首页

> 期刊论文知识库

首页 期刊论文知识库 问题

半导体电子束论文

发布时间:

半导体电子束论文

半导体激光器解析半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为~微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到微米的输出,而波长~微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。对半导体的早期研究集中在硅上,但硅本身不能发射激光。1948年贝尔实验室的William Schockley,Walter Brattain 和 John Bardeen 发明的晶体管。这一发明推动了对其它半导体裁的研究发展进程。它也为利用半导体中的发射激光奠定了概念性基础。1952年,德国西门子公司的 Heinrich Welker指出周期表第III和第V列之间的元素合成的半导体对电子装置有潜在的用途。其中之一,砷化镓或GaAs,它在寻找一种有效的通讯激光中扮演了重要角色。对砷化镓(GaAs)的研究涉及到三个方面的研究:高纯度晶体的叠层成长的研究,对缺陷和掺杂剂(对一种纯物质添加杂质,以改变其性能)的研究以及对热化合物稳定性的影响的分析。有了这些研究成果,通用电器,IBM和麻省理工大学林肯实验室的研究小组在1962年研制出砷化镓(GaAs)激光发生器。但是有一个老问题始终悬而未决:过热。使用单一半导体,(通常是GaAs)的激光发生器效率不是很高。它们仍需大量的电来激发激光作用,而在正常的室温下,这些电很快就使它们过热。只有脉冲操作才有可能避免过热(脉冲操作:电路或设备在能源以脉冲方式提供时的工作方式),可是通过这种工作方式不能通讯传输。科学家们尝试了各种方法来驱热一例如把激光发生器放在其它好的热导体材料上,但是都没成功。然后在 1963年,克罗拉多大学的Herbert Kroemer提出了一种不同的的方式--制造一个由半导体"三明治"组成的激光发生器,即把一个薄薄的活跃层嵌在两条材料不同的板之间。把激光作用限制在薄的活跃层里只需要很少的电流,并会使热输出量保吃持在可控范围之内。这样一种激光发生器不是只靠象把奶酪夹在两片面包那样,简单地塞进一个活跃层就能制造出来的。半导体晶体中的原子以点阵的方式排列,由电子组成化学键。要想制造出一个在两个原子之间有必要电子键连接的多层半导体,这个装置必须是由一元半导体单元组成,我们称之为多层晶体。 1967年,贝尔实验室的研究员Morton Panish 和 Izuo Hayashi 提出了用GaAs的修改型--即其中几个铝原子代替一些镓,一种称为"掺杂"的过程-- 来创造一种合适的多层晶体的可能性的建议。这种修改型的化合物,AlGaAs, 的原子间隔和GaAs相差不到1000分之一。研究人员提出,把 AlGaAs种植在GaAs 薄层的任何一边,它都会把所有的激光作用限制在GaAs层内。在他们面前,还要有几年的工作,但是通向"不间断状态" 激光发生器-在室温下仍能持续工作的微型半导体装置-的大门已经敞开了。还有一个障碍:怎样发射跨过长距离的光信号。长波无线电波可以很容易穿透浓雾和大雨,在空气中自由传播,但是短波激光会被空气中的水蒸气和其它颗粒反射回来,以至于不是被分散就是被阻挡住。一个多雾的天气会使激光通讯联络终断,因此光需要一个类似于电话线的导管。

返回英国房价高

为了推动微波功率合成技术的发展,需要开展多路同步输出的脉冲功率源开关关键技术研究,以实现电子束精确同步(同步抖动≤10 ns),源输出波形一致性好,满足负载工作要求。在气体开关的各种触发方式中,激光触发开关是减少开关延迟时间和时间抖动的一种比较理想的开关。气体介质的激光开关,时延可达到1 ns~2 ns,其时间抖动可达到亚纳秒量级[1]。因此,单路脉冲功率源主开关采用吹气式激光触发气体火花开关,要求其开关抖动≤5 ns,重复频率为50 Hz。在两路脉冲功率源的同步输出实验中,触发控制系统是保证源正确有效合成的关键。控制系统一方面产生两台源正常运行的工作时序,同时通过同步考虑的设计,控制激光触发开关产生触发信号,达到一定的功率合成效率。由于功率MOSFET具有单极型、电压驱动、开关速度快、输入阻抗高、热稳定性好及所需驱动功率小而且驱动电路简单的特点,所以采用MOSFET来设计激光触发器的外触发控制系统。1 系统结构及工作原理图1为激光触发脉冲功率源同步控制系统结构框图,单台源均采用德国InnoLas公司的SpitLight 1200激光器,将触发信号分成多路,分别控制单元开关导通。激光触发系统工作原理为:两路脉冲功率源的储能单元充电到设定值,控制系统根据目标位置设定两台源的触发时间间隔,分别发指令到两台源的激光触发系统,触发系统产生激光注入主开关,控制两组主开关各自击穿,初级能源系统储存的电能通过开关向负载馈送。激光器对外触发系统的设计参数要求如下:(1)产生闪灯触发信号。脉冲幅值5 V~15 V,脉宽≥100 μs,工作频率50 Hz,负载50 Ω;(2)产生普克尔盒触发信号。脉冲幅值5 V~15 V,脉宽≥100 ?滋s,脉冲上升沿≤5 ns,负载50 Ω,工作频率50/N(N=1,2,…,50)。该信号与闪灯信号之间延时可调;(3)外触发电路、激光器和脉冲功率源之间采取隔离和屏蔽等抗干扰保护措施,确保触发系统在功率源高压大电流强辐射的恶劣环境中正常工作。2 理论设计与分析激光器外触发系统由控制信号产生和控制信号触发2部分组成,二者之间通过普通多模光纤(工作波长为820 nm)进行连接。其中,控制系统工作参数设置(如工作频率和工作次数等)、控制信号产生、输出信号隔离及转换(电/光)等功能在控制信号产生单元内实现,它位于操作者所在的工作区;放置于脉冲功率源激光器侧的是控制信号触发单元,完成通过光纤传输而来的输入信号转换(光/电)、放大、快上升沿信号形成以及隔离触发输出等功能。 控制信号产生单元设计控制信号产生单元分为2部分:(1)脉冲触发信号发生器。用于产生控制功率MOSFET器件、功率晶体管工作的脉冲触发信号,具有输出脉冲的个数、脉宽及频率可调的能力,输出为TTL电平。采用工业PC,内置NI定时/计数卡PCI-6602,利用LabVIEW开发系统编制计算机人机界面,设置工作参数,编程产生激光器外触发工作所需的控制信号。其中PCI-6602提供8路32 bit源频率80 MHz的定时/计数通道,输出脉冲信号上升沿实验测试在10 ns左右;(2)光纤隔离电路。用于隔离TTL电平的触发信号和功率MOSFET的输出电压,具有响应快、不失真的特点。光纤发送器件选用HFBR-1414,其带宽可达5 MHz,满足脉宽为数百?滋s的触发脉冲信号传输要求。 控制信号触发单元设计控制信号产生单元分为4部分:(1)光/电转换电路。采用HFBR-2412光纤接收器件,将通过多模光纤传输至控制信号触发单元的光信号转换为TTL电信号。(2)功率MOSFET驱动/功率晶体管驱动电路,前者用于将低电平的TTL信号提升到可以用来驱动功率MOSFET器件的电平,以产生脉冲上升沿≤5 ns的激光器普克尔盒触发信号。后者用来产生闪灯触发信号。(3)功率MOSFET器件。MOSFET(金属氧化物半导体场效应管)是一种电压控制型的器件,由于MOSFET是正温度系数,所以可避免温度持续上升而使器件损坏。同时由于它的导通电阻在理论上没有上限值,因此导通时的能量损失可以非常小。其优点是:具有非常快的导通和关断能力(ns量级);非常低的触发能量;能工作在高重复频率下(MHz量级);使用寿命长(平均109次);高效率、脉宽可以调节(输出由输入触发信号决定)。经选择采用IR公司的功率MOSFET器件——IRLML2803,它的漏源极击穿电压VDSS为30 V,直流电流ID为 A,脉冲下最大输出电流为 A,导通延时时间Td(on)为 ns,关断时间Toff为9 ns。(4)电源部分。采用锂电池组提供给光纤隔离电路和功率MOSFET驱动电路所使用的低压电源。它配装有专用保护板,具有过充、过放、过压、欠压、过流短路及反接保护功能,进一步保证电池组控制部分的安全工作。这样有效地消除了触发单元与前级控制信号产生单元及后级功率源高压工作回路因电源共地而可能产生的高压击穿等危险因素。如图2所示,变换后的TTL电平经整形、功率MOSFET/功率晶体管驱动、脉冲变压器隔离输出至激光器。为了保证触发单元的正常工作,在其输出至激光器之前需加入高耐压(5 kV)脉冲变压器进行电气隔离。 功率MOSFET器件及其驱动电路选择图3为功率MOSFET器件的工作原理电路示意图。图3(a)中,RG和CGS是影响MOSFET导通延时的主要参数;漏栅极电容CGD是造成开关动作过程中栅极电压受干扰的主要参数;漏源极电容CDS是影响关断时间的主要参数。MOSFET器件转换过程有2个:导通转换和关断转换。导通转换过程的漏源电压VDS、漏极电流iD、栅源电压VGS和与栅极电流iG随时间t的变化关系如图3(b)所示。导通转换过程分成4个阶段,各个阶段分别是:(1)t0~t1阶段:栅极驱动电流iG对CDS和CGS充电,使CGS上的电压从0上升到MOSFET导通阈值VGS(th)。(2)t1~t2阶段:栅源电压VGS继续以指数规律上升,超过MOSFET导通阐值VGS(th)达到Va,在VGS超过VGS(th)后,漏极电流开始增长,并达到最终的输出电流Io。在这一过程中,由于电压与电流重叠,MOSFET功耗最大。(3)t2~t3阶段:从t2时刻开始,MOSFET漏源电压VDS开始下降,引起从漏极到栅极的密勒电容效应,使得VGS不能上升而出现平台,在t3时刻漏源电压下降到最小值。(4)t3~t4阶段:在这一区间栅源电压VGS从平台上升到最后的驱动电压。上升的栅压使漏源电阻RDS(on)减小,t4以后MOSFET进入导通状态。MOSFET器件的截止转换过程与上面的过程相反。由上面的分析可知对栅极驱动电路的要求主要有:(1)驱动信号的脉冲前、后沿都要陡峭。(2)对功率MOSFET栅极的充放电回路时间常数要小,以提高功率MOSFET器件的开关速度。(3)驱动电流为栅极电容的充放电电流,驱动电流要大,才能使开关波形的上升沿和下降沿更快。选用MOSFET器件IRLML2803,查其特性曲线图可得:在VDS=15 V、VGS=12 V时,总栅极电荷QG≈ nC,则栅极电容C=QG/VGS= nC/12 V≈ nF=300 pF。MOSFET导通和截止的速度与MOSFET栅极电容的充电和放电速度有关。MOSFET栅极电容、导通和截止时间与MOSFET驱动器的驱动电流的关系可以表示为:dT=(dV×C)/I式中,dT是导通/截止时间,dV是栅极电压,C是栅极电容(从栅极电荷值),I是峰值驱动电流(对于给定电压值)。IRLML2803导通/截止时间是4 ns,则I=QG/dT= nC/4 ns≈ A。即由以上公式得出的峰值驱动电流为 A,同时还需要考虑在MOSFET驱动器和功率MOSFET栅极之间使用的外部电阻,这会减小驱动栅极电容的峰值充电电流,所以选择峰值输出电流大于 A的驱动器。系统中采用的是 A高峰值输出电流的同相驱动器TC4424A,经实验验证满足快上升沿信号输出要求。3 测试结果与分析 触发信号光纤传输转换测试激光器外触发系统采用光纤传输和收发技术,由于其本身是由绝缘材料制成,所以具有很好的高电压隔离能力,同时还具有很强的抗干扰能力,多路光纤信号传输的同步性也非常好,满足对信号高压隔离和同步性的要求。图4为激光器外触发单元产生的信号波形图。图4(a)、图4(b)中通道2均显示的是工作频率50Hz的激光器闪灯触发信号(前者是输出个数为50的脉冲序列,后者是单个输出脉冲),它在控制信号产生单元内由PC机编程产生,经脉冲变压器隔离、电/光转换、光纤传输处理输入至触发单元,再经过光/电转换、功率晶体管驱动放大,由高耐压脉冲变压器隔离输出至激光器,其上升时间Tr在200 ns以内,主要是由脉冲变压器的输出上升时间确定。图4(a)、图4(b)中通道1均为激光器普克尔盒触发信号(显示方式同通道2),工作频率50 Hz(50/N,N=1),在控制信号产生单元内信号生成方式同闪灯触发信号,不同的是在触发单元内经过功率MOSFET及高速MOSFET驱动器成形等处理,最终生成实测上升沿小于5 ns的脉冲信号。实验中测得激光器闪灯触发信号、普克尔盒触发信号脉宽均为160 μs,后者较前者滞后约250 μs,两者均可调,并且普克尔盒触发信号的输出频率也可调,满足激光器的使用要求。 激光器外触发工作对功率源的影响低抖动高功率重复频率主开关系统是功率源同步控制系统的研制核心和难点。为了实现脉冲功率源同步系统的低抖动工作,首先对系统工作过程中的抖动来源进行分析。同步系统的工作流程如下:激光器外触发系统产生一个快上升沿的信号送到激光器,激光器产生脉冲激光注入激光开关,激光开关闭合,形成线通过感应叠加模块对二极管放电,产生电子束。在这个过程中,可能产生以下的抖动:(1)激光器外触发系统电路抖动J1。抖动来源于传输线路及转换线路中的芯片延时不同和芯片本身的抖动,该抖动经实测小于2 ns;(2)激光器抖动J2。抖动来源于激光器的工作过程,在快前沿信号(tr≤5 ns)触发下激光器抖动小于3 ns。(3)激光开关抖动J3。抖动来源于激光触发产生等离子体放电的物理过程,设计指标为小于5 ns。图5为脉冲功率源中4路感应叠加模块合成负载波形,重复频率25 Hz,负载为平面二极管,图中为25个波形的重叠(通道1为二极管电流信号波形,通道2为二极管电压信号波形)。由此证明:采用激光器外触发系统,负载输出波形的一致性较好,重复频率25 Hz工作时开关抖动低,满足设计要求。 抗干扰考虑激光器外触发单元是同步运行中的控制环节,是装置能否正常工作的关键。对触发电路的要求是脉冲前沿陡且有足够的幅值与脉宽,稳定性与抗干扰性能好等。而高压发生装置容易产生各种瞬时尖峰信号,即所谓“毛刺”,当其幅值和能量达到一定程度时,极易导致系统不能正常运行。在前期的同步运行试验调试过程中,由于受实验场地条件的限制,激光器电源与脉冲功率源的初级充电电源共地,在功率源运行时,导致激光器外触发系统输出至激光器普克尔盒的触发信号相对于设定时刻提前产生一个尖峰干扰脉冲,从而无法保证同步运行试验的正常进行。对此采取增加电源滤波器、高频电容等方式,以消除电源引入的干扰影响,结果有所改善。下一步工作则是将激光器与其外触发系统共用同一电源,与脉冲功率源的电源彻底分开,保证同步系统的安全工作。实验结果表明:采用功率MOSFET及其高速驱动器等措施有效,利用光纤收发器件转换传输、高耐压脉冲变压器隔离可行。影响脉冲功率源开关同步输出转换效率的是激光器外触发回路的性能。功率MOSFET开关通断状态可以通过触发脉冲控制,选用高峰值输出电路的MOSFET驱动器,可以将输出脉冲信号上升沿控制在5 ns以下。采用激光器外触发系统,单台脉冲功率源重频开关实现参数:工作电压150 kV,电流30 kA、抖动≤5 ns、重复频率25 Hz。为进一步开展两台或多台脉冲功率源稳定、可靠地精确同步输出奠定一定的技术基础。另外,触发控制电路印制电路板中,控制电路极易受到功率回路的干扰,应使MOSFET驱动器和MOSFET的走线长度尽可能短,以此限制电感引起的振荡效应。驱动器输出和MOSFET栅极间的电感,也会影响MOSFET驱动器在瞬态条件下将MOSFET栅极维持在低电平的能力。激光触发实验中存在的问题,如减小波形前沿、增强抗干扰能力等还需要继续深入研究。参考文献[1] 刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005:367-369.[2] 赵军平,章林文,李劲.基于MOSFET的固体开关技术实验研究[J].强激光与粒子束,2004(11).[3] Yee H EMI suppression MOSFET driver[A].Proceedings of Applied Power Electronics Conference and Exposition[C].Twelfth Annual,1997:242-248.[4] SAETHRE R,KIRBIE H,CAPORASO G,et control,diagnostic and power supply system for a solid state induction modulator[A].Proceedings of 11th IEEE International Pulsed Power Conference[C].Baltimore Maryland,1997:1397-1402.

半导体光电子论文

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为~微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到微米的输出,而波长~微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

返回英国房价高

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

半导体光电导效应研究论文

光电导效应,又称为光电效应、光敏效应,是光照变化引起半导体材料电导变化的现象。即光电导效应是光照射到某些物体上后,引起其电性能变化的一类光致电改变现象的总称。当光照射到半导体材料时,材料吸收光子的能量,使非传导态电子变为传导态电子,引起载流子浓度增大,因而导致材料电导率增大。在光线作用下,对于半导体材料吸收了入射光子能量, 若光子能量大于或等于半导体材料的禁带宽度, 就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光电器件。

返回英国房价高

半导体的光电导是指光照射半导体使电导增大的现象。本征半导体的电导能力(电导率)很小,经光照射后半导体内部产生光生载流子(电子或空穴),使其导电能力加大。光照射前后半导体电导的改变与光的波长、强度以及半导体中杂质缺陷态的能级位置密切相关。光电导应用于研究半导体中的杂质缺陷态,如施主、受主、缺陷、深能级杂质等在禁带中的能级位置(见半导体物理学),它的灵敏度比通常的光吸收实验高许多,电导率正比于载流子浓度及其迁移率的乘积。因此凡是能激发出载流子的入射光都能产生光电导。入射光可以使电子从价带激发到导带,因而同时增加电子和空穴的浓度;也可以使电子跃迁发生在杂质能级与某一能带之间,因而只增加电子浓度或只增加空穴浓度。前一过程引起的光电导称为本征光电导,后一过程引起的光电导称为杂质光电导。不管哪一种光电导,入射光的光子能量都必须等于或大于与该激发过程相应的能隙 ΔE(禁带宽度或杂质能级到某一能带限的距离),也就是光电导有一个最大的响应波长,称为光电导的长波限λ。

半导体晶体论文

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为~微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到微米的输出,而波长~微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

▲第一作者:许适溥,付会霞;通讯作者:彭海琳 通讯单位:北京大学

论文DOI:

本工作将二维高迁移率半导体Bi2O2Se晶体应用于亚ppm范围痕量氧的高选择性和高稳定性的室温检测。利用扫描隧道显微镜(STM)、原位X射线光电子能谱技术(原位XPS)、以及霍尔器件的表征,并结合第一性原理的计算,阐明了二维Bi2O2Se对痕量氧高性能检测的机制。研究发现,二维Bi2O2Se表面暴露于氧时,形成高比表面积的非晶Se重构原子层,可有效吸附氧,二维Bi2O2Se半导体的迁移率和费米能级得以有效调制而改变其电导率;此外,二维Bi2O2Se阵列式氧传感器具有增强的信噪比,可实现低于 ppm浓度氧的检测。

A. 痕量氧传感的发展趋势

当前,痕量氧传感在生物检测、能源、化工、智能制造等众多领域有着广泛的应用。商用的电化学型氧传感器利用氧气在隔膜材料两侧产生的浓差电动势输出信号,其构型复杂,难以微型化。相较而言,电阻型氧传感器的核心结构是一个由传感材料构成的两端电阻,结构大大简化,十分有利于集成化应用。二维材料因其巨大的比表面积和较高的迁移率,可以进一步增强电阻型氧传感器的性能。当前已有文献报道二维MoS2具有较好的氧传感能力,可以实现对浓度为10 %左右氧气的探测。但是,对痕量氧(ppm级)的检测目前仍然是一个重大挑战,其主要原因是MoS2这类材料的表面的活性位点很少,对痕量氧气的吸附能力不足。为从根本上解决这个问题,需要从材料本身的原子和能带结构出发,设计和制备具有丰富活性位点的二维材料基氧传感器。

B. 高迁移率二维半导体材料—Bi2O2Se的引入

2017年,北京大学彭海琳课题组首次报道了具有高迁移率的二维Bi2O2Se晶体。不同于多数二维材料,二维Bi2O2Se的层状结构由[Se]n2n- 和 [Bi2O2]n2n+离子层构成。基于晶圆级的高质量二维Bi2O2Se生长技术,该课题组已将这种材料成功应用到各种高速低功耗电子器件和量子输运器件中,取得了优异的器件性能( Nat. Nanotech. 2017 , 12 , 530; Nano Lett. 2017 , 17 , 3021; Adv. Mater. 2017 , 29 , 1704060; Nat. Commun. 2018 , 9 , 3311; Sci. Adv. 2018 , 4 , eaat8355; Nano Lett. 2019 , 19 , 2148; Adv. Mater. 2019 , 31 , 1901964; J. Am. Chem. Soc. 2020 , 142 , 2726)。二维Bi2O2Se材料独特的晶体结构,超高的迁移率(2000 cm2V-1s-1以上)和合适的带隙( eV)使其成为潜在的高灵敏度氧传感材料。

研究的核心问题:对Bi2O2Se表界面进行调控,使其产生更多的吸附活性位点,达到ppm级的氧气检测灵敏度。

本研究从二维Bi2O2Se晶体的表界面结构设计和能带工程的角度出发,旨在实现亚ppm范围痕量氧的高性能室温检测。在表界面结构设计方面,作者证明了Bi2O2Se表面的Se空位能在吸附氧分子后引起表面原子层的重构,使材料表面生成具有高比表面积的非晶Se层。这一Se层具有非常丰富的活性位点,能高效吸附氧分子;在能带工程方面,作者制备了n型的半导体Bi2O2Se,其导带底要高于氧分子的LUMO轨道,这一能级关系会导致Bi2O2Se吸附氧分子后载流子浓度显著下降,使得电阻显著增加。结合二维Bi2O2Se的高比表面积,有望实现对ppm级痕量氧的检测。

4.、材料表征与1理论计算

首先,作者对Bi2O2Se表面Se层的氧吸附行为进行了表征,然后通过理论计算进行了验证和解释(图一)。在氧吸附表征中,作者先利用STM扫描了新鲜解离的Bi2O2Se,得到了Bi2O2Se表面的原子像,发现其具有大量二聚的Se空位。接下来,作者在腔体中引入非常少量的氧分子,发现Se空位作为活性位点开始对氧分子进行吸附。随着引入的氧分子量的增加,Bi2O2Se的表面开始发生重构,形成具有高比表面积的Se非晶层。理论计算的结果表明,Se层的重构是由于吸附分子与Se原子的强相互作用形成。在原位的XPS测试中,具有非晶Se层的Bi2O2Se在环境的氧气浓度只有大约 × 10-11 mol/L时依然可以有效吸附氧分子。这意味着Bi2O2Se可能对氧气非常敏感。

▲Figure 1. Oxygen adsorption on the surface of layered Bi2O2Se. a-c) STM images showing the fresh Bi2O2Se surface containing the Se termination and the Se vacancy after cleavage (a), the surface with little oxygen adsorbed (b), and that adsorbed by lots of oxygen (c). Note that the Se layer turns amorphous for more oxygen adsorbed. d-i) Top views (d-f) and side views (g-i) of atomic structural models for cleaved Bi2O2Se slab (d, g) and different representative O2 adsorption configurations (e, h; f, i). Purple, orange and red balls in structural models represent Bi, Se and O atoms from Bi2O2Se slab, respectively. Green balls serve as adsorbed oxygen molecules. The cleaved Bi2O2Se is terminated by alternate Se and Se vacancy dimers as (a). Single/five oxygen molecules per unit cell are put on Bi2O2Se surface to simulate the few and lots of oxygen introduced, respectively. j) O 1s spectra of the lattice and the adsorbed O under different O2 pressures at room temperature by APXPS measurement.

、器件性能测试

A. 氧传感机理阐述

在加工成氧传感器之前,作者先测试了氧气对Bi2O2Se器件电学特性的调制作用。作者制备了Bi2O2Se霍尔器件,并利用PPMS平台测试了材料曝露氧气后电阻、迁移率、载流子浓度的变化。图二显示,器件在曝露氧气后,电阻有了明显的上升。迁移率和载流子浓度的测试表明,器件电阻显著上升的原因是Bi2O2Se表面吸附了氧分子后迁移率和载流子浓度同时下降。这一现象可归结为:氧分子捕获Bi2O2Se的电子,导致Bi2O2Se载流子浓度的下降;同时,表面吸附的氧分子也会成为散射中心,降低了材料的迁移率。

▲Figure 2. a) Photograph of a typical Hall-bar device of 2D Bi2O2Se. b) The plot showing the resistance variation of Bi2O2Se after exposure to ~ 21 % O2 in air from the vacuum. c) The reduction in the carrier density/mobility of Bi2O2Se as the function of oxygen exposed time. d) Schematic diagram illustrating that the Bi2O2Se Fermi level E f1 shifts to E f2 due to oxygen exposed. ( E fi: the intrinsic Fermi level; CB: conduction band; VB: valence band).

B. 氧传感性能测试

在氧传感性能测试中,作者主要测试了Bi2O2Se传感器在室温下对氧气的灵敏度。为进一步增强性能,作者制备了叉指电极结构的Bi2O2Se传感器。图三显示了该Bi2O2Se器件对低至 ppm,高至400 ppm的氧气均有很好的响应。这一指标优于已知的所有电阻型氧传感器,实现了真正意义上的ppm级氧气传感(接近ppb级)。除了对器件灵敏度的测试,作者还检验了器件的稳定性、选择性等器件性能指标。在器件稳定性的测试中,保存一个月以上的器件依然显示了很好的灵敏度;气体选择性的测试中,Bi2O2Se传感器展现出对氧气的高度专一性。

▲Figure 3. Oxygen detection of 2D Bi2O2Se sensors. a) Schematic presenting 2D Bi2O2Se sensor and its atomic force microscopy image of selected area marked by a red rectangle (scale bar: 1 μm). b) Dynamic responses of 2D Bi2O2Se to different concentrations of oxygen. The sample possesses ppm of minimum detection at room temperature. c) Comparison between 2D Bi2O2Se oxygen sensor and other typical oxygen sensors subjected to minimum detection and working temperature (CNT: carbon nanotube). d) Stability test of 2D Bi2O2Se sensor. e) Selectivity test of 2D Bi2O2Se sensor. The concentration of the target gases is ~3 ppm.

C. 氧传感器件的集成

为进一步展示Bi2O2Se传感器在集成化方面的潜力,作者对比了单个Bi2O2Se传感器与Bi2O2Se传感器阵列对痕量氧气的检测能力(图四)。结果显示,阵列器件显示了很高的信噪比,而检测极限也有了提升,达到比 ppm更低的检测下限。这意味Bi2O2Se传感器具有优秀的集成化潜力。

▲Figure 4. Integration of 2D Bi2O2Se sensors for trace oxygen detection. a) Schematic showing arrayed sensors integrated in the form of the parallel (I) and the inpidual (II). b) Optical photograph of the sensor array. Scale bar: 30 μm. c, d) Current variations and the corresponding d I /dt of the connect forms I and II for the change of oxygen concentration, respectively.

作者在此研究工作中利用二维Bi2O2Se材料实现了对痕量氧( ppm或更低)的检测。所制得的器件在传感器的灵敏度、稳定性、气体选择性和可重复性等多项指标中都具有很好的表现。作者通过STM、原位XPS和理论计算证明:这一系列高性能的指标得益于Bi2O2Se材料表面因为重构形成的高比表面积的Se层。这一工作清晰地阐明了Bi2O2Se表面结构与氧传感性能之间的构效关系,不仅促进了二维材料在气体传感领域的集成化应用,也为从原子结构出发设计高性能氧传感器提供了新的思路。

此工作的通讯作者是北京大学彭海琳教授,共同第一作者为北京大学博雅博士后许适溥和以色列魏茨曼科学研究所的付会霞博士,该工作的主要合作者还包括魏茨曼科学研究所的颜丙海教授、北京大学物理学院的江颖教授、牛津大学的陈宇林教授、上海 科技 大学的柳仲楷教授和刘志教授。该研究工作获得了来自国家自然科学基金、北京分子科学国家实验室、中国博士后科学基金、北京大学博雅博士后等项目的支持。

谨以此文热烈祝贺唐有祺先生百年华诞!

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

期刊半导体

<半导体光电>现在仍是是中文核心期刊,位于“TN 电子技术、通信技术类"核心期刊表16 复合影响因子: 综合影响因子: 主办: 中国电子科技集团第四十四研究所周期: 双月ISSN: 1001-5868CN: 50-1092/TN创刊时间:1976该刊被以下数据库收录:CA 化学文摘(美)(2011)SA 科学文摘(英)(2011)CBST 科学技术文献速报(日)(2009)中国科学引文数据库(CSCD—2008)核心期刊:中文核心期刊(2008)中文核心期刊(2004)中文核心期刊(2000)中文核心期刊(1996)中文核心期刊(1992)

确实是的,这个学报的文章已经纳入了sci的文章范畴里面的。半导体学报这个应该是按字按这个应该能更好地将学习,如果不随机的话,他们这个应该是就很难,有一些技术应该是不不能刚刚好的技能先搬下来的东西,所以应该是学习的。

还不错可以 投稿 试试

刊名: 半导体技术 Semiconductor Technology主办: 中国半导体行业协会;半导体专业情报网;中国电子科技集团公司第十三所周期: 月刊出版地:河北省石家庄市语种: 中文;开本: 大16开ISSN: 1003-353XCN: 13-1109/TN邮发代号:18-65历史沿革:现用刊名:半导体技术创刊时间:1976该刊被以下数据库收录:CA 化学文摘(美)(2011)SA 科学文摘(英)(2011)JST 日本科学技术振兴机构数据库(日)(2013)Pж(AJ) 文摘杂志(俄)(2011)CSCD 中国科学引文数据库来源期刊(2013-2014年度)(含扩展版)核心期刊:中文核心期刊(2011)中文核心期刊(2008)中文核心期刊(2004)中文核心期刊(2000)中文核心期刊(1996)中文核心期刊(1992)期刊荣誉:Caj-cd规范获奖期刊一般情况下 一篇核心就可以吧

相关百科

热门百科

首页
发表服务