首页

> 期刊论文知识库

首页 期刊论文知识库 问题

数学与生活的论文

发布时间:

数学与生活的论文

一、操作中学习———主动体验

操作中学习,或称做中学,是着重寻找解决问题过程的学习方式,是一种探索和研究的活动,是一名学生进行数学思考的历程.美国数学家哈尔莫斯指出:“学习数学的唯一方法是做数学.”《数学课程标准》指出:“学会与人合作,并能与他人交流思维的过程与结果.”做中学不仅是个体的学习过程,也是进行小组合作学习的有效途径.数学活动不仅是传授知识的过程,也是创造机会让学生自主探究的过程.学生只有在自己亲自动手探索的过程中,才能对物质材料有充分的感知和兴趣,才能对材料有所发现和疑问.数学探究的意义正在于学生动手动脑主动操作、体验与思考的过程。

例如苏教版一年级“认钟表”一课,我就把认钟面改为做钟面,小组合作来完成.我准备了学具,每个小组都有一个硬纸片,印好时针与分针,一个圆周,里面有12个均分的点.我让4人小组合作,组长安排,做个钟面.合作开始了,只见有人剪时针,有人剪分针,有人剪外形,有人写数字,组装成了一个钟面.学生在制作钟面的过程中,了解了钟面有时针、分针和秒针,明白了钟面上有12个数字,均匀地分割了整个钟面.学会了你做一部分,我做一部分,再整合成一个钟面的合作过程.在这个过程中既有知识的渗透,也有合作中人际关系的处理,学会在小组中发表见解和倾听小组同学的意见.儿童心理学的研究表明,操作不是单纯的身体动作,它应该是与大脑的思维活动紧密联系着的,能让他们亲手接触、亲自动手的事情记忆会更深刻.操作学习中和同伴的交流也会更加自由,而同伴或老师的不同看法和解决问题的不同方式能促进学生不断思考,完善自己的想法或建构新策略

.因此我们应给学生更多自己动手操作的机会来经历数学,例如可以通过制作长方体、正方体等感知几何图形,通过剪纸学习对称,通过制作年历感知和学习年、月、日的相关概念等.操作中学习,能帮助学生更深刻主动地经历数学,提高学习的有效性.

二、生活中学习———经验迁移

陶行知说过:“生活即教育.”生活本身就是一个巨大的数学课堂,小学数学教育理应回归到儿童的生活中去.荷兰教育家弗赖登塔尔说:“数学来源于生活,也必须植根于生活.”紧密联系学生的生活实际,让数学从生活中来,到生活中去,是数学课程改革的重要理念之一.我们不妨结合课堂教学内容捕捉生活现象,采撷生活实例,把学习与儿童自己的生活充分地融合起来,让学生感受到数学处处与生活同在.同时新课程标准强调数学与现实生活的联系,而且要求“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发”,因此我们必须关注学生的生活,他们在学校之内、之外都做些什么事情,对什么比较感兴趣.

1.在生活中发现数学

让学生根据自己现有的知识水平在生活中经历“数学发现”,会使抽象的数学变得通俗易懂,让课本上的“数学”和孩子们变得更加贴近,使学生们更加主动地去学习数学,会发现一些新的数学内容.作为教学主导者的教师也要善于发现生活中的数学素材.如教室排列的座位、体育课上的队列、本教室在学校各个教室中的相对位置等;生活中到处可见的几何形体,门、柱子、柜子、各种球等;人们生活中的吃穿住行包含着许许多多的数学问题.假如能把这些生活中的数学问题搬进课堂,学生们就会感到非常真实、有趣,同时学生们也会充分地认识到数学并非枯燥无味,会感到数学就在他们身边.生活中的数学发现不仅是一种数学学习的“预习”或者“复习”,它更是数学知识建构的桥梁.如寻找生活中的几何图形,联系生活中实际事物的过程使几何表象更加清楚,有利于建立对应的几何概念.

2.在生活中解决问题

让学生运用学到的数学知识解决生活中的实际问题,是数学教学的目的.华罗庚说过:“宇宙之大,粒子之微;火箭之速,化工之巧;地球之变,生物之谜;日用之繁,无处不用数学.”数学源于生活,课本上的数学知识都可以在生活中找到它的蓝本.在生活中解决数学问题,使得单一的数学练习更富有现实意义,也更加有综合性,可以说是更多地还原了数学的本质.如让学生记录自己和家人的一次超市购物过程:买了哪些东西,单价多少,每种物品花了多少钱,总共花了多少,什么东西最贵/便宜,吃的物品有几种,用的有几种,等等.这样一个过程涵盖了多个数学知识点,不仅是加减乘除的练习,也是统计等概念的渗透.另外,我们也可以让学生计算家里一年的`水电费,了解水电费的计费方式;记录并计算出行、旅游的交通费用;学习比例时,将自己家房屋结构平面图画出来;学习平均数,可以统计班级各科考试的平均分等.如下面两道题就是很好地利用生活资源来进行数学学习的案例:

(1)在下面的括号里选择合适的单位、数或词语填在横线上.你的身高是138(米、分米、厘米),体重是36(吨、千克、克),你每天步行去上学从家到学校要走20(时、秒、分),你每分钟走50(千米、分米、米),你的家到学校有(100、1000)米,来回一趟要走2(千米、分米、米).如果学校8:45上课,你8:30离家去上学,你(一定、可能、不可能)会迟到,因为.

(2)请你计算一下你家客厅的面积.如果客厅用边长为5分米的正方形地砖铺设需要多少块?

3.在生活中养成数学眼光

在新课程中体现了这样一种理念:学生不是为了学习而学习.因此我们在数学教学中,不能仅仅关注学生对于数学概念的掌握,或者是学生解决习题的能力,我们同时也应该有意识地培养学生尝试用数学思维方式去观察生活.在学习数学的过程中,如果不能及时地提出问题,不会恰当地提出问题,数学就会枯竭.使学生从小就学会用数学的眼光来看待周围的事物,是把数学学习更多的内化为学生的一种主动意识,这是我们不能遗忘的一项数学教学任务.

数学本身是一门抽象的科学,小学生由于自己的生活经验的缺乏会觉得数学离自己很遥远,很陌生.当我们把数学学习的方式变成有趣的情境、可以动手操作的实物,或他们所熟悉的生活情节和事物,让他们在经历数学的过程中感受到学习数学的乐趣和成就感,体验到数学就在自己每天的生活中之后,他们对数学的学习就能以更轻松和喜欢的态度参与、建构、获得提升.

切西瓜炎热的夏天,西瓜便成了一种解渴的水果.这天小明的妈妈买了一个大西瓜回家.她准备考一考小明.她问小明:“怎么样切西瓜切出9片只用4刀?”这个问题难倒了小明,他拿出一个张纸一个铅笔,画呀画,怎么也不知道怎么切.他实在想不出方法,便去问妈妈答案是什么?妈妈笑了笑说:“用井字切法呀!”说完用刀切西瓜给小明做了一个示范。 小明明白了,拿着一片大西瓜津津有味的吃了起来。这时妈妈又问:“用4刀切8片呢?”小明动了动脑筋,自豪地说用米字切法.妈妈夸他是个好学生。 只用动动脑筋,世界上没有什么事可以难住你的。

门科学的数学化数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.

生活中的数学

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。

我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。

从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。

我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处

在日常生活中,做每件事情都离不开数学,可见数学与我们的关系是多么的密切呀。

比如,妈妈上街买水果,买蔬菜,还有去文印社复稿件……等等,都要用到数学。生活中还有很多很多有趣的数学,等我们去发现,去探索。

暑假里我跟爸妈到表姐家玩,路上口渴了,爸爸只好到附近杂货店买矿泉水喝。杂货店有个规定:买3瓶矿泉水可以换一瓶矿泉水,一瓶矿泉水卖价1元钱,爸爸见了掏出10元钱给杂货店老板,说:“老板买10瓶水”,水拿到了,我如饥似渴的喝了起来,一会儿就喝掉了二瓶。还没等我回过神,已经有好几个空瓶了。爸爸问我:“灵灵,我们用10元钱能换多少瓶矿泉水?”我想:10瓶水喝完,拿9个空瓶子换了3瓶矿泉水,3个空瓶又换了1瓶矿泉水……还剩下两个空瓶子。我高兴地对爸爸说:“爸爸,我算出来了,是14瓶矿泉水,还余下2个空瓶子。”爸爸笑了,说:“你再想一想!”我若有所思:“我们可以再向杂货店老板借一个空瓶子,喝完后再把空瓶还给老板,噢!我们可以喝15瓶矿泉水。”爸爸点头称赞。

数学就是要灵活运用,理论联系实际,只有掌握了数学知识,才能更好的让数学服务于我们。所以我们要学好数学,让数学成为我们学习生活中的好帮手

生活中的数学

今天我在电视上看见有好多人捐钱给那些没有学上的人,就想起:我的国家大约有13亿的人民,如果每个人每天节省1角钱,这样的话,我国全国节约了1300万元了,每个人从小学上到大学要用1万多元,照这样计算可以让1085为没有上学的小朋友,把这些钱给那些小朋友多么好啊!如果我有这么多钱一定平均分给小朋友们!

我突然想起来了人多力量大也有坏处啊,恩不好不好!因为如果每个人每天多要浪费13亿水了,多不话来啊!

我做了一个小小的小实验:在水龙头下面滴了1000滴水重200克,我又动笔算了一下子:1300000000除以1000乘200等于260000000克再用260000000等于260吨水就是足足可以用上个2,3年了呀!我去问爸爸妈妈:“1吨水可以发电100度电?”我有想了想,算了算想出来了,哪就是说260吨水就可以发26000度电了。

哇哇!我一下子惊呆了五分钟,260吨水竟然可以发会这么多的作用啊!所以我们大家从现在开始起要节约水利用水,不要浪费一滴水了,要养成节约这个好习惯不能浪费了!

我相信生活中处处有数学,处处用数学,只要做数学学习的有心人,即使在游戏中也能体会到数学思维的快乐!!!

美丽的数学

今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。

首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(毫升),前后两次水位刻度之差就是这一部分筷子的体积,即立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!

接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气。

自己改动一下吧

数学在我们的生活中可以说是无处不在,到超市买东西付钱时,测量某东西的面积时,制作平行四边形、直角形、三角形等各种形状的物品时……都是数学知识在生活中的直接运用。前几天我们家就发生了一件运用数学知识解决生活问题的事情。

那天放学回家,我往小椅子上一坐,只听“嘎吱”一声,吓得我赶忙跳了起来。哈,原来是椅子的一条腿松了。“我们来修椅子怎么样”,我一时心血来潮地对爸爸妈妈说。爸爸妈妈挺支持地说“行啊”。于是全家人便开始忙碌起来,找工具的找工具,扶椅子的扶椅子,钉钉子的钉钉子。一阵“噼噼啪啪”声后,几根大钉子钉进了那条松了的椅子腿上,“嘿,总算钉好了”,我拍拍手,满意地可往上一坐。“嘎吱,嘎吱”,咦,怎么还是不对劲啊,怎么办呢?突然,我想起数学老师讲过的一句话:三角形能对物体起到稳定作用。对啊,我刚才怎么没想到呢?我马上找来了一块小木头,并根据小椅子的四条腿与椅面形成的角度,将其切削成了4块同样大小的三角形小木头,后把三角形木头分别补在椅腿与椅面的空档处,用钉子钉紧。你别说,这一下椅子坐上去可是稳稳当当的了。

嘿,数字可真奇妙。看来以后我一定要更加努力地学好数学,并将数学运用到生活的一点一滴当中,去分析、解决生活中遇到的实际问题,更好地适应社会的发展和需要。让生活变得更加有意义。

游戏中的数学

一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了。

大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解。

回到家,我在小篮子里挑了十个石子,准备新手操作一下。我把爸爸叫来,让爸爸和我一起做这个游戏。我找来一支笔和一本本子,将我做的每一步记录下来。规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了。

第一场我失败了。原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……

我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿。现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了。

为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!!!

原来,生活中数学无处不在,它们正等着你去发现呢!

生活中我们都离不开数学,比如买菜的几斤几两、日历上的几年几月几日,还有一些数学的等式都与数学有关。今天,我要向大家介绍几题数学题吧!

早上起床,当我们睁开朦朦胧胧的双眼,第一眼就向闹钟看去,闹钟上的数字,就是生活中的数学。因为我们一天的时间是时针转24圈、分针转1440圈、秒针转86400圈得来的。那24*30=一个月,一个月*12=一年,这就是时间的数学。

平时,我们都要去的菜市场里也离不开数学。星期天,妈妈带我去买菜,在一个卖白菜的摊子前,妈妈和卖白菜的人讨价还价起来,最后,以一斤八角钱的价格买三斤,送一斤的口头协议买了三斤大白菜。妈妈问我:“我这样买菜,每斤便宜了多少钱?”我想了想,对妈妈说:“便宜两角。”若得卖菜阿姨直夸我。回到家里,妈妈问我:“你是怎么算的?”我笑了笑说:“我先算3斤大白菜*0。8元=2元4角,再算买3斤送1斤=4斤,然后再算2元4角÷4斤=6角,那8角-6角不就等于2角了吗!”这就是生活中的单价*数量=总价。

我平时都要跟着妈妈乘公共汽车去新华书店,公交车一分钟行驶一千米,大约二十分钟就到了。妈妈问我:“我们家离新华书店距离大约有多少千米呀?”我一边用手指比划着一边对妈妈说:“大约二十千米。”这就是生活中的速度*时间=路程。

“勤动脑+勤动手=成功”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。我总要先读懂题目,掌握其中的关系,列出算式,一步步地解答。有时,还要通过画图的方式,来理解题目。

其实,生活中还有许多奇妙的数学,在等着我们去寻找、去发现。

生活在幸福中 我生活在一个幸福的家庭,我有让我感到幸福的父母。

勤劳的爸爸妈妈用智慧的双手构建着我们这个幸福的家。他们勤奋地工作着,他们如愿以偿,家庭虽然不算富裕,但一家人每天快乐的工作、快乐地学习。

小时候,我不止一次的问过大人:什么叫幸福?他们有的说是有钱,有的说是有权,而爸妈说幸福就是一家人在一起快乐地生活。 我想,我一定是幸福的。

每天放学回到温馨的家,一股饭菜的浓香味扑鼻而来。有时作业写到一半,就能听到妈妈喊“开饭”的声音,这时候我是那么的快乐。

妈妈的烹饪水平可是一流,同学朋友每回在品尝妈妈的手艺时,都说我“真幸福”,那时,我自豪极了。饭桌上,我大口大口地吃着香甜可口的饭菜,一个劲地夸赞妈妈的手艺,妈妈总是欣慰地笑着。

我想,她一定是幸福的。 我很憎恨恶劣的天气,不仅因为它给人们生活带来了很多不便和灾害,更因为天气恶劣时爸爸的工作是那么艰辛。

那个天寒地冻的深夜,我被开门声惊醒,“今天我们家用上了电”,爸爸正兴奋地向妈妈讲述他们为最后一户通电的情况。听着他们轻轻的交谈声,我一咕噜爬出温暖的被窝,扑到我几天几夜都未曾见过的爸爸的怀里。

爸爸宽实的臂弯环绕着妈妈和我,舒展的笑容里,洋溢着战胜冰灾的欣喜和自豪。我想,他一定是幸福的。

有时,一家人在谈天,我最爱听他们小时候的故事。每次看到他们为儿时的丑事而脸红时,我都不禁捧腹大笑,后果是被罚去清理大笑时喷出的“东东”。

有时,我跟他们谈我的奇思妙想,有历史的、有地理的、有生物的……我发表出一个“妙论”时,爸爸毫不留情地泼我冷水,说“不现实”,而我却从不肯服输,连说“凡事都有可能”,引来一阵阵爸爸并无恶意的笑声……此时的我,也是幸福的。 一家人在一起难免会发生磕磕碰碰,但过后总是幸福快乐的。

一个孩子生活在恐惧中,他学会的是忧虑;一个孩子生活在讽刺中,他学会的是自卑;一个孩子生活在鼓励中,他学会的是自信;我生活在幸福中,我想,我学会的将是用心真诚地对待万事万物。 生活在诚信之中在斑斓的社会中,童年早已离我而去,早已找不到一点童年时代的影子,这没什么值得感伤,因为我已步入了另一个世界。

这其中有一件是令我难忘,因为它教会了我“诚信”二字。 我离开了童年,也离开了生活了十年的平房,买了一套楼房开起了超市,生意虽不算好,可总算过得去。

刚搬到这的时候,正是雪花纷飞的冬天,而附近的一家麻将馆,却是夜夜灯火通明。那的老板经常光顾,后来要了我家的电话号码,说他们忙时就送货。

有一天晚上,已是晚上八点多了,电话突然响了,打电话的正是那位老板,要了一点货,让妈妈送过去,此时外面正下着大雪,超市早就关门了,但妈妈还是答应送去。 简单的收拾一下,妈妈就拿着货出门了,留我一人在家。

除了我的台灯发出的那昏暗的灯光外,黑漆漆一片。那一刻,感到时间过得很慢。

几分钟后,妈妈回来了,她满脸通红,像极了圣诞老人。不过妈妈并没有脱掉外衣,而是从口袋中拿出了一盒烟,从货架上换了一个,我还没来得及问。

她又出去了,我走到窗边,看着外面雪花纷飞,想想都让我打寒颤 妈妈终于回来了,似乎比上一次用的时间还多。妈妈回来之后,我立刻问她:“妈,你刚刚干嘛去了?”妈妈回答说:“有人换一下烟。”

但我见妈妈仍然没有休息的意思,就问她:“你还要去啊?”妈妈没有回答我,我又问了一遍,妈妈才回答:“他们还需要零钱,我得送去。”我说:“这不是在折腾人嘛,不送不就行了吗!”妈妈说:“那哪能行?再说我们已经答应他们了。

怎么能食言?况且人家还等着呢!这是诚信问题!”说完妈妈就走了。 时间一分一秒过去了,妈妈终于回来了,我见她一句话都没说,默默地坐在床上…… “诚实是力量的一种象征,它显示着一个人的高度自重和内心的安全感与尊严感。”

生活在岁月中 岁月是一首变幻的歌,岁月是一本沧桑的书,岁月是一条曲折的河,岁月是一段坎坷的路。 岁月匆匆,燕子去了,又再来的时候;杨柳枯了,又在开的时候。

而岁月却逃去如飞,我们拥有的时间只是流星划过暗淡长空的短暂光芒。面对它,我却茫茫然,我生活在岁月之中,却丝毫没有对它产生半点怜惜。

岁月多变,从奴隶到民主,从野性到文明,从争战到安定,从落后到先进,这一切的变化都浸泡在岁月中,历史向我们昭示着岁月,我生活在岁月中,为变幻的奇迹而惊叹。 岁月苍苍,多么长久的时间在它看来也只是流星一瞬,古代的劳动人民为我们留下了沧桑而辉煌的成就,化作一行字,铭刻在岁月的脚步下。

我生活在岁月之中,岁月重现了历史。 岁月恍惚,回望我走过的路,扑朔迷离,远处的则如同海市蜃楼,这也许是我的犹豫,这也许是我的抉择。

我生活在岁月之中,岁月如麻,而我坚守我自己。 岁月最易让人迷失,如一片森林,茂盛却迷离,似一片沙漠,平坦却茫茫。

坚定自己,明确自己,信赖自己,以明确人生航向,化一条船,与风浪搏斗,不示弱,向目标远航。生活在岁月中的又何止是我一人呢? 云儿轻轻散去,风儿渐渐停息,岁月在留下些鱼尾纹。

原发布者:中国学术期刊网

生活中的数学论文:生活中的数学学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋须要画图纸,分苹果、烙饼子,类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我们要到生活中学数学,在生活中用数学,数学与生活密不可分。新课程《标准》提倡人人学有价值的数学,事实上是与学生的现实生活和以往的知识体验有密切关系的数学;是学生用来解决生活中一些实际问题的数学,也就是生活中数学。如何做到人人学有价值的数学,也就是学习生活中的数学,我谈谈我的一点体会。一、从学生自己熟悉的生活背景中发现数学,掌握数学和运用数学如在教学整百整千数加法时。我课前把学生最熟悉的“中百仓储”购物的情景录下来播放:,当学生看到这一情景时,个个都兴奋不已,因为“中百仓储”是大家再熟悉不过的购物场所,学生感到特别亲切。接着又把学生引入到中百仓储的家电区,观察这些家电的价格,让学生自由提出用加法计算的数学问题。学生非常投入,发言踊跃极了。二、让学生在操作中学习有价值的数学由于小学生的生活经验和事物相互联系的知识比较缺乏。让学生在操作中亲身经历和感受生活中的数学,在他们的心中烙下了深刻的印象,也学得深,记得牢。如在教学“粉刷围墙中的问题”时,我带领学生亲自动手测量围墙的长和高,在测量中,不仅巩固了有关

生活的问题

五年级三班 郇庆新

一天,我正在看一本有关数学题的书。

突然,一个问题难住了我,问题是这样的:楼下有三个开关,楼上有一盏灯,但在三个开关中只有一个是可以开楼上的灯的,而你只有一次上楼的机会,且每次只能开一个开关,你怎样才能知道是哪个开关控制着楼上的灯?问题那就难在只有一次上楼的机会,按普通解题思维,开一个,上楼看亮不亮,下楼,还剩两个开关,选哪个呢?按奥数的方法又该怎么办呢?

思前想后,没有任何方法。被打败了。看看书后的答案,啊哦!这样啊!太简单了!解法就是这样:先将第一个开关开一分钟,关后开另一个开关,上楼查看,如果亮,毫无疑问,第二个开关。不亮就摸摸灯是否热,因为第一个开关如果连接着灯,开一分钟必然热,热,第一个开关。不热,排除了第一第二个,就是第三个!数学题迎刃而解了!这道题告诉了我,数学题,不仅是靠定律去解,生活其实是最好的帮手!

我也写这个,觉得还行,复制过来给你看看,希望对你有用

数学与生活论文

在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。下面是关于生活中的数学论文的内容,欢迎阅读!

最近,我们学习了圆柱、圆锥体积和表面积的计算方式。我认真学习了课内知识,并做了一些课外练习巩固所学知识。综合学习和练习情况,我对相关知识进行了总结和归纳:此方面的考好主要有一线六个方面:

一是卷。就是把一个长方形形状的纸卷成圆柱的形状,然后算圆柱的最大体积。例如:一个长12,56米、宽9。42米的长方形,卷成一个圆柱,重叠部分忽略不计,求圆柱的最大体积。这种题目有两种可能,以长为圆形或以宽为圆形。因此,要把这两种可能都算出来,然后比较。这种题目要注意的是:必须看清楚是用长方形的长和宽分别卷成圆形。

二是转。就是把一个长方形的纸,延一条边旋转3600,求所得形状的体积或面积。举个例子:一个长方形长8厘米,宽5厘米,以长为轴旋转一周,算得到的形状的体积。一个长方形的纸,旋转一周得到的形状是圆柱体,然后利用圆柱体体积的计算公式,就能得到答案。这种题目要注意是用什么形状的纸旋转的。

三是削。就是一种形状的物体,按一定规则消除一些部分,计算剩下形状的体积或表面积,这种题目要注意的是:要把所有的可能全部计算出来,不能偷懒只计算一种。

四是铸。就是把一种形状的物体融化成液体,然后重新浇铸成另一个形状的物体。这种题目要抓住形状虽然变化,但体积不会这一关键点来考虑。

五是增。就是在一种形状上再继续增加一种形状。这种题目路要注意增加的形状是什么样的。

六是切。就是吧把一种形状切成几段,然后告诉你增加了什么,增加了多少,让你计算原理的,这种题目要看清楚是怎么切的,切了以后有什么变化,面积如何增加,等等。

以上是我对近期学习内容的总结和思考,大家说数学是不是很神秘而又充满趣味呢?

数学源于生活,又广泛应用于生活。在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。数学知识的生活化,就是通过将数学教材中枯糙、脱离学生实际的数学知识还原,取之于学生生活实践并具有一定真实意义的数学问题,以此来沟通“数学与现实生活”的联系,激发学生学习数学的兴趣。

一、让学生在生活中感悟数学。

“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”因此,数学教学,只有从学生的生活经验出发,让学生在生活中学数学、用数学,数学教学才能焕发生命活力。

1、在小学数学教学中,从生活实际出发,把教材内容与“数学现实”有机结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强数学的应用意识,唤起学生的学习兴趣。例如:如教学循环小数概念时,我先给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在说从前山上有座庙……”,通过实例让学生初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环引出“循环”的概念,使学生产生浓厚的兴趣。

2、小学数学中的许多概念和法则都是在现实生活中抽象出来的,因此概念法则的`教学也就必须在生活实际中找到相应的实例,并引导学生从直观入手从而抽象出来,逐步加深理解和运用。例如:在教学应用题常见的数量关系时,学生对于“工作效率×工作时间=工作总量”中的“工作效率”不易理解。为此,我在教学前,在班里举行了一次口算比赛和跳绳比赛。教学新课时,联系两次比赛活动,学生就非常容易理解“工作效率”这一抽象而又陌生的概念:即指单位时间内所作的工作量。又如在学习“接近整百整十数加减法的简便算法”中,有这样一题:128-96=128-100+4,学生对减100时要加上4 难以理解。我便设计了一个“买东西找零钱”的生活实际:我要过生日了,妈妈带了128元钱去商店买一个96元的布娃娃准备送给我。妈妈付给营业员一张百元钞票(应把128元减去100元),营业员找回4元,(应加上4元)。所以,多减去的4应该加上。

这样的“生活教学”例子,通过生活经验验证了抽象的运算,而具体的经验更提炼上升为理论(简便运算的方法),学生容易理解且不易忘记。

让数学回到生活,使学生感到数学就在身边,学习数学是有用的、有必要的,从而激发学好数学的愿望。

二、让数学知识回归学生生活。

学习是为了应用。因此,教师在教学中要经常培养学生联系生活实际、运用数学知识,解决问题的意识和能力。知识也只有运用才能被学生真正掌握,也只有在实践运用中才能体现其价值。

1、创设情境,培养学生解决实际问题的能力

学生掌握了某项数学知识后,可以有意识地创设一些把所学知识运用到生活实际中的情境。例如,在学习了利息后,让学生去银行了解利息、利息税等有关知识,让学生当家长的小参谋:家中多余的钱怎样存最合算?并帮助家长计算利息和利息税。

2、联系实际,增强学生的数学意识

数学知识在日常生活中有着广泛的应用,生活中处处有数学。例:如学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性。学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,其它形状的行不行?为什么?

3、加强操作,培养学生把所学知识运用于实际的能力。

知识来源于实践,又指导于实践。我们经常看到由于学生的感性知识缺乏,出现不符合客观生活实际的数量意识。这就要求我们的课堂教学更要注重联系实际,强化学生的动手操作活动。在学习了米、厘米以及如何进行测量之后,让学生运用掌握的数学知识解决生活中的实际问题。如测量身高,测量手臂伸开的长度,测量一步的长度,测量教室门的宽度以及测量窗户的宽度,通过上述活动,加深学生对厘米和米的理解,巩固用刻度尺量物体长度的方法,同时,学生获得了日常生活中一些常识性数据。在这个活动中提高了学生的学习兴趣和实际测量的能力,让学生在生活中,在生活中用。

学习了平均数问题后,让学生以小组为单位,自选专题,展开活动,如:测量计算班级同学的平均身高、平均体重、平均年龄,全校各班的平均人数、教师平均年龄,附近菜场某一蔬菜的平均价格等。学生在互相协作活动中,自然而然地锻炼了他们解决实际问题的能力。

运用数学知识解决生活实际问题,能实现数学与生活的紧密结合,帮助学生学会用数学的眼光观察生活,从而不断体验数学的价值与魅力。

大千世界,无奇不有,在我们的日常生活里也有许多有趣的数学问题哦。

一天,我的家人带着我一起去超市买东西,我一路上蹦蹦跳跳的,十分兴奋。

进入后,逛了一段时间,我们就拿了四袋洗衣液。在走到文具区时,奶奶问我需不需要些什么文具。我走到货架前看了看……

到了收银台,我们一共买了如下商品:四袋洗衣液,一袋18。5元;十包卫生纸,一包4。5元;一支自动铅笔,一支2。5元;三支钢笔,一支5。5元。

突然,在结账后,我的爷爷问我:“你最近不是学了关于小数的知识么?能不能先用笔算出今天买的每种商品的总价,再算出一共花了多少元?”

“能,怎么不能?一定不会错的!”我胸有成竹的回答他。

说干就干。我拿了一张超市的广告纸,再拿出随身携带的笔,立即在空白处算了起来。

我的思路是这样的:洗衣液一共四袋,每袋18。5元,所以直接用乘法就行了;卫生纸一共十包,每包4。5元,只需要把这个小数的小数点向右移动一位来算便行了;自动铅笔只有一支,在最后时加上便可以了;还有三支钢笔,也用乘法来算。

于是,我算了起来。我先用4×18。5=74元(老师说过,整数乘一位小数等于一位小数,但如果两数末尾相乘的得数末尾是零,那么结果就是整数)算出洗衣液的总价;接着,用10×4。5=45元(一个小数乘10,把这个小数的小数点向右移动一位就是这道算式的结果)算出卫生纸的总价;然后,又用3×5。5=16。5元算出钢笔的总价。今天买的每种商品的总价都算出来了,该算一共花的钱了。一道综合算式74+45+16。5+2。5=138(元)(在讲小数加法时,老师特别强调过,列竖式时,相同数位要对齐)便算出了所有花的钱。

当我把纸递给爷爷并讲了我的思路后,他直夸我聪明,我也乐开了花。

我真诚地对大家说:“你们也好好学数学吧,难道不会受益终生么?”我想:学数学,真有用啊,我以后肯定会好好学数学的!

数学来源于生活,生活中的数学知识比比皆是,我们平时走路、乘车、购物……等,其中都包含着数学问题和知识,只要注意观察就能发现,连航空、航海、航天都与数学有着密切的关系。

数学可以锻炼我们的思维体操,我们不仅能从数学中学到知识,还能从数学中找到一些乐趣。

在我过去的记忆中,发生过有关数学的趣事。有一天在奶奶家,当时有爷爷、奶奶、姐姐和我共四个人在看电视,奶奶到厨房拿来洗好的三个苹果说:“只有这三个,你们一人一个吧。”爷爷说:“那怎么行,叫他俩分,每人一份。”这下我傻眼啦!我说:“少一个怎么分?姐姐说:”我来分。“她拿起刀,把每一个苹果十字切开,切成了12块,三块一份,正好四份,当时我边吃边想,怎么也没想到分苹果还有学问,这件事给我留下深刻的印象。

我学奥数做题时有次遇到了难点,题目是:徐师傅锯木头锯了五次,每段一百二十厘米,问原来这根木头长多少厘米?看题后我想锯五次是五段吗?这样理解对不对?突然想到老师教的画圈法,于是用尺子先画一条直线,用笔在直线上画五个段点,表示锯了五次,一看是六段,用120乘6结果是720厘米,这是十我的心情很轻松自信,对老师教的线段图解法印象深刻,非常高兴。

“免费午餐”的故事,爷爷听人讲,过去有个饭店开业这天,为了吸引顾客,在门口的招牌上写有“免费午餐”四个大字引来很多人围观,前面的人还看见四个大字下面有几行小字,上写着“答题正确免费午餐”,题目是:“饭店来了一群人,一人一碗饭,两人一碗菜,三人一碗汤,一共用了55只碗,饭店来了多少人?”爷爷让我算算饭店来了多少人,我想了很久才想到人数必须被2、3整除,用能被2、3同时整除的数6试算,6人6+3+2=11不行,用12人,24+12+8=22不行,用18人,18+9+6=33也不行,用24人,24+12+8=44不对,用30,30+15+10=55对了。我终于算出来了。饭店来了30人。爷爷高兴的问我:做题时你是怎么想的?我说:求的是人数,那有一半的人呀!所以想到被2、3整除。爷爷说:这是解题的关键被你找到了,加上多次试验做出来的,你可别忘啦!我说分苹果的事我还记住那!

数学文化 人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。 早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展了几千年,表现出了强大的生命力。数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。(2)数学对人的文化素养影响面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世界。有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。二,数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。三,数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材四,数学韵味——数学的美说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……数学美可以分为形式美和内在美。数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。

数学源于生活,生活中又充满着数学。学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际。在课堂教学中,把数学和学生的生活实际衔接起来,让数学贴近生活,使学生感到生活中处处有数学,学起来自然、亲切、真实。实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。 如何把握数学与生活的衔接,提高教学效果,我在教学中注意从以下几方面入手。一、 数学语言生活化,理解数学前苏联数学教育家斯托利亚尔曾说过:数学教学也就是数学语言的教学。在课堂教学的师生交往中,主要是通过言语交流。同一堂课,不同的教师教出来的学生接受程度不一样,主要还是取决于教师的语言素质如何,尤其是在我们数学课堂教学中,要将抽象化的数学使学生形象地接受、理解。一个没有高素质语言艺术的教师是不能胜任的。看似枯燥无味的数学,实则里面蕴藏着生动有趣的东西。鉴于此,教师的数学语言生活化是学生引导理解数学、学习数学的重要手段。教师要结合儿童的认知特点、兴趣爱好、心理特征等个性心理倾向,在不影响知识的前提下,对数学语言进行加工、装饰,使其通俗易懂、富有情趣。如认识“ <”、“>”,教师可引导学生学习顺口溜:大于号、小于号,两个兄弟一起到,尖角在前是小于,开口在前是大于,两个数字中间站,谁大对谁开口笑。区别这两个符号对学生来说有一定的难度,这个富有童趣的顺口溜可以帮助学生有效的区分。又如把教学长度单位改成“长长短短”;把教学元、角、分改成“小小售货员”,把比大小说成“排排队”等等,学生对这些生活味十足的课题知识感到非常好奇,感到学习数学很有趣。二、数学问题生活化,感受数学新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。因此,通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。比如:生活中每时每刻都要用到估算,要求学生估算一下每天上学到校需多少时间,以免迟到;或估算一下外出旅游要带多少钱,才够回来等等。在教学中引导学生寻找生活中的数学问题,既可积累数学知识,让学生通过如此切身的问题感受到学数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。三、数学情境生活化,体验数学教育心理学的研究表明:学生在没有精神压力,没有心理负担,心情舒畅,情绪饱满的情境下,大脑皮层容易形成兴奋中心,思维最活跃,实践能力最强。在日常的教学中,应该提供这样的思维环境,创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就像在日常生活中遇到了数学问题一样,需要大家一起来实践解决,通过自己的动手操作,集体的共同研究,最终得出学习结论。如在空间与图形的教学中,要充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组到操场上选定一个建筑物,让学生站在不同角度看这个建筑物,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生在方格纸画出示意图:假设图书馆在学校的正东方向200米处,小红家在学校正北方向500米处,医院在学校的正南方向1000米处,车站在学校的正西方向800米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师再及时组织引导学生进行交流,逐步发展学生的空间观念。又如教学“元角分的认识”,组织学生开展一次“我是一位出色的售货员”活动,让他们在逼真的买卖中掌握、消化和应用知识。再如,相遇问题应用题教学,教师采用学生登台表演,情景再现的方法,把抽象的相关的各种数学术语让学生迅速地理解,既活跃了课堂气氛,又高效率地完成了教学任务。四、数学作业生活化,运用数学数学来源于生活而最终服务于生活。尤其是小学数学知识 ,在生活中都能找到其原型。把所学的知识应用到生活中,是学习数学的最终目的。由于课堂时间短暂,所以作业成了课堂教学的有益延伸,成了创新的广阔天地。学生适当运用课堂内容的自然延伸,能从广阔的大千世界中学习知识。教师在教学中应努力激发学生运用知识解决问题的欲望,引导学生自觉地应用知识解决生活中相关的问题。如学习了长度单位,可以测自己和父母的身高,从家到学校的路程;认识了人民币可以用自己零用钱买所需要的东西;学习了统计知识和百分比应用题,可以去统计本校学生人数以及男女生比例;会计算图形面积可以算一算自己家里的面积,所用瓷砖的块数等。再如布置学生“观察你家中的物品,找出几道乘法算式”;“你家一天的生活费用是多少,记录下来,制成表格,再进行计算”,这样把抽象的知识具体化,有助于学生理解,同时能用所学的知识解释生活中的现象,也培养学生收集处理信息的能力、观察能力、实践能力。这样,学生在轻松愉快地交流中,学得积极、主动,思维随之展开,兴趣随之激起。将数学教学与生活相衔接,让学生从生活中寻找数学素材,感受生活中处处有数学,学习数学如身临其境,就会产生强烈的亲近感和认同感,有利于形成似曾相识的接纳心理。教学实践使我体会到:数学即生活,只有将学生引到生活中去,切实地感受数学在生活的原型,才能让学生真正的理解数学,使学生感受到我们生活的世界是一个充满数学的世界,从而更加热爱生活,热爱数学生活中的数学在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?一天,我就遇到了这样一道实际生活中的问题:某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?面对问题我们并不能一目了然。我做了一个假设,假如有16人,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客,二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000= 14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为280000元(14000÷5%=280000)。所以由此可得:(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.(2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是14000元,优惠较大。(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。像这样的问题,我们在日常生活中随处可见。例如。有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好?这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。作为跨世纪的小学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。再给你一些地址:自己拼接吧

对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

数学与生活的论文范文

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):

下(B):

左(L):2cm

右(R):2cm

装订线(T):

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……、……、…………的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

8、4、16、11、15、18、这组数的中位数是是13、平均数是12..

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

你以为这是奴隶社会啊。

生活与数学的论文题目

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文

★ 大学生数学毕业论文  ★

大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

学术堂整理了十个毕业论文题目供大家进行参考:1、小学数学教师几何知识掌握状况的调查研究2、小学数学教师教材知识发展情况研究3、中日小学数学“数与代数”领域比较研究4、浙江省Y县县域内小学数学教学质量差异研究5、小学数学教师教科书解读的影响因素及调控策略研究6、中国、新加坡小学数学新课程的比较研究7、小学数学探究式教学的实践研究8、基于教育游戏的小学数学教学设计研究9、小学数学教学中创设有效问题情境的策略研究10、小学数学生活化教学的研究

偶们今天数学文化节考的论文题目是“圆”,围绕着圆写一段文章;偶也再顺便帮你想两个题目(偶也是初一的噢):有理数(什么是有理数;有理数的几种分类方法;有理数在生活中的体现……)数轴(什么是数轴;数轴可以干哪些事;在生活中数轴有什么用处……)棱柱(棱柱的定义;生活中何处可以见到棱柱;棱柱有哪几种类别……)棱锥(同上);七巧板(七巧板是如何形成的;七巧板的妙用;用七巧板可拼出多少个凸多边形,如何证明……);三视图(不同情况下的三视图……)还有的我就想不起来了,你自己再仔细想想吧……

关于数学与生活的论文

数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程。数学课本与现实生活应有着密切的关系,《数学课程标准》指出:“要重视从学生的生活经验和已有知识中学习数学和理解数学,培养学生的探索意识,使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”这一要求揭示了数学与实际生活的关系,数学来源于实际生活,数学又为实际生活服务,这两者相互依存,缺一不可。完整的教学过程应分为抽象、符号、变换和应用。因此,强调数学抽象(即生活问题的数学化)和数学应用(即数学问题的生活化)这两者的辩证结合,对于数学学习具有十分重要的意义。

一、数学问题的生活化,让数学贴近生活

学数学首先是为了应用,应用数学是学数学的出发点和归宿。学生能在数学化过程中抽象出数学知识、理解数学思想,只是学生数学学习的一个方面。而把这些数学知识运用到实际生活中去,会用数学观点和方法来认识周围的事物,并能解答一些简单的实际问题,这又是数学学习的另一个重要方面。

1.数学问题要实用化。生活中的数学问题具有形象性和启发性,它能唤醒学生已有的知识经验,增强学习动机和信心,有助于引导学生进入数学情境,也有利于学生思维的发展。如在学了“年月日”这一课之后,让每个学生说一说自己的出生月份,如此切身的问题让学生体验到学数学的价值所在。这样能更好地激发学生学数学、爱数学、用数学的兴趣,培养学生的探索意识和应用意识。

2.数学学习需情境化。由于学生思维的创造性是一种心智技能活动,是内在的隐性活动。因此,必须借助外在的动作技能、显性活动作基础,而学具、实物模型的情境操作是最好的显性活动。《分类》这一课,我带学生去超市,让他们有秩序地进行观察:光明牛奶、酸牛奶等都属于牛奶类,放在一起;“面霸120”、“福临门”方便面等都是方便面,归在一起,休闲零食类、饮料类、文具类等每一类都有那么多,一类一类放得井然有序,方便顾客选购。孩子们全身心地投入,观察得细致入微,并不时把自己的发现告诉身边的小朋友。

3.数学学习更现实化。数学学习是与“现实”生活密切相关的,学生从现实中学习数学,再把学到的数学应用于现实中去,实现数学观念的构建,促进知识结构的优化。由于实际问题是错综复杂的,因此,只有让学生在参与社会生活后,才能真正地学好数学。

如:在学习了面积和体积的知识后,我要求学生设计自己的卧室。学生的设计受到尺寸和价格的限制。他们必须先做好地面的设计,包括家具摆放的位置,还要选择适合室内空间的地板覆盖物、粉刷墙壁和天花板的涂料、空调和供热设备等。学生兴趣盎然,他们设计好图纸后,有的去建材市场咨询地板和油漆价格,有的在网站上查找空调的型号、功率、价格……活动的结果令人惊喜,他们已经开始评价布局的合理性、物品的性能价格比、美观与实用的关系等。在活动中,学生既能将学以致用,又要考虑实际生活中的各种问题,这就大大提高了学生解决实际问题的能力和创造力,同时又从中了解了社会。

二、生活问题的数学化,让生活走进数学

生活问题的数学化是指由生活中具体事物中抽取出量的方面、属性和关系,并形成相对独立的数学对象。小学生的年龄、经验决定他们获得的多数数学知识是在对生活中具体形象事物的感知的基础上逐步抽象出来,从而形成概念。在数学学习中我们要注意多让学生在生活实际中进行数学抽象,从而学习数学知识和理解数学思想。

1.在数学化过程中学习数学知识。建构主义的认识论指出:“在现实世界中,可以通过我们的感觉和经验构造我们的学习,也就是人类适应经验世界的过程,是知识增长的过程。”这就是说,从学生生活出发,在具体、形象的感知中,学生才能真正学习数学知识。在学习“可能性”时,我没有直接把装着红、绿、黄三种颜色的球展示给学生,问学生从里面任意摸一个是什么颜色的球,而是采用了以下几个步骤:第一,在每个小组的黑色袋子里任意摸一个,根据小组里摸出球的情况猜测里面可能装了一些什么颜色的球;第二,打开袋子,验证刚才的猜测;第三,现在看这袋子里的球,说一说任意摸球的可能性。这样,学生在老师给学生提供了比较充足的活动的空间、探索空间和创造的空间,活动目的明确,要求清楚,让每一个学生都动起来,去感悟、去体验、去认知。然后在此基础上,让学生去思考生活中的“摸奖”现象,学生通过学习,不仅能很好的掌握“描述生活中的可能性”这一知识点,也能正确看待“摸奖”这一现象。

2.在数学化过程中理解数学思想。数学教学不能满足于单纯的知识灌输,而是要使学生在数学化的过程中掌握数学的最本质东西,循此培养和发展学生的数学能力。例如:在学习“两步计算应用题”时,先让学生说一说乘坐公交车时的情景,然后老师提问“你可以提出什么问题呢?”很自然地会提出“下了多少人,又上了多少人,车上现在有多少人?”这很自然地引入新课,而且会让学生受到思想道德教育,因为一群人蜂拥而上,就不会清楚上了多少人,下了多少人,因此要遵守秩序“先下后上,前门上,后门下”。这样就把枯燥的知识变成了学生感兴趣的、活生生的题目,使学生积极主动地投入学习生活中,让学生发现数学就在自己身边,从而提高学生用数学思想来看待实际问题的能力。

前天下午,我做完作业后,坐在窗前看书。看着看着,我发现乌云密布,天色渐渐暗了,像锅底一样。我推开家门,跑了出去。只见空中电闪雷鸣,不一会儿就下起了倾盆大雨,豆粒般的雨点打在我的脸上,就像刀割一样。我跑回家,把敞开的窗户关上后,才想到:妈妈没有多穿衣服,会很冷,雨下得这么大,她又没带伞,会被雨淋湿了,回来肯定成“落汤鸡”了。每当下雨时,我在学校大厅避雨,走来走去,心急如焚,可是,我刚要冲进雨幕时,却朦胧地看见一个面容憔悴的阿姨,听见一声温柔的声音:孩子,妈妈来晚了,我们回家吧!这时,我才发现她是我的妈妈。路上,妈妈把伞撑开,打在我的头上,她淋着雨,我让妈妈也打上伞,可是妈妈很‘倔强’……这时,我发现妈妈的两鬓又增添了许多银丝……想到这里,我决定要给妈妈温暖——给她送厚衣服和雨衣。我准备好后,便去妈妈单位门口等着。我看见别的叔叔阿姨有的打着伞,高兴地走在回家的路上;有的没带伞,急匆匆地往家赶。厂子里空荡荡的,加上打雷的声音,我有些害怕了。焦急地说我:“怎么看不到妈妈出来呀?”我心里想:妈妈该不会是留在厂里加班了吧?不会的,我一个人在家,妈妈不可能不回来。我等了20分钟,就抓耳挠腮,心里非常着急,于是,我就去妈妈的办公室了。我透过细细的门缝,看到了慈祥的妈妈目不转睛地盯在那一篇篇论文上,我心里想:妈妈太辛苦了,把心血都花在了工作上,居然忘了回家。我已经摆好了口形,就差发出声音了,可我停住了,是怕影响妈妈工作。于是,我一声不响地站在门外等候着。等妈妈干完活儿后,已经6:20了。她走出办公室,发现了我,我高兴地看着妈妈,赶紧说:“妈妈,今天下着倾盆大雨,您只穿了一件T恤衫,我给您带了厚衣服和伞,我们回家吧!”妈妈看着天真幼稚的我,笑了,并且挺惊讶,说:“谢谢你,孩子。你是一个关心父母的好孩子……”我们一边走一边说。路上,我感觉到妈妈高兴地哭了。父母为我们付出了很多,我以后还会做更多有意义的事,回报父母的爱。

数学与生活息息相关,它源于生活,也终将回归生活。只有植根于生活,联系实际的数学教学,才更有价值。要实现愉快高效的数学教学,就要特别关注数学的生活化教学。着意于生活情境之间,寓教于轻松愉快之中。� 然而,还有相当一部分教师,仍然纸上谈兵,只在题海中寻寻觅觅;依旧闭门造车,仅在课堂上循规蹈矩。如此枯燥乏味而欲期高效,岂非缘木求鱼。� 总是富有意义的东西,才易引起学习者的兴趣。生活化的数学教学,因为它可构建形象思维与抽象思维的桥梁,与人的生存、社会的需要相联系,并以情境化的直观来呈现,因而,最易加深学生的愉悦体验而能诱发强烈的学习动机。它从学生熟悉的生活开始到结束,能更好地感悟、丰富经验积累,培养想象、应用、创造等能力,必然会使学习更扎实有效。� 因此,我们必须让生活走进数学,让数学融入生活,使学生经历知识的生成、探索、应用、感悟乃至创造的愉快学习过程。� 一、在现实生活的情境中生成与发现� 数学就在身边。为了变抽象为形象生动,变枯燥为趣味横生,我们要引领学生在现实生活情境中,捕捉数学问题,引领学生去探索、发现和求证。在学生感兴趣的、熟悉的情境中引入,就能够不但有利于知识的生成,还有利于激发学生的学习动机。� 例如在学圆的周长时,带领学生到大柳树下,量树干的周长,用细铁丝绕树一周,指出这种围成的曲线的长即圆的周长。于是拉直量一量,就有了数据。并问:你能用周长求出直径吗?进而再引导学生实验、观察,发现周长与直径的关系,可谓水到渠成。� 二、在贴近生活的情境中探究与理解� 数学教学不能脱离生活。挖掘教材中的能呈现生活情境的素材,或以生活中的素材为实例,抑或模拟创设生活情境等,皆可殊途同归。把数学的学习引向生活,有助于学习者的理解和深入探究。� 如压路机的模拟:已知滚筒每分转的周数及筒长和周长,求它每分钟压路的面积。便用油漆桶在细沙上滚动演示,便知滚动一周压面呈长方形,再用与筒侧等面积的纸,围在筒上滚动一周,同时将纸铺展于地,学生很容易发现筒周长与筒长分别与长方形的长和宽对应,问题便迎刃而解。� 三、在实际应用的情境中融会贯通� “平芜尽处是春山”,数学更在课本外。� 华罗庚曾说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”学以致用才是它的归宿。我们必须关注应用情境的数学教学,在动态开放的实际应用情境中,找寻知识的背景,从而体会学习的乐趣与数学的应用价值。� 做一个装东西的圆柱形硬纸盒,即可经历从图形到具体化的实物的认识、探究的过程。量算屋地面积,计算需要铺多少一定规格的地板块,就可深化对面积计算的应用体验。量操场的面积,计算垫一定厚度的黄沙,需多少立方,要运多少车,则是面积、体积等知识的综合检阅了。而设计大门上部拱形的半圆部分,更具挑战性……于是,对所学的部分知识,在综合的应用中,经历了检阅,颇富刺激性。至于带领学生去调查近几年出生的男女儿童数,整理制成统计表和统计图,则不但能在比较中感受信息,还能推测、关注母校未来的生源情况,更丰富了学习生活。正是:“纸上得来终觉浅,绝知此事要躬行”。� 四、在联系生活经验的再创造中感悟和巩固� 例如学习计量单位,学生辩别有困难,极易混淆,我们就编顺口溜助学。如学了质量单位,我们就联系其熟悉的生活编了:“1克豆角粒,两枚小硬币;千克两瓶甜饮料,或者两瓶‘大点滴’;1吨三头牛,或者二十袋水泥;鲸有几十吨,象重四吨不足奇”。学了“千米的认识”之后,就有了:“格尺、玻璃和硬币,厚约1毫米;数学、语文书,厚约1分米;分米杯高、字典长,桌高约1米;村东到村西,来回1千米”。面积单位的:“平方厘米指甲面,平方分米豆腐面;‘平米’方桌面,公顷算校园;平方千米看全镇,100公顷来换算”。体积单位的:“立方厘米萝卜块,立方分米豆腐块;一个方柜近‘立米’,挖土论方算得快”。但是长度、面积、体积三大概念还有分不清的,再编一句:“长度量线段,面积看平面,体积论方块”如此等等。虽然计量单位的概念是抽象的,但它反映的内容却可以是现实的。因此,将它意义化、生活化,附着对应于具体熟悉的事物上,利用其已有经验,就可以建构直观表象。这联系生活的参照物,就能帮助学生联想,区别比较、理解感悟而举一反三,而且这种有节奏、押韵的、琅琅上口的材料,又使之喜闻乐见,因此学得轻松也立竿见影。� 凡此种种,因为它使学生经历了,深刻地体验了,因而是最具趣味性和实效性的。它使学习生动地融入了多彩的生活中,可谓万态纷呈。或峰回路转,或柳暗花明。使学生不但能领略生活化的教学魅力,还能产生对未来应用数学和创造美好生活的愉悦的憧憬。难道我们不应该追求这种境界吗?� 为此,就要求我们不但自己要有丰富的生活经验和教学经验的积累,更要留心每一个孩子的生活情状,走进孩子的生活世界。从而能够使自己的语言生活化,能够幽默而雅俗共赏――学生乐于听,听得懂;使自己的教学生活化,轻松而生动活泼――学生乐于学,学得好。这应该是实实在在的、愉快高效的数学教学吧。

对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

相关百科

热门百科

首页
发表服务