发表前出来要完成相应的发表论文之外,最重要的就是要在SCI期刊上发表论文

作为数学专业的告诉你不难毕业。学数学难与易要看你的态度如何。好好学,还是比较辛苦的,如果只是不挂科,那就并不难,期末提前两周跟着学霸踏实刷题基本没问题。对于学数学的,毕业证要求的英语可能要考虑一番

对数函数毕业论文

摘要 :穆勒的算术哲学包含两个方面的内容 :一方面是对先天论几何观和唯名论算术观的批判 ;另一方面是对数的性质和数的形成方式的阐明。尽管这种算术哲学通常被认为具有一种“极端的”或“狭隘的”经验主义特征而受到弗雷格和胡塞尔等人的严厉批判 ,但这些批判本身也都面临着各自的困难 ,而这使得穆勒的算术哲学至今都不能被彻底抛弃。

文发网 提供免费参考文献 还可以提供写作指导 帮助发文章摘 要:在多载波码分多址系统上行链路的频率选择性信道中,本文提出了一种使用多天线分集接收的基于改进人工鱼群算法的多用户检测方案。仿真结果表明,在相同计算复杂度下,基于Pareto优化准则的个体选择机制AFSA-MUD的误码率性能要远远优于基于代价函数线性合并的个体选择机制。Abstract: A improved artificial fish swarm algorithm (AFSA) assisted multi-user detection (MUD) is proposed for the receive-antenna-diversity-aided multi-carrier code-division multiple-access (MC-CDMA) systems in frequency-selective fading channel. Simulation results showed that: with the same computation complexity, the strategy has much better bit error rate (BER) performance than the convention , MC-CDMA, MUD关键词:天线分集;多载波码分多址;多用户检测中图分类号: 文献标识码:B 文章编号:1009-9166(2009)020(c)-0107-01一、信号模型考虑工作于同步模式下的MC-CDMA系统上行链路,假设在同一小区同一频率同一时隙同时有K个激活用户。假定基站接收端使用M个接收天线。只有第k个用户被激活,基站接收端第m个接收天线分支接收到等效频域信号可表示为:(1)bk(t)为用户k传输的数据,A为用户k发射信号的功率,Ck是用户k归一化的扩频码,Hk,m是用户k到基站第m个接收天线之间的等效的频域信道矩阵。第m个天线,对数似然函数(LLF)定义为:(2)因为不同天线信道经历的衰落是相互独立的,所以就存在 。对于最大似然检测,不同天线的对数似然函数可以通过式(3)进行合并:(3)二、基于AFSA算法的多用户检测选择行为在迭代中人工鱼个体的选择直接决定了下一代鱼群的质量,从而决定了ASFA-MUD的性能。基于Pareto准则。每条鱼有M+1个相关的适应值,定义为f(bp)=[∧1(bp),k∧M(bp),∧(bp)]。假如人工鱼个体i和人工鱼个体j满足:(4)称个体i被个体j支配。如果一条人工鱼个体在鱼群中按照式(4)没有被任何粒子支配,就认为该个体是一个Pareto最优解。交叉行为根据一定的概率从T个个体选择两个父亲个体按照均匀交叉原则两两进行交叉。反复直至形成P个个体的新的鱼群。在进行选择时,第p个人工鱼个体被选中的概率根据均方差缩放原则由其代价函数 决定。聚群行为聚群行为是当前人工鱼个体bp探索可见区域内伙伴数目nf以及中心位置bc。dpi定义为人工鱼向量bp和bi的异或,visial是一给定的可见距离。当1≤nf∧(bp),就向该方向前进一步,否者就进行觅食行为。觅食行为觅食行为操作就是当前人工鱼状态bp在其可见区域内随机产生一个新的状态bj。假如∧(bj)>∧(bp),就向该方向前进一步,即bj代替bp,反之,选择新的状态。三、仿真结果考虑上行同步的MC-CDMA系统,基站接收端使用两个接收天线,采用BPSK调制,使用正交Walsh码作为扩频码。设定信道为两径等增益衰落信道。图3给出了子载波数目N=32,用户数K=16(半载系统)和种群个体数目P=10,种群进化代数Y=10,觅食行为的试探次数 =2、6时基于改进AFSA-MUD和其它检测方法的误比特率(BER)性能。从图3可以看出,基于Pareto优化准则的个体选择机制的改进AFSA-MUD的BER性能要远远好于其它传统次优检测方法,同时也远远优于基于代价函数线性合并的个体选择机制的方案。当TN增大时,误码率性能有很大的改善,但是这样增大了计算的复杂度。因此设置不同的K、P、Y和TN的取值,可在性能与复杂度之间进行有效配置。这篇文章可以不?

论文中相对数指标变量要取对数的原因:平时在一些数据处理中,经常会把原始数据取对数后进一步处理。之所以这样做是基于对数函数在其定义域内是单调增函数,取对数后不会改变数据的相对关系。

缩小数据的绝对数值,方便计算。例如,每个数据项的值都很大,许多这样的值进行计算可能对超过常用数据类型的取值范围,这时取对数,就把数值缩小了,例如TF-IDF计算时,由于在大规模语料库中,很多词的频率是非常大的数字。

适用性

是乘积形式、商的形式、根式、幂的形式、指数形式或幂指函数形式的情况,求导时比较适用对数求导法,这是因为:取对数可将乘法运算或除法运算降格为加法或减法运算,取对数的运算可将根式、幂函数、指数函数及幂指函数运算降格成为乘除运算。

毕业论文伽马函数和贝塔函数

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。!!!可以用来快速计算同伽马函数形式相类似的积分。函数形式可以百度百科看,套进去就好。

你最喜欢的函数是什么?如果你的答案不是伽马函数,那么我将在你读完这篇文章后再问你一次。你的答案可能会变。介绍在18世纪20年代后期,莱昂哈德·欧拉(Leonhard Euler)正在思考如何将阶乘扩展到非整数范围。这是一个被科学界广泛应用的理论的开端。莱昂哈德·欧拉无疑是历史上最伟大的数学家之一。为了让你们对欧拉有个大致的了解,这里有几个例子可以证明他的才华。首先,欧拉有出色的记忆力。他能从头到尾背诵维吉尔的《埃涅阿斯纪》,《埃涅阿斯纪》共有9896行。欧拉也非常多产。在他的一生中,他发表了大约3万页的论文,约占18世纪发表的科学论文的三分之一!其中许多页是在他失明时写的,因此,欧拉被称为数学中的贝多芬。贝多芬听不到他的音乐。同样,欧拉也看不到他的计算。实际上,欧拉对自己视力的丧失相当乐观。他曾说过这样的话:这样我就不会分心了。事实上,当他失明后,他更加多产了。欧拉是一位伟大的数学家,他思考了如何扩展阶乘函数。我会向你们展示他的研究成果以及这些成果的惊人特性。在本文的后面,我将揭示我们如何赋予1/2!意义并给出它的值。阶乘在继续之前,我们先回想一下阶乘是什么。它只是前n个自然数的乘积。例如:阶乘在数学中很重要的一个原因是它代表了我们排列事物的方式的数量。假设你的书架上有12本书。你可以用多少种方式来排列它们?这个问题的答案是12!大约是亿种方式。从这个例子中可以看到,阶乘函数增长得非常快。事实上,它以超指数增长。也就是说,它的增长速度快于指数增长。γ函数真正使欧拉伟大的是他解决问题的方式。我们很快就会看到,那通常是非常有创造性的思路和非常聪明的“外星”想法。1738年,欧拉把阶乘推广成一个由某个积分定义的函数形式,即:其中,log是自然对数(有时记为ln)。通过替换s = exp(-t),其中exp是以e为底的指数函数,我们得到:因此我们得出了一个惊人的事实:为了证明这个积分实际上是阶乘,我们把右边的积分称为Π(n),我们做一些偏积分:这是一个很好的函数方程,它使我们能够用归纳法来证明这个公式。我们要证明Π(n) = n!对所有自然数n都成立。首先,请注意:即Π(1) = 1 = 1!。接下来,假设Π(n - 1) = (n - 1)!。然后有:这里我们用了上面的函数方程。用归纳法,证明就完成了。注意,在以上Π(n)的定义中,n不一定是一个自然数。这个表达式对于所有具有非负实部的复数都有意义。处理这些广义阶乘的现代方法是通过伽马函数。 伽马函数非常类似于Π函数,它的定义如下:注意Γ(n) = Π(n - 1) = (n - 1) !对所有自然数n都成立。因此, 伽马函数也满足类似的函数方程,即:所以,伽马函数是广义的阶乘函数Γ(n+1) = n!,对所有非负整数n都成立。但这是一个唯一的泛化吗?答案是否定的。但是,如果我们给它一个约束条件,结果就是它了。这个约束与对数凸性的概念有关,但我不会在这里详细描述它,因为这与我要讲的内容有点离题。具体要求是函数 log Γ是凸的。二次可微函数f是对数凸的当且仅当:维尔斯特拉斯积已经发现了无数种函数的定义和形式。一个特别好的例子是无穷大的乘积。在此之前,让我们试着从我们的定义中得出一些有趣的结果。我们要做的第一件事可能一开始看起来很奇怪,但有时在数学中,你应该尝试并遵循逻辑结果,同时运用你的直觉。我们将把指数函数写成极限形式并把它代入伽马函数的定义中。首先,回想一下:这可以用很多方法来证明。回想一下几何级数有一个封闭形式:如果|x| < 1则成立。将x代入-x,得到:现在我们可以对两边做进一步的处理:假设n > x,那么我们可以代入z = x/n。现在,如果我们取n→∞时的极限,很明显:有了这个结果,现在就可以直接计算出想要的结果了。通过替换,这个等价于这个表述:现在让我们在Γ(z)的定义中使用这个结果:我们把这个积分称为极限内的I(n, z),多次使用偏积分可以得到:继续下去,当我们最终消去1 - t/n项的指数时,我们可以积分得到:为了得到Γ(z),我们取其极限:这是一个非常著名的结果,但我们不想止步于此。让我们对这个极限进行一些简单的处理。这里我们在e的指数上加减∑z/i。注意,log是自然对数。我们现在可以把指数分开,利用这样的事实,即指数中的和就是乘积:欧拉常数是由:在上面的表达式中,如果我们现在取函数的极限,我们得到一个美丽的结果,称为函数的维尔斯特拉斯积。这是一颗数学明珠。在某种程度上,这是对Γ更好的表示,但是我们稍后将对此进行讨论。的欧拉反射公式数学中最美妙的等式之一来自莱昂哈德·欧拉。这次我不是在讨论他著名的欧拉恒等式,而是一个被称为反射公式的公式。欧拉发现了以下惊人的结果,将伽马函数与三角函数联系起来。这个事实的证明如下。回想一下,欧拉也发现了正弦函数的无穷。积如果你想知道欧拉是如何推导出这个乘积的,你可以关注“老胡说科学”,我将在后续文章中讨论它。回想一下维尔斯特拉斯积,对于 Γ可以写成:现在,通过比较Γ(z)和Γ(-z)的乘积,可以很简单地计算以下内容。现在我们可以用函数方程来表示函数进一步:很明显,z不可能是整数,因为上面的分母是0。伽马函数的应用伽马函数在数学中随处可见。从统计学,数论,数学中的复分析,到物理学中的弦理论。它似乎是一种数学粘合剂,将不同的领域联系在一起,这是有原因的,我们稍后会看到。它对数论很重要的一个原因是它与黎曼ζ函数有特殊的关系。让我们再看一遍定义,但这次使用了替换。设n为自然数。然后通过替换t = nx,我们得到:因为这对所有自然数n都成立,我们可以把两边相加得到:因此,我们得到了ζ函数和γ函数之间的美妙关系:然而,这只对Re(s) > 1有效。这是第一个关系。下面是一个更深入、更有趣的结果,我认为它是世界上最美丽的函数方程之一,我将在不证明的情况下陈述:伯恩哈德·黎曼在1859年发现了它,它通过γ函数给出了很多关于ζ函数的知识。例如,在负偶数处,我们可以清楚地看到ζ的平凡零点。这是因为,通过解析地将Γ(s)延续到整个复平面,我们可以看到它在非正整数处有极点。在理论物理学中,欧拉也发现了β函数,意大利理论物理学家维内奇诺在1968年用它来描述强相互作用的介子。欧拉β函数可以由下式定义:原因是它描述了弦理论中第一个已知的散射振幅,在某种意义上,这是这个问题的唯一解。它还与Γ负整数处的极点有关。的另一个惊人的美丽结果与伽马函数的增长有关。叫做斯特灵公式:这就是说,上面两边的增长速度是相同的,也就是说,当z趋于无穷时,它们的比值的极限趋于1。欧拉神奇积分公式在推导Γ(s) ζ(s)的积分公式时,我们对两边求和,得到了一些级数。欧拉并没有这么做,而是做了一些了不起的事情。他做了一个更一般的代换,最后得出了一个神奇的公式,里面包含了各种有趣的东西。让我们看看他是怎么做的,这些公式是什么:在欧拉时代,人们对复数分析了解不多,但他有一个奇妙的直觉,因为他知道当w是正数时,这个关系成立,他考虑了当w是一个带有Re(w) > 0的复数时会发生什么。设w∈ℂ,Re(w) > 0。然后通过对上面方程的两边共轭w,我们得到:现在一个绝妙的想法来了!根据欧拉公式,设w = a + bi,让w为θ,设|w| = r,那么 w = r ⋅ exp(θi)。然后我们可以将上面的表达式用一个有趣的方式写出来:这个超级公式包含了很多美妙的关系,我们很快就会意识到。最后一步是把它写成相应的实部和虚部(使用举世闻名的欧拉恒等式),并考虑这两个公式都隐藏在符号中。这些公式美得难以形容!注意它们是伽马函数的一般化,因为如果我们让w=1,那么我们就可以从余弦积分方程中得到伽马函数的定义。狄利克雷积分的推广这是一个有趣的问题。找到的值:这是一个非常著名的问题,有很多方法可以解决它如拉普拉斯变换,二重积分,甚至是费曼技巧。我们将试着从上面优美的欧拉公式中推导出来。实际上,我们将把这个问题推广到一个更一般的结果,这个积分是一个特例。为了做到这一点,我们首先用欧拉反射公式来重写sin方程的左边。我们可以用洛必达法则来证明:我们对欧拉正弦积分公式的左边做一点变换:通过以上计算,得到:因为-π < θ < π因此,通过对右边取极限,我们得到:这是一个很妙的公式。注意,如果取a趋于0时的极限,那么在所有实数b≠0时,左边趋于π/2。也就是说,以下等式成立:在特殊情况下,w=i将解出狄利克雷积分,因为a=0,b=1。所以,狄利克雷积分I = π/2。伽马函数的解析延拓还有一件很重要的事我们还没讨论。回想一下伽马函数的定义:我们可以证明这个积分只对 Re(z) > 0收敛。然而,在复分析中,全纯和亚纯函数有一个很好的性质,即给定一个域为D的函数f,如果存在另一个亚纯函数g,它的定义域包含D作为子集,如果f = g在D的开子集上(如果你不知道这是什么,你可以想象一个复平面上的小圆盘),那么f = g在所有D上成立。也就是说,函数f只能用一种方法推广到更大的定义域。它只是有不同的表示。所以即使上面的定义是正确的,当z的实部是一个正的实数时,我们需要记住,这只是函数的一种表示。可以说,我们只是从一个角度来看这个函数。如果我们看看威尔斯特拉斯积:我们可以证明它对所有复数z都收敛除了非正整数。所以这个表示在某种意义上更好。这也表明,伽马函数没有任何零点,它在负整数和0处有极点。还有另一种方法可以进一步解析伽马函数。回想一下:这揭示了:用同样的方法:这表明我们可以做一个解析延拓来显示Γ的亚纯表示(在非正整数处也看到了极点)。1/2 !是什么?因为Γ(n+1) = n!对所有非负整数n都 成立,我们可以通过计算Γ(1/2 + 1) = Γ(3/2)赋予1/2!意义。但我们该怎么做呢?首先注意,通过函数方程Γ(z+1) = z Γ(z),我们可以简化问题。因此,找到Γ(1/2)就足够了。在特殊情况z = 1/2下,我们再次使用欧拉反射公式:因此,我们现在可以解释:我再问你一次。你最喜欢的函数是什么?想了解更多精彩内容,快来关注老胡说科学

Γ(x)=∫e^(-t)t^(x-1)dt

伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x)。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。我们使用了伽马函数,定义出了很多概率的分布,如Beta分布,卡方分布,狄利克雷分布和学生t分布等等。对于研究人员来说,伽马函数是是他们用的最普遍使用的功能。对于数据科学家而言,是生成统计模型和研究排队模型最好的方法。因此,伽马函数学好了还是挺关键的。

Γ(x)伽马函数公式的过程是当z为自然数的时候,Γ(z+1) = z,而且我们从这个公式可以看出它是一直在递增的,因此,我们可以让它和阶乘建立起联系,自然对数e表示的非常好,我们用洛必达法则,就可以说明它是收敛的,因为e^-x的值是要比x^z的值下降得很快。伽马函数已经有300多年的历史了,而且是在欧拉64岁失明后创作的,是值得我们信任的人。

希望我的回答能帮到你。

相关百科

热门百科

首页
发表服务