食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。
食品加工论文 范文 一:食品工业泡沫分离技术的应用
泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.
1泡沫分离技术的原理及特点
泡沫分离技术的原理
泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.
泡沫分离技术的特点
优点
(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.
缺点
表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].
2泡沫分离技术在食品工业中的应用
蛋白质的分离
在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为,填料床高度为300mm和初始pH值为的条件下,最佳的牛血清蛋白富集比为,是控制塔条件下富集比的倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为、富集比为.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到的亚麻蛋白质,而多糖的损失率仅为.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.
酶的分离
蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为和6~等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为、pH值为时,蛋白和酶活回收率接近于100%,富集比为.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].
糖的分离
糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为和;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为和等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.
皂苷类有效成分的分离
皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.
大豆异黄酮苷元的分离Liu等[10]
采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.
无患子总皂苷的分离魏凤玉等[30]
分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为、进料量为150mL、气速为32L/h、温度为30℃、pH值为时,得到富集比为,纯度与回收率分别为和.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.
竹节参总皂苷的分离
竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为,pH值为,温度为65℃,电解质NaCl浓度为.在最佳工艺条件下,总皂苷富集比为,纯度比为,回收率为,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.
文冠果果皮皂苷的分离
文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷~.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为,回收率为,纯度为.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.
3展望
泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].
食品加工论文范文二:食品工业废水处理节能研究
食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。
1食品工业废水处理工艺现状
目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。
2各种工艺特点及应用效果分析
目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。
好氧生物处理工艺
好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。
法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。
法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。
法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。
厌氧生物处理工艺
在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。
法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为、、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。
反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的~高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为元/m3?d),具有良好的环境效益和社会效益。
法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。
3厌氧生物处理工艺优势分析
与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。
美拉德反应及其对食品加工过程的影响论文
无论在学习或是工作中,大家都跟论文打过交道吧,借助论文可以有效提高我们的写作水平。你写论文时总是无从下笔?以下是我整理的美拉德反应及其对食品加工过程的影响论文,欢迎大家分享。
美拉德反应是由法国化学家在1912年发现的,JohnHodge等在1953年时将其命名为美拉德反应。美拉德反应也被叫做羰胺反应,其定义为:还原糖或者是羰基化合物在常温或者加热时与含游离氨基的化合物发生缩合、聚合等化学反应,反应物和中间产物经过一系列复杂的化学变化,最终生成棕褐色的大分子物质——拟黑素(类黑素)。美拉德反应除了生成拟黑素之外,其还有醛、酮、杂环化合物生成,这些化合物为食品增加了色泽和风味。
一、美拉德反应
对于美拉德反应的相关研究已经达到了一个相对成熟的阶段,美拉德反应也成为了现代食品加工过程中应用最为频繁的技术之一。Hodge在1953年首次提出了美拉德反应的流程图,其对美拉德反应的过程进行系统性地阐述。依据现代化学观点,美拉德反应主要可以分为三个阶段,其分别为起始阶段、中间过程、最终阶段。
1、起始阶段。美拉德反应的起始阶段涉及到化学分子或基团的缩合、环化、取代重排等历程。首先,氨基化合物和醛糖缩合成为席夫碱,席夫碱不稳定,其环化生成N-取代醛糖基胺,该化合物又经过重排(Amadori方式)生成Amadori化合物。
2、中间过程。美拉德反应的中间阶段为起始阶段产物Amadori化合物以三种不同形式的分解过程,其分别为:碱性条件下的2,3-烯醇化反应,产物包括了脱氢还原酮类和还原酮类化合物;酸性条件下的1,2-位烯醇化反应,产物包括了含呋喃环的醛类化合物和羟甲基呋喃醛;碱性产物和酸性产物继续发生裂解,生成羰基(单羰基或双羰基)化合物,除此之外,碱性产物和酸性产物也可以发生Strecker分解,与氨基共同作用生成Strecker醛类化合物。
3、最终阶段。最终阶段是美拉德反应生成拟黑素的过程,其主要为低温下胺类和醛类的聚合反应,该反应过程较为复杂,目前尚未完全明确该过程的反应机理。胺类和醛类除了聚合生成高分子以外,其还产生美拉德反应的中间体杂环化合物(具有挥发性)、醛类化合物、还原酮等。
二、美拉德反应对于食品加工过程的影响
美拉德反应的发现与应用对现代食品加工及贮藏过程有着深刻的影响,至今其仍作为一项食品加工技术被广泛应用于食品加工过程中。美拉德反应的反应产物是影响食品口味、色泽、安全、营养等功能性质的主要因素,对于传统烤制食品(北京烤鸭、烤乳猪)、油炸食品(油炸肉卷、炸带鱼)影响尤甚。从营养学的角度分析,美拉德反应对于食品加工过程并非是有利无害的,美拉德反应的反应底物为蛋白质和糖类,蛋白质和糖类是人体所必须摄取的营养成分,食品加工过程中的美拉德反应无疑在一定程度导致了这些影响成分的流失;对于那些食品中含有的人体所不能合成的氨基酸,美拉德反应有可能导致其遭到破坏,进而导致食品的营养价值下降。因此,需要辩证地看待美拉德反应对于食品加工过程的影响。在实际的食品加工过程中,应当合理控制美拉德反应,通过美拉德反应增加食品的色泽、风味和安全性,同时最大程度地保留住食品中的营养成分。
1、对食品风味的影响。美拉德反应对于食品的风味有着重要的影响,例如,享誉全国的名菜“全聚德北京烤鸭”在其放入烤炉进行烤制之前,其会在烤鸭外层涂上一层秘制调料,调料中含有糖和香料物质。在烤制的过程中,调料中的各种化学物质发生相互作用(主要为热降解、美拉德反应、产物的二次和三次反应等),这是“全聚德北京烤鸭”具有独特风味的重要原因。美拉德反应能够产生一些影响食品风味的物质,其主要有含硫杂环,如噻吩类、噻唑类;含氮杂环,如吡嗪类;含氧杂环,如呋喃类,此外,还存在着一些硫化氢和氨类物质。并非所有的物质都能够使食品增加风味(吡嗪类、硫化氢、氨类),这些是在食品加工过程中需要避免的。例如,在烤制面包时,美拉德反应生成的麦芽酚能够使面包具有特殊的香味,而生成的吡嗪类物质或醛类物质则会使得面包有糊味。
2、对食品色泽的影响。美拉德反应经过的一些列复杂的化学变化,其所产生的一系列化合物能够赋予食品不同的色泽。美拉德反应中的温度、反应途径等因素发生变化,能够使得食品依次呈现出浅黄色、金黄色、褐色、棕色直至棕黑色的色泽变化。例如,金黄色面包、红褐色红烧肉、红茶等,这些食品所呈现出的颜色很大程度上与美拉德反应有关。对于食品加工过程而言,其需要控制好美拉德反应的影响因素(原料用量、温度、加工途径),例如,酱油加工过程中,应当控制好温度,防止因为温度过高而导致酱油颜色加深;面包烤制过程中,需要氨基酸和还原糖的用量以及烤制温度,防止其过度反应而导致面包呈焦黑色。
3、对食品营养的影响。上文已经提到,美拉德反应的底物多是糖和氨基酸,这些营养物质会随着反应的进行被转化为其他物质,进而造成食品中营养流失的问题。科学研究表明,糖类在和许多氨基酸作用时,容易使氨基酸失去其原有功能,例如,苏氨酸、赖氨酸、亮氨酸、色氨酸,在与糖类进行美拉德反应时,赖氨酸最易损失。赖氨酸对于人体具有重要的生理意义:其是人体合成各种蛋白质的重要前提。乳制品加工过程中最易受到美拉德反应的影响而导致食品营养降低,而低乳糖食品由于其乳糖含量较低,能够减少美拉德反应的发生,从而最大程度地保留了食品中的`营养成分。值得注意的是,美拉德反应也能够降低食品中矿物质的生物活性,原因是美拉德反应的产物(MRPs)与食品中的矿物质发生螯合反应形成了难溶化合物。
4、对食品安全性的影响。美拉德反应会生成一系列的中间产物,这些中间产物对食品安全性有着不可忽视的影响。这美拉德反应的部分中间产物对食品的色泽和香味等功能特性做出了一定的贡献,但是另一些中间产物,如醛类化合物、杂环胺类化合物等则带来了食品安全隐患。美拉德反应所生成的中间产物具有不稳定性,目前对于糖类和氨基酸反应的中间产物是否存在安全问题尚不清楚;但美拉德反应所产生的丙烯酰胺是公认的致癌物质(有神经毒性)。土豆富含还原糖和天冬氨酸,其在加热(120℃以上)的条件下容易产生丙烯酰胺,但世界卫生组织目前还没有给出明确的丙烯酰胺致癌浓度。
三、结语
美拉德反应是一系列复杂的化学变化过程,美拉德反应的产物对于食品加工过程有着重要影响。在实际的食品加工过程中,应当合理控制美拉德反应,趋利避害,提高食品的功能特性。
参考文献:
[1]周永生,周文娟.美拉德反应及其对食品加工过程的影响[J].安徽农业科学,2010,38(27):15092-15095.
[2]于彭伟.美拉德反应对食品加工的影响及应用[J].肉类研究,2010(10):15-19.
[3]龚巧玲,张建友,刘书来,等.食品中的美拉德反应及其影响[J].食品工业科技,2009(2):330-334.
[4]美拉德反应在肉味香精中的研究进展[J].蔡培钿,白卫东,钱敏.中国酿造.2009(05).
[5]美拉德反应产物的抗氧化活性研究[J].鲁伟,黄筱茜,柯李晶,周建武,饶平凡.食品与机械.2008(04).
食品加工企业会计核算方法探讨论文
摘要: 随着社会经济的不断发展与进步,食品加工企业发展得到质的飞跃。会计核算方法应用作为企业内部经营过程的重中之重,是一个必不可缺的关键内容,直接关系到食品加工企业在各个环节的会计核算质量和效率。因此,食品加工企业必须不断提高会计人员综合能力和素质,加强对他们日常会计核算工作的监督和管理,促使产品成本核算能够严格按照规范核算程序进行,推动企业和谐稳定的持续发展。
关键词: 食品加工企业;会计核算方法;实践应用
当前是一个科技信息时代,食品加工企业发展要与时俱进,跟上时代前进的脚步。现代食品加工企业的会计核算工作不再仅仅局限于传统的记账、报账以及算账等内容,还包括了对企业未来经营活动的科学预测工作,为企业高层管理领导作出正确决策提供真实依据。食品加工企业会计人员要针对各个工作环节内容,有效采取会计核算方法,要加强对企业财务数据的深入挖掘工作,进而真实、全面的展现出企业的偿债能力、资金周转能力等,以便让企业领导可以从海量的财务数据中挑选出有价值的关键信息,以便辅助企业领导作出有利于企业发展的'发展决策。
一、现代食品加工企业会计核算要点
现代食品加工企业的经验内容涵盖了原材料采购、食品加工处理、食品销售等一系列工作,在不同环节均会消耗一定的资金、人力以及原材料。通常情况下,每个不同的环境都会由于实践者水平参差不齐而导致食品产品质量与食品生产成本出现变动。例如,食品加工企业在产品销售工作中,相同质量的产品会由于水分蒸发、油水下沥以及销售重量变多等因素而不同,同时如果企业销售产品种类是熟食,则要额外加入适量的调味佐料等,这些问题都会导致销售数量发生变化。在缺乏严格监督下,产品从加工厂运输到线下店面时,会因为各种因素造成产品缺斤少两。因此,现代食品加工企业在产品会计核算工作上,不能一味生搬硬套的应用分批法、分步法以及品种法等产品核算方,而要综合各种会计核算方法的优势,加强对产品加工销售环节的细节核算工作,确保各项核算数据的准确性、完整性以及真实性,为企业领导作出科学决策提高可靠依据。
二、会计核算法应用的基本原则
1.会计核算规范形式。基于现代信息化市场会计信息的开放性特点,食品加工企业会计人员要想确保会计信息核算质量,就必须规范自身操作,要加强与各部门的联系与交流,做好会计信息数据的协调对接工作。会计核算规范形式有利于避免会计人员出现失误判断,实现企业会计信息的可靠真实性。
2.数据精准。在企业运营过程中会计核算是一项重要的经济管理活动,会计人员在核算过程中必须确保数据核算的准确型、完整性、真实性。在计算机技术的辅助下,当前会计核算业务已经完全实现了电算化,会计人员要充分掌握会计电算化操作知识和技能,这样既能够保障会计数据核算的准确性,又能够降低会计人员的日常工作量,保障企业能够在最低成本下创造出最大经济效益。
3.开拓创新。在信息技术时代,会计人员在面对海量数据信息,要积极加强对会计核算方法创新选用工作,会计人员要严格按照企业的实际发展情况出发,有针对性的采用会计核算方式,这样才能够有效提高企业会计核算的质量和效率,推动企业和谐健康的持续发展。
三、会计核算方法在食品加工企业原材料供应过程的应用
当食品加工企业发生产品原材料采购业务时,企业会计人员要准确记账。借方:材料采购、在途物资;贷方:银行存款。针对已经购入并且已经入库存储的加工原料,食品企业会计核算工作人员则需要根据入库单的标准与购入时的发票信息来进行记账处理。借方:原材料、应交税费———应交增值税(进项税额);贷方:银行存款、应付账款、材料采购、在途物资。食品加工企业会计人员要按照原材料种类依次进行采购环节的会计核算。如果采购材料是已经经过初步加工的农产品,会计人员就必须以入库前产生的材料采购成本、路途运输费用、人工费用以及合理损耗等作为该批食品材料的入库总成本;如果采购材料是未经过加工的鲜活农产品,会计人员就必须以入冷库前产生的材料采购成本、路途运输费用、加工处理的人工费用以及其他相关费用等作为入库总成本。
四、 会计核算方法在食品加工企业生产过程的应用
众所周知,在食品加工生产过程中需要经过的工序是多种多样的,一些特殊食品甚至需要工作人员做好很多前期工序。由于食品加工生产需要投入各种原料,不同原料间需要不同的处理加工方法,从而导致食品生产过程需要经过复杂而又细化的工序操作。
1.企业在发生领用原材料进行食品生产加工时,会计核算工作人员需要根据相关单据来进行核算。借方:生产成本、制造费用、管理费用;贷方:原材料。
2.人工成本支出核算。当食品加工企业要结人工成本支出时,会计财务人员要正确使用库存资金或者银行存款,借方:应付职工薪酬;贷方:库存现金、银行存款。当企业进行工资分配工作时,会计核算人员要按照不同部门岗位员工,科学采用薪酬计算方法,借方:生产运营成本、制造费用、管理费用、在建工程;贷方:需要支付员工薪资。
3.其他费用支出核算。在企业出现办公品消耗时会计需要对其进行会计核算。借方:管理费用、制造费用;贷方:银行存款。广告费、运输费支出核算,借方:销售费用;贷方:银行存款。企业生产设备维修管理费核算,借方:制造费用;贷方:银行存款。银行手续费核算,借方:财务费用;贷方:银行存款。
4.分配制造费用的核算。食品加工企业在产生制造费用后,会计人员要优先使用合理的分配方法,借方:生产成本;贷方:制造费用。
五、会计核算方法在产品销售过程的应用
在销售过程中存在部分食品额销售数量难以预测判断,企业相关工作人员必须综合考虑到该部分食品的正常消耗。此外,食品销售的显著特征就是其要受到季节变化的影响,要分食品销售的旺季和淡季。当食品遇到销售淡季时,很容易会发生产品滞销、库存产品不断增多等问题,在经营旺季时期产品会相对应的出现供不应求的情况。总的来说,食品企业在销售经济业务活动中主要涉及以下环节:获取产品销售收入、结算已售出产品成本、确定流转税、广告宣传费用等。企业会计核算人员要严格按照产成品最终的售出清单和实际发票数据。
六、结束语
综上所述,食品加工企业在会计核算方法应用工作上,要首先在充分深入了解会计核算法的基础上,根据自身企业的实际发展情况和条件考虑出发,会计核算人员要采取高效方便简单的核算方式,确保企业各个经营环节核算工作的顺利开展,让食品企业能够在完善的会计核算工作下持续稳定的发展,为企业获得更高的经济效益,为社会创造更良好的社会效益。
参考文献:
[1]黄国俊.中小型食品加工企业简易会计核算法[J].工业审计与会计,2012(05):45-48.
[2]张莹.探讨工业企业会计核算[J].新财经(理论版)2013(07):121-123.
[3]荆翼宪.食品企业小冷库会计核算的浅见[J].时代企业周刊,2014(03):36-39.
食品工程毕业论文题目
引导语:关于食品工程这一专业,有哪些论文题目可以选择呢?以下是我为大家整理的食品工程毕业论文题目,供各位阅读与借鉴。
一、《微生物学》研究小课题
1、灵芝的生产与加工技术的观察研究
2、天麻的生产与加工技术的观察研究
3、不同消毒剂的抑菌试验
4、苏云金杆菌的药效试验
5、紫外线杀菌试验
6、紫木耳的高产生产试验
7、平菇的高产生产试验
8、木本植物的扦插试验
9、无根豆芽菜的生产试验
10、食用菌病虫害防治试验
二、食品安全、食品营养方向
1、综述转基因食品的安全性
2、保健品的发展前景
3、有关某一具体食品的营养素的分析和检测(比如,鱼,肉或红富士苹果等)
4、有关某一类人群的营养调查报告及营养监测
5、有关某一类食品的营养强化(比如,赖氨酸,锌等)
6、某一类人群的营养和健康现状及分析(比如,婴幼儿,女性,老年人,青少年等)
7、冠心病患者的饮食及防治
8、糖尿病患者的膳食原则及防治
9、如何科学饮食
10、如何正确的摄入某一类营养素(比如,钙,维生素A等)
11、改进生产某一食品的工艺流程(比如,浅谈改进啤酒泡沫质量的措施)
12、综述绿色食品
13、综述无公害食品
14、分析各国的膳食结构
15、综述膳食结构跟体质、性格等关系
三、分子生物学、现代生物技术方向
1、微生物制剂的.生产与应用
2、基因工程技术的应用与发展
3、生物菌肥对植物的影响与作用分析
4、质粒的构建和扩增
5、现代生物技术在作物品种改良上的应用
6、生物信息学的发展和应用
7、魔芋的生长特性及功用
8、植物DNA提取方法的探讨与改进
9、红曲霉的液体培养方法优化
10、大肠杆菌质粒DNA提取方法的优化
四、生物技术方向
1、生物技术经济学分析
2、生物技术在医药领域的应用
3、我国的生物多样性及其保护
4、农业生物技术的发展与展望
5、基因重组技术研究现状
6、转基因食品的安全性评价
7、如何免费利用网上资源--生物技术网络资源的利用
8、浅谈生物技术领域的知识产权保护
9、生物技术与环境治理
10、现代生物技术与食品工业
食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。
食品加工论文 范文 一:食品工业泡沫分离技术的应用
泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.
1泡沫分离技术的原理及特点
泡沫分离技术的原理
泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.
泡沫分离技术的特点
优点
(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.
缺点
表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].
2泡沫分离技术在食品工业中的应用
蛋白质的分离
在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为,填料床高度为300mm和初始pH值为的条件下,最佳的牛血清蛋白富集比为,是控制塔条件下富集比的倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为、富集比为.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到的亚麻蛋白质,而多糖的损失率仅为.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.
酶的分离
蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为和6~等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为、pH值为时,蛋白和酶活回收率接近于100%,富集比为.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].
糖的分离
糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为和;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为和等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.
皂苷类有效成分的分离
皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.
大豆异黄酮苷元的分离Liu等[10]
采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.
无患子总皂苷的分离魏凤玉等[30]
分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为、进料量为150mL、气速为32L/h、温度为30℃、pH值为时,得到富集比为,纯度与回收率分别为和.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.
竹节参总皂苷的分离
竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为,pH值为,温度为65℃,电解质NaCl浓度为.在最佳工艺条件下,总皂苷富集比为,纯度比为,回收率为,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.
文冠果果皮皂苷的分离
文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷~.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为,回收率为,纯度为.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.
3展望
泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].
食品加工论文范文二:食品工业废水处理节能研究
食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。
1食品工业废水处理工艺现状
目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。
2各种工艺特点及应用效果分析
目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。
好氧生物处理工艺
好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。
法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。
法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。
法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。
厌氧生物处理工艺
在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。
法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为、、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。
反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的~高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为元/m3?d),具有良好的环境效益和社会效益。
法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。
3厌氧生物处理工艺优势分析
与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。
[摘要]我国街头油炸食品摊贩多,且管理难。我们拟从食物、用油、辅助用品和个人...[关键词]街头油炸食品卫生 用油 在学完“食品加工过程中的质量控制”这门课程
果蔬汁加工技术的应用进展
摘要 :果蔬经过制汁后比原果更容易贮藏,含有丰富的营养成分,且在减少果蔬原料的损失的同时提高其附加值。本文综述了果蔬汁加工过程中破碎榨汁技术、过滤澄清技术、均质技术、浓缩技术和杀菌技术的应用进展。
关键词 :果蔬汁 加工技术 应用进展
近年来,随着人们生活水平的逐步提高,对日常饮品的“营养、安全、健康”更为关注和重视。果蔬汁在口感及营养方面都接近新鲜果蔬,并且和具有一定的保健价值,受到各年龄阶段人们的喜爱。不同果蔬汁的加工方法不同,但某些关键技术是相似的。本文主要介绍果蔬汁加工技术中破碎榨汁技术、膜分离技术、超高压技术、高压脉冲技术和酶技术的应用进展。
1. 破碎榨汁技术
根据果蔬不同的形状、特性及加工需要,选用合适的破碎设备,并结合相适宜的破碎工艺进行破碎。常用的破碎工艺可分为热破碎和冷破碎。通常情况下,为了生产得到组织形态好、具有一定粘稠度的果蔬汁,可以运用热破碎,通过抑制和破坏某些酶的活力,如果胶分解酶、脂肪氧化酶等,从而达到破碎效果。[1]果蔬汁榨汁过程中,果蔬中所含有的果胶、淀粉、纤维素等物质会影响果蔬的出汁率,导致果蔬出汁率降低。采用酶技术处理果蔬原料, 即可提高产品出汁率, 该技术不仅可提高产品的澄清度, 且能防止果汁产生沉淀。[2]
2. 膜分离技术
传统的澄清方法是对果蔬汁进行酶处理,如果胶酶等,再用明胶、单宁、膨润土、硅溶胶等澄清剂对其进行絮沉降处理,静置、取清液,最后用离心或过滤的方法进一步处理。[3]在传统加工工艺过程中,果蔬汁成品的营养物质和风味物质损失多、成本高、耗能大。膜分离技术在果蔬汁制品的生产加工过程中发挥重要作用,能够有效地克服这些缺陷。膜分离技术主要具备使果蔬汁脱苦、脱酸、澄清和浓缩的功能,并提高果蔬汁的稳定性。
果蔬汁的脱苦
柑橘类果汁由于含有柚皮苷、柠檬碱等苦味物质,对产品的风味和商业价值造成负面影响。1E. Hernandez等人[4]利用超滤和二已烯基聚苯乙烯树脂吸附的联合过程对葡萄抽汁进行脱苦的实验,表明柚皮苷和柠檬碱可被完全除去,果汁风味得到显著提高。
果蔬汁的脱酸
根据刘茉娥等人[5]介绍利用电渗析膜,表明电渗析膜可以脱除果汁中的有机酸,能够使果汁酸度降低,从而提高果汁的品质。
果蔬汁的澄清
果蔬汁中因含有一些胶体物质、单宁、蛋白质等物质,它们在加热和贮存过程中往往使果蔬汁变得混浊,有的甚至产生沉淀,缩短了产品的货架期。应用超滤法澄清番茄汁、苹果汁、菠萝汁、梨汁、柑橘汁等,可获得较好的经济效益和较高的产品质量。
果蔬汁的稳定性
超滤可提高果蔬汁的稳定性,如苹果汁在超滤前宾透光率为,经超滤后,透光率为,在户观上已达到清澈透明,并在常温下贮存四个月,其透光率几乎为一定值,稳定性良好。[6]
3.超高压技术
杀菌是果蔬汁制品生产中的关键技术之一。传统的热力杀菌虽然可以杀灭鲜榨果蔬汁中的微生物, 但果蔬汁中的营养成分仍会受到破坏, 产生热臭、风味劣变, 造成果蔬汁制品产品质量变差。[7]食品超高压技术(ultrahigh pressure processingUHP),又称为高静压技术(high hydrostatic pressure processing,HHP),是指将密封于弹性容器内的食品置于水或其他液体作为传压介质的压力系统中,经100MPa以上压力处理,在常温甚至更低的温度下达到杀菌、灭酶和改善食品功能特性等作用口。由于超高压技术只作用于非共价键,能够保证共价键完好无损,因而可以降低鲜榨果蔬汁中的微生物数量, 并保持产品的营养、风味和安全品质, 具有重要的意义。[8]与加热杀菌相比,超高压技术有着无法比拟的优越性, 特别是超高压杀菌可以保持食品原有的色、香、味和营养成分。
超高压对果蔬汁色泽的影响
经研究发现,与传统的热杀菌相比,超高压技术处理果蔬汁能够较好的保持其色泽,对部分果蔬,如番茄等甚至有改善色泽的作用。其原因在于超高压对果蔬内源酶的钝化作用及高压的均质作用使果蔬组织细胞内的呈色物质溶出。
超高压对果蔬汁芳香成分的影响
超高压对果蔬汁的香气有不同方面的影响,不仅能够处理过程中会使香气反应前体物的浓度增加还能使香气物质降解降低或激活某些有关香气的酶的活性。因此超高压加工的果蔬汁的风味会呈现出不同的变化。
超高压对果蔬汁营养物质的影响
超高压对食品中营养成分的影响与各种营养成分的性质有关,由于超高压处理不能破坏共价键,因此认为超高压处理对于食品中小分子化合物一类的营养物质不会有直接的破坏作用,但可能会加速一些食品体系中的生化反应,使部分营养物质间接受到破坏。
超高压对果蔬汁中酶活性的影响
内源酶易引起果蔬最初的品质变化,,压力在酶的活性中心通过打破稳定分子内和酶蛋白的相互作用间的微妙平衡, 导致酶构象的变化而导酶失活。大量研究表明,超高压技术可钝化果蔬汁中的大部分酶。[9]
4. 高压脉冲技术
高压脉冲电场技术(pulsed electric field,PEF)作为非热加工工艺之一,因其作用时间短、均匀、效率高,且能够最大程度地保持食品新鲜度的优点而成为食品非热处理方式应用的热点之一。此外,在杀菌钝酶、活性物质提取、保持食品原汁原味等方面显示了很大的优势。
PEF技术在果蔬汁活性物质提取时的应用
由于细胞膜的渗透性功能,PEF技术作用于细胞时能够提高物质传质系数,将低能量PEF应用于不同的植物组织,PEF技术不仅提高果蔬汁提取率,且使果蔬汁中活性成分如酚类物质、VC的保留率更高。 PEF技术在果蔬汁钝酶方面的应用
经研究表明,PEF技术对果蔬汁酶活性的钝化有很好的作用效果,PEF技术不仅在钝化酶活性及延缓氧化、褐变等不良变化中发挥积极作用,同时对果蔬汁品质影响也较小。
PEF技术对果蔬汁品质的影响
研究PEF能温和且高效地处理物料,最大程度上保留原料的营养成分。经过PEF处理的果蔬汁,一般最好保存于低温下,如果酸度适宜,也可存于常温。[11]经PEF技术处理后的果蔬汁与热处理及酶处理等传统技术相比,果蔬汁品质更接近于原汁,符合人们对食品原汁、原味、天然营养的需求。
综上所述,随着科学技术的发展,虽然果蔬汁制品加工技术已达到一定的水平,但仍存在着一些问题。目前已有应用生物技术改善饮料加工原料、生产饮料添加剂和功能因子以及去除饮料不良性状的研究, 但生物技术要真正实现大规模地运用于果蔬汁饮料加工还有待进一步研究与完善。总之,果蔬汁饮料的各种加工技术需要相互贯通、相互融合、取长补短、集成发展,这是果蔬汁饮料加工技术的一个必然发展趋势。
参考文献:
[1] 夏天,马力.果蔬汁饮料加工技术研究进展[J].江苏食品与发酵,2008,(4):21-23,36.
[2]杨文雄, 尹利端. 中国果蔬汁加工技术发展新趋势[J]. 农产品
加工, 2007, (4): 26?28.
[3]李勇,刘冠卉,苏世彦.现代软饮料生产技术[M].北京:化学工业出版社,2006.
[4] , , . Evaluation of Ultrafiltration and Adsorption to Debitter Grapefruitjuice and Grapefruit pulp wash[J].Journal of Food Science, Vol57, No3. 1992,664-666.
[5]刘茉娥.膜分离技术[M].北京:化学工业出版社,,204-225,255-259.
[6]吴继红. 超滤膜分离技术在澄清果蔬汁加工中的应用[J]. 塔里木农垦大学学报,1996,01:37-41.
果蔬加工已成为果蔬 种植 业规模化的重要环节。下面是我为大家整理的果蔬加工技术论文,希望你们喜欢。
野菜果蔬汁的生产加工技术
摘 要:主要介绍以新鲜蔬菜、水果、野菜等为主要原料制作浓缩野菜果蔬汁及野菜果蔬汁饮料的生产工艺流程及生产技术要点,并从感官指标检测及微生物指标检测等两个方面评价了野菜果蔬汁饮料的质量情况,为饮料生产商开发生产新型饮料提供参考。
关键词:野菜 果蔬汁 生产加工
根据中国营养学会提出的“平衡膳食”的理论,以水果、蔬菜、野菜等为主要原料,设计生产出一种复合果蔬汁饮品,富含胡萝卜素及维生素、果胶酶、蛋白质、脂肪、碳水化合物、微量矿物元素等有效成分,营养、时尚、健康、解渴。原料来自无公害蔬菜基地,选用红、黄、绿等多种颜色的果蔬原料加工而成,使该果蔬汁饮品具有诱人的色泽及浓郁的香气,深受消费者的喜爱。这里主要介绍野菜果蔬汁饮品的生产加工技术及其质量评价,为饮料生产商开发生产新型饮料提供参考。[1]
1 野菜果蔬汁的生产工艺流程
实验原材料
新鲜胡萝卜、番茄、柑橘、柠檬、苹果、马齿菜、蒲公英、苣荬菜、明叶菜、荠菜、苋菜、食叶番薯、花椰菜(绿、白)、车前草、莼菜、香麻叶、紫苏、白砂糖、香料及其他配料等。
实验仪器设备
果蔬清理机、果蔬分级机、果蔬清洗机、果蔬蒸煮机、破碎机、打浆机、榨汁机、均质机、离心分离机、浓缩锅、电炉、真空抽滤机、搅拌机、恒温水浴锅、灭菌锅、电热恒温烘箱、饮料灌装机、封口机、电光分析天平、真空脱气机、电冰箱等。
野菜果蔬汁的生产工艺
浓缩野菜果蔬汁的生产工艺
新鲜水果、蔬菜、野菜原料清理去杂→分级、去皮、拣果→清洗→汽蒸软化或开水烫煮→破碎、打浆→榨汁→离心分离→均质、浓缩→加糖调配→ 杀菌→灌装→封口→冷藏→成品。
其中离心分离出的果渣、菜渣排出→制作饲料。
野菜果蔬汁饮料的生产工艺
→调和→均质→脱气→杀菌→装罐→封口→冷却→真空度检查→贴标、包装→成品。[2]
野菜果蔬汁的生产技术要点
加工原料的准备
根据野菜果蔬汁的生产配方要求,将所需的所有原料进行彻底清理,去掉各种果皮、果核、泥沙杂质等,野菜及蔬菜去掉菜根、老叶、发黄叶、病虫叶等,然后将清理好的果蔬及野菜原料放入清水中彻底清洗干净并沥干水分备用。洗净后的胡萝卜、苹果、番茄等用刀切成厚的均匀薄片,柑橘分成均匀的小瓣,柠檬切成3mm厚的薄片,花椰菜(绿色和白色两种)切成2~3cm厚的均匀小块备用。各种野菜去掉泥沙、杂质洗净并沥干水分后用刀切成粗细均匀的小段备用。
野菜果蔬汁原料的汽蒸软化或开水烫煮
为方便破碎、打浆,将上述已经切好的胡萝卜、苹果、番茄、柠檬、花椰菜及柑橘等果蔬原料放在压力为~的蒸汽中气蒸5~8min使果蔬原料软化。将已经切好的马齿菜、蒲公英、苣荬菜、明叶菜、荠菜、苋菜、食叶番薯、车前草、莼菜、香麻叶、紫苏等野菜原料放在60~80℃的温开水中烫煮5~8s备用。
野菜果蔬汁原料的破碎、打浆及榨汁
将上述已经汽蒸、软化的果蔬原料放入破碎机中进行破碎处理,然后将破碎的果蔬原料放入打浆机中进行打浆处理。将经过温开水烫煮的野菜原料放入打浆机中进行打浆处理。然后将经过破碎、打浆处理的果蔬及野菜原料分别转入榨汁机中进行榨汁处理。
野菜果蔬汁的离心分离及均质、浓缩
将上一步中已经榨好的野菜果蔬汁放入离心机中进行离心分离,其中离心分离出的果渣、菜渣经离心机分离出来以后经适当的处理可以作为牲畜的饲料。而分离出的野菜果蔬汁引入均质机中进行均质处理,然后再将经均质处理的野菜果蔬汁引入真空浓缩锅中进行浓缩处理即得到浓缩野菜果蔬汁。
野菜果蔬汁加糖液调配及杀菌、灌装、封口、冷藏
按照野菜果蔬汁的生产配方要求,在电光分析天平上称取白砂糖并用80℃温开水溶解后,然后添加到上一步中已经得到的浓缩野菜果蔬汁中并进行充分的调配,调配好的浓缩野菜果蔬汁放入卧式灭菌锅中在95~110℃的超高温条件下瞬时灭菌10~15s,再冷却至30℃的室温条件下进行无菌灌装,其包装的容器有无菌利乐包、塑料瓶、玻璃瓶、塑料桶、易拉罐等多种形式。灌装后立即封口,并放入冰箱中在0℃左右的低温条件下冷藏。
野菜果蔬汁饮料的生产
根据野菜果蔬汁饮料的生产配方要求,取上一步中已经制作好的浓缩野菜果蔬汁原料适量,砂糖、香料及其他配料等放入调配桶中备用。再根据生产配方要求取适量的自来水经过滤及离子交换处理后得到软化水,将所得的软化水也加入到调配桶中,并进行充分的调配混匀,混匀后的野菜果蔬汁饮料加入到均质机中进行均质处理,均质后的野菜果蔬汁饮料转入真空脱气机中进行脱气处理,然后再将脱气后的野菜果蔬汁饮料放入卧式灭菌锅中,在95~110℃的超高温条件下瞬时灭菌10~15s,即得到所需的野菜果蔬汁饮料成品。
野菜果蔬汁饮料的灌装、封口、冷却、真空度检查及包装
将上一步中已经制作好并经过灭菌处理的野菜果蔬汁饮料选择合适的包装材料进行灌装,并对灌装好的野菜果蔬汁饮料立即进行封口处理,以防污染杂菌,降低野菜果蔬汁饮料成品的品质。封口后的野菜果蔬汁饮料冷却到30℃左右的室温条件下,然后进行野菜果蔬汁饮料真空度检查,剔除封口不严,密封性不好的野菜果蔬汁饮料成品,以防野菜果蔬汁饮料在贮藏、运输及销售过程中污染杂菌,降低成品品质。完成真空度检查的野菜果蔬汁饮料成品进行贴标、包装装箱处理后即得到所需的野菜果蔬汁饮料成品。
2 浓缩野菜果蔬汁及野菜果蔬汁饮料的质量评价
为了如实反映按照上述生产工艺流程及其生产配方所生产加工的浓缩野菜果蔬汁及野菜果蔬汁饮料的质量好坏,笔者严格按照上述生产工艺及相关的生产配方生产加工了一批浓缩野菜果蔬汁及野菜果蔬汁饮料,并从感官指标和理化、微生物指标等两个方面对浓缩野菜果蔬汁及野菜果蔬汁饮料产品进行了随机检测。感官指标主要是关注浓缩野菜果蔬汁及野菜果蔬汁饮料的口感风味、颜色、香气、组织状态、稳定性等几个方面的指标。经观察发现所制作的本批次浓缩野菜果蔬汁及野菜果蔬汁饮料口感细腻醇厚,酸甜可口,色香味俱佳,风味突出,该饮料由红、黄、绿、白等各种颜色的原料均匀搭配而成,具有浓郁的水果、蔬菜及野菜的清香味,无絮状沉淀、分层等不良现象,组织状态好,稳定性强等,故其感官指标比较好。而理化、微生物指标主要检测浓缩野菜果蔬汁及野菜果蔬汁饮料的蛋白质、脂肪、碳水化合物、总酸度、固形物含量、大肠菌群、致病菌等。检测结果见表1。
从表1看出,本批次所生产加工的浓缩野菜果蔬汁及野菜果蔬汁饮料样品的理化、微生物指标完全符合GB/T 5511-2008《谷物和豆类 氮含量测定和粗蛋白质含量计算 凯氏法》、GB/T 《淀粉总脂肪测定》、GB/T 《食品中蔗糖的测定》、GB/T 12456-2008《食品中总酸的测定》、GB/T 12143-2008《饮料通用分析 方法 》、GB 17325-2005《食品工业用浓缩果蔬汁(浆)卫生标准》、GB/T 《食品卫生微生物学检验 冷冻饮品、饮料检验》等标准要求,消费者可以放心饮用。
3 结语
这里主要介绍了以新鲜胡萝卜、番茄、柑橘、柠檬、苹果、马齿菜、蒲公英、苣荬菜等新鲜蔬菜、水果及野菜等为主要原料生产加工浓缩野菜果蔬汁及野菜果蔬汁饮料的工艺流程及生产技术要点,并从感官指标和理化、微生物指标等两个方面评价了浓缩野菜果蔬汁及野菜果蔬汁饮料的质量问题。从本次试验的检测结果来看,浓缩野菜果蔬汁及野菜果蔬汁饮料的生产工艺可行,产品的各项质量指标完全符合上述国家标准的规定,所生产加工的饮料产品色泽鲜艳,口感细腻醇厚,酸甜可口,营养丰富,不添加防腐剂、色素、香精等食品添加剂,是当前男女老少消费者皆宜的时尚饮品。该生产工艺简单可行,成本较低,对生产实践具有一定的指导意义,希望对饮料生产厂家有一定帮助。
参考文献
[1] 邵长富,赵晋府.软件饮料工艺学[M].北京:中国轻工业出版社,.
[2] 陈海军.苹果、胡萝卜、红枣混合果蔬汁酸奶的生产加工技术研究[J]
安徽农业科学,2010,38(25):13827-13828,13836.
点击下页还有更多>>>果蔬加工技术论文
微生物的发酵作用对传统酿造食品安全性的影响摘要:对我国酿造食品的工艺特点和生物转化作用机制进行了阐述,分析了发酵过程中微生物的发酵作用对食品酿造过程中的生物性污染、化学性污染和物理性污染等食品安全性因素的影响,得出我国传统酿造食品由于微生物的发酵作用经过分解、消除和滤过等过程使其更具有安全性特征。关键词:传统酿造食品;发酵作用;食品安全食品为人类提供营养要素,同时也是微生物生长的天然培养基。我国传统酿造食品(酱油、酱类、食醋、腐乳、白酒、酸菜、泡菜等)多以谷类、豆类、蔬菜等为原料,将自然界的群体微生物引入发酵过程共同作用形成风味独特的食品。通过微生物发酵作用引起的生物转化食品具有良好的品质、感官特性、可消化性和营养价值。随着现代工业发展,工业“三废”中的有毒有害物质(如重金属毒物、N-亚硝基化合物、多环芳烃化合物等)在环境中污染逐渐增多,这些有毒有害物质通过土壤、水体、空气等环境污染酿造食品原料、食品容器和包装材料等。化学农药、化肥和仓储药剂(如杀虫剂、杀菌剂、除草剂、植物生长调节剂、粮食熏蒸剂、防护剂等)通过各种渠道污染食品酿造原料,作为发酵原料的粮食在生产、加工、贮藏等环节受到霉菌、细菌、寄生虫等生物污染。本文从我国传统食品酿造的工艺特点、微生物的生物转化机制对食品污染的作用进行分析,探究传统酿造食品在发酵过程中的安全性问题。1传统酿造食品的工艺特点我国传统酿造食品历史悠久,经过千百年的实践形成独特的酿造工艺特点。敞口固态发酵传统酿造一般采用固态发酵技术,在添加谷糠或稻壳等辅料之后进行边糖化边发酵的“双边发酵”工艺,具有发酵时间长、产品风味浓厚、管理粗放等特点。整个过程采用敞口式工艺,充分利用物产资源与自然资源,制曲时富集各种功能性微生物,驯化和培育了特定的微生物群落结构体系,将主体微生物与环境微生物融为一体。同时摸索出一套完整的温度、湿度、酸碱度、通气量、发酵时间等酿造工艺条件,创立了产品增香与各种加工技术,对创造我国独特的酿造食品风味和保证产品质量具有十分重要的作用。多种微生物共同作用酿造过程是一个复杂的生物化学反应过程,产品品质主要取决于多种微生物的协同作用。微生物主要来自于曲种和环境,包括霉菌、酵母菌、细菌等,各种微生物共栖生长,赋予醅料复杂而完整的酶系,具有较强的糖化、液化和蛋白分解能力。各种微生物在发酵过程中盛衰交替,此消彼长,协同作用,产生单一菌种所不能比拟的作用。在发酵过程中水解与发酵交替进行,避免过高浓度底物对有益微生物和生化反应的负面影响。发酵时间长,酶促反应深入而完善,代谢产物丰富多彩,产品风味醇厚、浓郁[1-2]。多样的产品防腐措施传统酿造食品采取灵活多样的产品安全措施,一是依靠代谢产物本身的防腐作用(如白酒是依赖酒精的杀菌作用,食醋是靠醋酸的抑菌作用);二是利用高浓度的食盐抑制微生物的生长繁殖(如酱油、酱、腐乳等)。2传统酿造食品的生物转化机制传统酿造过程是多种微生物将原料中的淀粉、蛋白质和脂类等大分子物质转化为产品的各种小分子风味物质,构成产品的主要成分。酱油的风味物质按其化合物性质可分为醇类、酯类、酸类、醛类及缩醛类、酚类、呋喃酮类和含硫化合物等[3-4];食醋中除含有主要成分醋酸外,还含有糖分、氨基酸、酯、醛、醇、酚、酮类等化学成分[5-6]。酱油和食醋等酿造食品的风味物质构成产品特有的色、香、味,其来源主要是2方面,一是植物原料的“主生物质”(如蛋白质、淀粉等“,次生物质”如丹宁、芳香族化合物、异黄酮);二是微生物及其酶对植物原料作用后的代谢产物。此外,白酒、酱油、食醋等在贮藏过程中各种代谢产物相互作用形成各种风味物质,据分析酱油含有300多种风味物质[4]。多糖的转化传统酿造食品原料的主要成分为淀粉,它在曲霉菌分泌淀粉酶的作用下分解为葡萄糖。这些单糖一部分作为霉菌、酵母菌和细菌生长繁殖的碳源和能源,一部分在微生物的作用下形成发酵产品的各种代谢产物。由淀粉转化来的代谢产物包括各种酸类、醇类、酚类以及低聚糖等[7]。酱油的糖分包括由大豆转化的低聚糖(如水苏糖、棉子糖等)和由小麦淀粉转化的蔗果三糖、低聚果糖、低聚半乳糖、低聚异麦芽糖以及低聚木糖等,而酿造食品的酸类、醇类、酚类等小分子产物是构成产品风味的物质基础。蛋白质的转化
食品冷藏的原理及技术要点冷藏又称低温贮藏,是指在0℃或略高于食品冰点的低温环境条件下,对食品进行贮藏的方法。冷藏是通过抑制微生物及酶类的活动和降低食品基质中的活性,来防止食品腐败变质,保持食品的新鲜度和营养价值。冷藏是目前效果较好、价格较低、保鲜时间校长、最普遍采用的食品贮藏方法。一、食品的冷藏原理食品的腐败变质,主要是由于微生物的生物活动和食品中的酶所进行的生物化学反应所造成。动物性食品,如禽、畜、鱼等在贮藏时很容易被细菌污染,细菌并很快繁殖,从而造成食品的腐败。但是微生物的繁殖和酶活性的发挥,都需要适当的温度和水分条件;环境不适宜,微生物就会停止繁殖甚至死亡,酶也会丧失催化能力,甚至被破坏。把动物性食品放在低温条件下就可抑制微生物的繁殖和酶对食品的作用,可以贮藏较长时间而不会腐败变质。对于植物性食品,腐败的原因是呼吸作用。水果、蔬菜在采摘后虽然不能继续生长,但它们仍是一个有机体,仍然有生命,有呼吸作用。低温能够减弱果蔬食品的呼吸作用,延长它们的贮藏期限。但温度不能过低,否则会引起植物性食品的生理病害,甚至冻死。因此植物性食品冷藏温度应该选择接近其冰点但又不致使植物发生冻死现象为宜。二、冷藏库的建造要求1、隔热层的隔热性能要好。隔热层的隔热性能越好,耗冷量越小,所引起的库温波动也就越小,从而有利于贮藏物的质量保持,延长贮藏时间,减少贮藏物的干缩损耗,同时可以节省制冷设备的投资和运转费用。2、注意隔热层外侧的防潮。冷库围护结构两侧的温度不一致,易形成水蒸气分压差,伴随热量的传递,库外的水蒸气就会向库内渗透,故应设置防潮隔气层。常见的防潮方法有3种:沥青防潮、塑料薄膜防潮及使用金属夹心板兼作防潮层。3、安装良好的抽气系统。食品在冷库内贮藏一定时间后易积累二氧化碳、乙烯等气体物质,故需安装良好的抽气系统,以便经常换入新鲜空气,以利于食品的贮藏保鲜。4、选择合适的制冷系统。冷库是通过人工制冷的方法来获取冷量的。目前常用液体气化制冷法或蒸气制冷法。蒸气制冷法可分为压缩式、吸收式、喷射式3种制冷方式,其中以压缩式最为广泛。压缩式制冷机主要由压缩机、冷凝器、调节阀和蒸发器4部分组成,它是一个闭合循环系统。三、冷藏时应注意的一些问题1、预冷。预冷是食品在长途运输或冷藏前预先进行的一种冷却方法,其要求是将待贮食品快速降至规定温度。它是维护被运输食品的品质和延长贮藏寿命的重要措施。预冷通常在冷库和预冷间进行。常用的预冷方法有自然空气冷却、通风冷却、真空冷却及冷水冷却。经预冷处理后的食品应迅速置入低温环境中贮藏。2、温度允许的变化范围与贮藏期限。冷藏库中的温度并不可能恒定在某一温度值上,因制冷机性能、库容大小和内外温差等因素会使库温在一定范围内波动。一般而言,食品以贮藏温度较低,且变化范围越小越好。这样有利于食品保鲜,防止损耗及低温生理病害。3、温度的控制。不同的食品具有不同的最适冷藏温度。冷库温度和入库后食品的温度受多种因素的影响,如入库时食品的温度与库温的差别、制冷机的效能与库容、库内空气流通情况、堆码方式,食品品种及成熟度等。入库时应合理堆码,根据实际情况调节库温;出库前需采用逐步升温方法,以免因内外温差大,而造成食物表面凝结水珠。4、湿度的控制。冷库常因蒸发器大量吸热而不断地在其上结附冰霜,又不断地将冰霜融化流走,致使库内湿度常低于食品贮藏对湿度的要求。可以采用增大蒸发器面积、减少结霜,安装喷雾设备或自动喷湿器来调节冷库内湿度。另外,当因货物出入频繁,使库内相对湿度增大时,可安装吸湿器吸湿,并加强冷库管理,严格控制货物和人员的频繁出入。
果蔬汁加工技术的应用进展
摘要 :果蔬经过制汁后比原果更容易贮藏,含有丰富的营养成分,且在减少果蔬原料的损失的同时提高其附加值。本文综述了果蔬汁加工过程中破碎榨汁技术、过滤澄清技术、均质技术、浓缩技术和杀菌技术的应用进展。
关键词 :果蔬汁 加工技术 应用进展
近年来,随着人们生活水平的逐步提高,对日常饮品的“营养、安全、健康”更为关注和重视。果蔬汁在口感及营养方面都接近新鲜果蔬,并且和具有一定的保健价值,受到各年龄阶段人们的喜爱。不同果蔬汁的加工方法不同,但某些关键技术是相似的。本文主要介绍果蔬汁加工技术中破碎榨汁技术、膜分离技术、超高压技术、高压脉冲技术和酶技术的应用进展。
1. 破碎榨汁技术
根据果蔬不同的形状、特性及加工需要,选用合适的破碎设备,并结合相适宜的破碎工艺进行破碎。常用的破碎工艺可分为热破碎和冷破碎。通常情况下,为了生产得到组织形态好、具有一定粘稠度的果蔬汁,可以运用热破碎,通过抑制和破坏某些酶的活力,如果胶分解酶、脂肪氧化酶等,从而达到破碎效果。[1]果蔬汁榨汁过程中,果蔬中所含有的果胶、淀粉、纤维素等物质会影响果蔬的出汁率,导致果蔬出汁率降低。采用酶技术处理果蔬原料, 即可提高产品出汁率, 该技术不仅可提高产品的澄清度, 且能防止果汁产生沉淀。[2]
2. 膜分离技术
传统的澄清方法是对果蔬汁进行酶处理,如果胶酶等,再用明胶、单宁、膨润土、硅溶胶等澄清剂对其进行絮沉降处理,静置、取清液,最后用离心或过滤的方法进一步处理。[3]在传统加工工艺过程中,果蔬汁成品的营养物质和风味物质损失多、成本高、耗能大。膜分离技术在果蔬汁制品的生产加工过程中发挥重要作用,能够有效地克服这些缺陷。膜分离技术主要具备使果蔬汁脱苦、脱酸、澄清和浓缩的功能,并提高果蔬汁的稳定性。
果蔬汁的脱苦
柑橘类果汁由于含有柚皮苷、柠檬碱等苦味物质,对产品的风味和商业价值造成负面影响。1E. Hernandez等人[4]利用超滤和二已烯基聚苯乙烯树脂吸附的联合过程对葡萄抽汁进行脱苦的实验,表明柚皮苷和柠檬碱可被完全除去,果汁风味得到显著提高。
果蔬汁的脱酸
根据刘茉娥等人[5]介绍利用电渗析膜,表明电渗析膜可以脱除果汁中的有机酸,能够使果汁酸度降低,从而提高果汁的品质。
果蔬汁的澄清
果蔬汁中因含有一些胶体物质、单宁、蛋白质等物质,它们在加热和贮存过程中往往使果蔬汁变得混浊,有的甚至产生沉淀,缩短了产品的货架期。应用超滤法澄清番茄汁、苹果汁、菠萝汁、梨汁、柑橘汁等,可获得较好的经济效益和较高的产品质量。
果蔬汁的稳定性
超滤可提高果蔬汁的稳定性,如苹果汁在超滤前宾透光率为,经超滤后,透光率为,在户观上已达到清澈透明,并在常温下贮存四个月,其透光率几乎为一定值,稳定性良好。[6]
3.超高压技术
杀菌是果蔬汁制品生产中的关键技术之一。传统的热力杀菌虽然可以杀灭鲜榨果蔬汁中的微生物, 但果蔬汁中的营养成分仍会受到破坏, 产生热臭、风味劣变, 造成果蔬汁制品产品质量变差。[7]食品超高压技术(ultrahigh pressure processingUHP),又称为高静压技术(high hydrostatic pressure processing,HHP),是指将密封于弹性容器内的食品置于水或其他液体作为传压介质的压力系统中,经100MPa以上压力处理,在常温甚至更低的温度下达到杀菌、灭酶和改善食品功能特性等作用口。由于超高压技术只作用于非共价键,能够保证共价键完好无损,因而可以降低鲜榨果蔬汁中的微生物数量, 并保持产品的营养、风味和安全品质, 具有重要的意义。[8]与加热杀菌相比,超高压技术有着无法比拟的优越性, 特别是超高压杀菌可以保持食品原有的色、香、味和营养成分。
超高压对果蔬汁色泽的影响
经研究发现,与传统的热杀菌相比,超高压技术处理果蔬汁能够较好的保持其色泽,对部分果蔬,如番茄等甚至有改善色泽的作用。其原因在于超高压对果蔬内源酶的钝化作用及高压的均质作用使果蔬组织细胞内的呈色物质溶出。
超高压对果蔬汁芳香成分的影响
超高压对果蔬汁的香气有不同方面的影响,不仅能够处理过程中会使香气反应前体物的浓度增加还能使香气物质降解降低或激活某些有关香气的酶的活性。因此超高压加工的果蔬汁的风味会呈现出不同的变化。
超高压对果蔬汁营养物质的影响
超高压对食品中营养成分的影响与各种营养成分的性质有关,由于超高压处理不能破坏共价键,因此认为超高压处理对于食品中小分子化合物一类的营养物质不会有直接的破坏作用,但可能会加速一些食品体系中的生化反应,使部分营养物质间接受到破坏。
超高压对果蔬汁中酶活性的影响
内源酶易引起果蔬最初的品质变化,,压力在酶的活性中心通过打破稳定分子内和酶蛋白的相互作用间的微妙平衡, 导致酶构象的变化而导酶失活。大量研究表明,超高压技术可钝化果蔬汁中的大部分酶。[9]
4. 高压脉冲技术
高压脉冲电场技术(pulsed electric field,PEF)作为非热加工工艺之一,因其作用时间短、均匀、效率高,且能够最大程度地保持食品新鲜度的优点而成为食品非热处理方式应用的热点之一。此外,在杀菌钝酶、活性物质提取、保持食品原汁原味等方面显示了很大的优势。
PEF技术在果蔬汁活性物质提取时的应用
由于细胞膜的渗透性功能,PEF技术作用于细胞时能够提高物质传质系数,将低能量PEF应用于不同的植物组织,PEF技术不仅提高果蔬汁提取率,且使果蔬汁中活性成分如酚类物质、VC的保留率更高。 PEF技术在果蔬汁钝酶方面的应用
经研究表明,PEF技术对果蔬汁酶活性的钝化有很好的作用效果,PEF技术不仅在钝化酶活性及延缓氧化、褐变等不良变化中发挥积极作用,同时对果蔬汁品质影响也较小。
PEF技术对果蔬汁品质的影响
研究PEF能温和且高效地处理物料,最大程度上保留原料的营养成分。经过PEF处理的果蔬汁,一般最好保存于低温下,如果酸度适宜,也可存于常温。[11]经PEF技术处理后的果蔬汁与热处理及酶处理等传统技术相比,果蔬汁品质更接近于原汁,符合人们对食品原汁、原味、天然营养的需求。
综上所述,随着科学技术的发展,虽然果蔬汁制品加工技术已达到一定的水平,但仍存在着一些问题。目前已有应用生物技术改善饮料加工原料、生产饮料添加剂和功能因子以及去除饮料不良性状的研究, 但生物技术要真正实现大规模地运用于果蔬汁饮料加工还有待进一步研究与完善。总之,果蔬汁饮料的各种加工技术需要相互贯通、相互融合、取长补短、集成发展,这是果蔬汁饮料加工技术的一个必然发展趋势。
参考文献:
[1] 夏天,马力.果蔬汁饮料加工技术研究进展[J].江苏食品与发酵,2008,(4):21-23,36.
[2]杨文雄, 尹利端. 中国果蔬汁加工技术发展新趋势[J]. 农产品
加工, 2007, (4): 26?28.
[3]李勇,刘冠卉,苏世彦.现代软饮料生产技术[M].北京:化学工业出版社,2006.
[4] , , . Evaluation of Ultrafiltration and Adsorption to Debitter Grapefruitjuice and Grapefruit pulp wash[J].Journal of Food Science, Vol57, No3. 1992,664-666.
[5]刘茉娥.膜分离技术[M].北京:化学工业出版社,,204-225,255-259.
[6]吴继红. 超滤膜分离技术在澄清果蔬汁加工中的应用[J]. 塔里木农垦大学学报,1996,01:37-41.
目是魔芋的食品加工,我想找一篇相关的论 肯定完整说明的
食品冷藏的原理及技术要点冷藏又称低温贮藏,是指在0℃或略高于食品冰点的低温环境条件下,对食品进行贮藏的方法。冷藏是通过抑制微生物及酶类的活动和降低食品基质中的活性,来防止食品腐败变质,保持食品的新鲜度和营养价值。冷藏是目前效果较好、价格较低、保鲜时间校长、最普遍采用的食品贮藏方法。一、食品的冷藏原理食品的腐败变质,主要是由于微生物的生物活动和食品中的酶所进行的生物化学反应所造成。动物性食品,如禽、畜、鱼等在贮藏时很容易被细菌污染,细菌并很快繁殖,从而造成食品的腐败。但是微生物的繁殖和酶活性的发挥,都需要适当的温度和水分条件;环境不适宜,微生物就会停止繁殖甚至死亡,酶也会丧失催化能力,甚至被破坏。把动物性食品放在低温条件下就可抑制微生物的繁殖和酶对食品的作用,可以贮藏较长时间而不会腐败变质。对于植物性食品,腐败的原因是呼吸作用。水果、蔬菜在采摘后虽然不能继续生长,但它们仍是一个有机体,仍然有生命,有呼吸作用。低温能够减弱果蔬食品的呼吸作用,延长它们的贮藏期限。但温度不能过低,否则会引起植物性食品的生理病害,甚至冻死。因此植物性食品冷藏温度应该选择接近其冰点但又不致使植物发生冻死现象为宜。二、冷藏库的建造要求1、隔热层的隔热性能要好。隔热层的隔热性能越好,耗冷量越小,所引起的库温波动也就越小,从而有利于贮藏物的质量保持,延长贮藏时间,减少贮藏物的干缩损耗,同时可以节省制冷设备的投资和运转费用。2、注意隔热层外侧的防潮。冷库围护结构两侧的温度不一致,易形成水蒸气分压差,伴随热量的传递,库外的水蒸气就会向库内渗透,故应设置防潮隔气层。常见的防潮方法有3种:沥青防潮、塑料薄膜防潮及使用金属夹心板兼作防潮层。3、安装良好的抽气系统。食品在冷库内贮藏一定时间后易积累二氧化碳、乙烯等气体物质,故需安装良好的抽气系统,以便经常换入新鲜空气,以利于食品的贮藏保鲜。4、选择合适的制冷系统。冷库是通过人工制冷的方法来获取冷量的。目前常用液体气化制冷法或蒸气制冷法。蒸气制冷法可分为压缩式、吸收式、喷射式3种制冷方式,其中以压缩式最为广泛。压缩式制冷机主要由压缩机、冷凝器、调节阀和蒸发器4部分组成,它是一个闭合循环系统。三、冷藏时应注意的一些问题1、预冷。预冷是食品在长途运输或冷藏前预先进行的一种冷却方法,其要求是将待贮食品快速降至规定温度。它是维护被运输食品的品质和延长贮藏寿命的重要措施。预冷通常在冷库和预冷间进行。常用的预冷方法有自然空气冷却、通风冷却、真空冷却及冷水冷却。经预冷处理后的食品应迅速置入低温环境中贮藏。2、温度允许的变化范围与贮藏期限。冷藏库中的温度并不可能恒定在某一温度值上,因制冷机性能、库容大小和内外温差等因素会使库温在一定范围内波动。一般而言,食品以贮藏温度较低,且变化范围越小越好。这样有利于食品保鲜,防止损耗及低温生理病害。3、温度的控制。不同的食品具有不同的最适冷藏温度。冷库温度和入库后食品的温度受多种因素的影响,如入库时食品的温度与库温的差别、制冷机的效能与库容、库内空气流通情况、堆码方式,食品品种及成熟度等。入库时应合理堆码,根据实际情况调节库温;出库前需采用逐步升温方法,以免因内外温差大,而造成食物表面凝结水珠。4、湿度的控制。冷库常因蒸发器大量吸热而不断地在其上结附冰霜,又不断地将冰霜融化流走,致使库内湿度常低于食品贮藏对湿度的要求。可以采用增大蒸发器面积、减少结霜,安装喷雾设备或自动喷湿器来调节冷库内湿度。另外,当因货物出入频繁,使库内相对湿度增大时,可安装吸湿器吸湿,并加强冷库管理,严格控制货物和人员的频繁出入。
食品加工就是把可以吃的东西通过某些程序,造成更好吃或更有益等变化。下面我给大家分享一些面点食品加工技术论文,大家快来跟我一起欣赏吧。
试论中西面点加工工艺的区别
【摘 要】中西方面点在制作理论和技术上相互融合,各取所长,但由于中西方饮食的差异,在加工制作方法上还有一些不同。本文以紫薯面点为例,就中西面点在加工制作等方面所存在的一些差异做一浅谈。
【关键词】中西面点;紫薯;营养保健
1.中西面点简介
中式面点
中式面点指源于我国的点心,简称“中点”,双称为“面点”,它是以各种粮食、畜禽、鱼、虾、蛋、乳、蔬菜、果品等为原料再配以多种调味品经过加工而制成的色、香、味、形、质俱佳的营养食品。面点在中国饮食行业中通常被称为“白案”。它在饮食形式上呈现出多样性,既是人们不可缺少的主食又是人们调剂口味的补充食品。
西式面点
西式面点以面、糖、油脂、鸡蛋和乳品为原料,辅以干鲜果品和调味料,经过调制成型、装饰等工艺过程而制成的具有一定色、香、味、形、质的营养食品。是西方饮食文化中的一颗璀璨明珠,它同东方烹饪一样,在世界上享有很高的声誉。面点行业在西方通常被称为“烘焙业“,在欧美国家十分发达。烘焙食品以款式美观、色香味美、新鲜可口的高品质制品来吸引顾客,促进产品销售。
2.中西面点加工方法的差异
在悠悠历史长河中,中西方不同的思维方式和处世哲学造就了中西文化的差异,从而造就了中西方饮食文化的不同。也就是说,中国饮食以食表意、以物传情,其博大精深不可言喻。西方饮食精巧专维、自成体系。虽然饮食文化差异较大,但是在中西方饮食中大部分以面食为主,那么面食在制作和加工方面不同的国家有不同的侧重点,也就是说,中西式面点为了迎合各自的饮食习惯,在制作加工方面存在以下差异。
中西方糕点在选料和成形加工方面存在的差异
由于我国幅员辽阔,特产丰富,这就为中式面点制作提供了丰富的原料,再加上人口众多,各地气候条件不一,人们生活差异也很大,所以 选料要求比较精细,花样品种繁多。又由于我国传统思想的影响,在中方糕点制作的过程中要求纯手工制作,这就彰显出中式面点在加工制作上的难度和技巧。中式面点要求成形技法多样,造型美观,面点成形是面点制作中一项技术要求高、艺术性强的重要工序,归纳起来,大致有 18 种成形技法,即:包、捏、卷、按、擀、叠、切、摊、剪、搓、抻、削、拨、钳花、滚沾、镶嵌、模具、挤注等。通过各种技法,又可形成各种各样的形态。通过形态的变化,不仅丰富了面点的花色品种,而且还使得面点千姿百态,造型美观逼真。西式面点用料也很讲究,大多以乳品、蛋品、糖类、油脂、面粉、干鲜水果等为常用原料,其中蛋、糖、油脂的比例较大,而且配料中干鲜水果、果仁、巧克力等用量大。西点的加工制作要求从造型到装饰,每一个图案或线条,都清晰可辨,简洁明快,给人以赏心悦目的感觉。西方糕点的加工装饰属于用一两种装饰材料进行的一次性装饰,操作简便、速度快适合大批量生产。其制作表现形式主要有:仿真形式、抽象形式、卡通形式等等。
中西面点在烹制加工方法上的差异
中国的面食,制作的时候以蒸、煎、烘、煮、烙、炸为主,口感较为轻淡,不像西点,太甜,中式面点多以油炸为主,多油腻,其实这点和中国人的饮茶文化有很大的关系,因为茶可以去油腻。西方的点心,制作的时候以烘、烤为主,主要依靠模具一次性成型。这样制作起来可以节省很多的时间而且形状统一,看起来比较整齐、美观。自改革开放以来,随着中西方文化的相互交流和传播,中西方的烹制方法也在相互学习,相互促进,在烹制面食的时候就可以选择多种烹制方法相结合,这样就能让人们品尝到各种口味不同、风格各异的美食。综上所述,不管是中点还是西点,在加工工艺上应该取长补短,相辅相成,推陈出新。
这本来就是餐饮工作人员不变的信条。随着全球一体化进程的加快,餐饮文化也在逐步走向理解、包容、融合、贯通。餐饮从业人员在保护好历史积淀下来的传统工艺的同时,也要努力学习西式面点的制作技巧。内外兼收,洋为中用,为国人的餐桌上献上更多的面点制品,做出符合中国人口味的美味佳肴。
3.芝麻莲蓉酥的制作
材料:
油皮:中筋面粉200克(高粉150克+低粉50克)、细砂糖36克、猪油65克、温水70-80克、盐3克
油酥:低筋面粉200
克、猪油90克
内馅:红莲蓉(广州莲香楼出品)500克、
装饰:蛋液适量,生白芝麻适量
(以上量可做成品20个)
(1)油皮:面粉加入其余材料揉成面团,静置15分钟,分成20份备用。
(2)油酥:面粉与油揉成团,分成20个备用。
(3)内馅:黑芝麻蓉分成20份,葡萄干洗净沥干水,每份芝麻蓉包入3、4粒葡萄干滚圆备用。
(4)油皮包入油酥,擀卷两次,再擀成圆皮,包入内馅,收口朝下,略压成扁圆状,刷蛋液,再沾上一层白芝麻,放入烤盘。
(5)烤箱预热,190度中层烤约25-30分钟即可。
4.紫薯面点的制作
紫薯又叫黑薯,英文名称 Purple Potato,紫薯因其表皮和肉质均呈迷人的紫色而更加的惹人喜爱。紫薯不但颜色可爱,而且还有多种人体必需的物质,其富含蛋白质、淀粉、果胶、纤维素、氨基酸维生素及多种矿物质,同时还富含硒元素和花青素。
在馅心上的应用
将紫薯清洗、去皮、切片、蒸煮后制成紫薯泥,紫薯泥与牛奶、椰浆、大枣、果仁、砂糖等常用面点馅心原料搭配,可以制作出十几种甚至几十种风味独特、营养丰富的馅心。
在西式面点上的应用
蒸煮熟制的紫薯泥不仅仅可以制成馅心,还可以直接放入调制的面团或面糊中。制出别具一格的可口美食。
例一:紫薯蛋糕:
原料:鸡蛋500克,砂糖400克,蛋糕油40克,紫薯泥500克,低粉500克,小苏打10克,泡打粉10克,香粉10克,色拉油300克,水 300克。做法:(1)预热烤箱至 170℃(或上火175℃、下火160℃),在烤盘上铺上垫纸,再放好蛋糕圈备用。(2)将鸡蛋液放入搅拌桶,加砂糖快速搅拌至发白。(3)在搅拌桶依次加入蛋糕油、低筋粉、泡打粉、苏打粉和紫薯泥,打发至中性发泡。(4)依次慢速加入水、色拉油拌匀,装入烤盘进烤箱烘烤。(5)约烤40分钟,至蛋糕完全熟透取出,冷却后即可使用。
例二:紫薯糕
原料:紫薯500克,温水1100克,糖200克,鱼胶粉18克做法:(1)将紫薯蒸熟后去皮,用搅拌机加600克温水搅拌成糊状。(2)鱼胶粉用冰水泡开,沥干后和温水一起放锅内 , 小火烧开使之熔化。(3)把紫薯倒入锅内,再加入糖煮沸后再煮5分钟 , 需一直搅拌。(4)倒入干净的容器内,冷藏至凝固,取出切块即可。
在中式面点上的应用
(1)紫薯面条、饺子。
面条作为中国面食家族的重要一员,深受人们喜爱。紫薯全粉与一定量的面粉混合(通常 1:3),运用常用的面条加工工艺,可以制作出美味的紫薯面条。一碗热气腾腾的紫薯面条,再配以当地各具特色的酱卤,保证让你胃口大开、回味无穷。当热喜欢吃饺子的朋友也可以用紫薯面团来包饺子,无论是荤是素您做的紫薯面饺子不仅馅心鲜美,饺子里还会有紫薯带给您的香甜。
(2)紫薯馒头、花卷。
面粉中加入紫薯面,通过发酵制成的馒头、花卷更容易消化吸收,紫薯的保健功能会更好的发挥作用。尤其适用于老年人、特殊人群食用。
【参考文献】
[1]余建忠.烘培业从同质化走向细分化 [J].农产品加工(综合刊),2010,(08):14-15.
[2]顾尧臣.主食面制品加工技术的探讨和建议[J].粮食与食品工业,2003,(03):8-127.
点击下页还有更多>>>面点食品加工技术论文