下面这个是我写的一个化学制药工业与绿色化学摘要 化学制药工业的生产不可避免的制造了工业垃圾,但滞步不前不是解决问题的办法,应从生产工艺入手,消除或减少污染物的排放,综合利用必须排放的污染物,从而实现制药工业的生态循环和环境友善及清洁生产的绿色结果。本文综述了化学制药工业中绿色环保的生产模式。关键词 化学制药工业、绿色化学、生产模式一、引言当今,可持续发展观是世人普遍认同的科学发展观。它强调人口、经济、会会、环境和资源的协调发展,既要发展经济,又要保护自然资源和环境,使子孙后代能永续发展理论。绿色制药以研究和发展无害化清洁工艺为首要条件,通过发展高效、合理、无污染利用资源 的绿色化学新原理,推行清洁生产。以环境和谐、发展经济为目标,创造出环境友好的先进生产工艺技术,实现制药工业的“生态”循环和“环境友善”及清洁生产的“绿色”结果[1]。化学制药工业属技术密集型的精细化学工业的一个主要门类[2]。绿色化学是用化学的技术和方法去减少或消灭那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物、副产物等的使用和产生,它是一门从源头上阻止污染的化学。绿色化学正是基于人与自然和谐发展的可持续发展[3],它既可以从根本上保护环境,又可以进一步促进化学制药工业发展,因此化学制药工业的出路就在于大力开发和应用基于绿色化学生产原理和发展起来的绿色化学化工技术。二、绿色化学制药工业生产模式设计无污染的绿色生产工艺是消除环境污染的根本措施传统工艺中,人们为了追求效益、利润,往往忽视了环境的重要性,当生态圈一次又一次的向人们敲响警钟时,人们才意识到以破坏环境为代价从而获得收益的方式不可取。绿色化学不仅保护了环境,塑造了良好的化学形象,而且也会给企业带来巨大的经济效益。据估计,美国每年因执行环境保护法律的规定,工业界要花费10亿至15亿美元。如果能把环保方面的费用用在研究绿色生产工艺,无疑对企业的发展十分有利[4]。例如传统的合成苯甲醛路线是以甲苯为原料通过亚苄基二氨水解而得。该工艺路线不仅要产生大量需治理的废水,而且由于有伴随光和热的大量氨气参与反应,对周围的环境将造成严重污染[5]。间接电氧化法制苯甲醛是一条绿色生产工艺,其基本原理是在电解槽中将Mn2+电解氧化成Mn3+,然后将Mn3+与甲苯再槽外梵音其中定向生辰甲苯醛,同时Mn3+被还原成Mn2+.经油水分离后,水相返回电解槽电解氧化,油相经径流分出苯甲醛后返回反应器[6]。这条工艺中油相和水相分别构成闭路循环,整个工艺过程无污染物排放。综合利用必须排放的污染物,化害为利追求绿色化学并不是指生产过程中不产生污染物,对待污染物,应该尽可能的回收利用。绝大部分的化工生产废料其实还蕴含着生产原料,污染物本身就是放错了位置的资源。近年来再制药行业的污染治理中,资源综合利用的成功例子很多。例如,氯霉素生产中的副产物邻硝基乙苯,是重要的污染物之一,将其制成杀草胺,就是一种优良的除草剂[7]。有如,对氯苯酚是指被降血脂药氯贝丁酯的主要原料,其生产过程中的副产物邻氯苯酚是重要的污染物之一,将其制成2,6-二氯苯酚可用作解热镇痛药双氯苯酚钠的原料[8]。对必须排出的污染物进行无害化处理采用绿色化学工艺的同时,仍有一些不符合现行排放标准的污染物,因此,必须采取科学的处理方法,对必须排出的污染物进行无害化处理。主要就是工业三废--废水、废气、废渣的处理。废水的处理废水处理的实质就是利用各种技术手段,将废水中的污染物分离出来,从而使废水得到净化。废水的处理技术按作用原理一般可分为物理法、化学法、生物法。物理法是利用物理作用将废水中呈悬浮状态的污染物分离出来,在分离过程中不改变其化学性质;化学法是利用化学反应原理来分离回收废水中各种形态的污染物,如中和、凝聚、氧化、还原等,化学法常用于有毒有害废水的处理,使废水达不到影响生物处理的条件,例如,含锰废水经一系列化学处理后可制成硫酸锰或高纯度碳酸锰[9];生物法是利用微生物的代谢作用,使废水中呈溶解和胶体状态的有机污染物转化成为稳定无害的物质。废气的处理按所含主要污染物的性质不同,化学制药厂排出的废气可分为三类,即含尘废气、含无机污染物废气和含有机污染物废气。处理含尘废气是将气固两相混合物分离,利用粉尘质量较大的特点,通过外力作用将其分离,如常见的袋式除尘器[10]所应用的过滤除尘法即是含尘废气的处理;处理含无机或有机污染物的废气要根据所含污染物的物理性质和化学性质,通过冷凝、吸收、西服、燃烧、碎花等方法进行无害化处理。废渣的处理对废渣的处理方法主要有化学法、焚烧法、热解法和填埋法。化学法是利用废渣中所含污染物的化学性质,通过化学反应将其转化成稳定安全的物质;焚烧法是使被处理的废渣于过量空气在焚烧炉内氧化燃烧,从而使污染物在高温下氧化分解而被破坏;热解法是在无养活缺氧的高温条件下,使废渣中的大分子有机物裂解成可燃的小分子燃料气体、油和固态碳等。填埋发是将一时无法利用、又无特殊危害的废渣埋入土中,利用微生物的长期分解作用使其中的有害物质降解。三、结束语随着人们对环境的日渐重视,绿色生产技术已成为当今制药工业的发展方向,当今化学制药工业中很多绿色生产技术已被广泛应用,如催化技术、有机电合成技术、模版合成技术、磁化学技术、组合化学技术、固相合成法、液相合成法、微波技术、超临界流体技术、超声技术、膜技术等。人们在经历了环境与经济的双收益后,更多的目光和精力被投入到这项技术的发展,随着科技的进步,绿色生产技术必将进一步发展和优化。参考文献[1] 张衍. 绿色制药技术. 北京:化学工业出版社,2006,2~3[2] 陈利群. 绿色化学与制药研发和生产的可持续性. 中国药业,2009,18,(6)[3] 茅明安. 迅速发展的中国化学制药工业[J]. 精细与专用化学品1995,(Z1)[4] 朱文祥. 绿色化学挑战传统化学. 农药市场信息2000,9[5] 魏文德. 有机化工原料大全. 北京:化学工业出版社,1990,657~663[6] 朱晨燕,朱宪. 苯甲醛绿色生产新工艺. 高校化学工程学报,2000,14(5):448~452[7] 宋小平,韩长日,舒火明. 农药制造技术. 北京:科学技术文献出版社,2001,192~195[8] 王志祥,骆培成,张志炳. 邻氯苯酚制备2,6-二氯苯酚的工艺条件研究. 精细石油化工,2001,18(4):5~7[9] 吴金山,王志祥. 用含锰废水生产高纯碳酸锰. 化工环保,1998,(6):359~362[10] 刘天奇,黄小林,刑连壁等. 三废处理工程技术手册—废水卷. 北京:化学工业出版社,1999,102~116
改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工类 毕业 论文,供大家参考。
化工类毕业论文 范文 一:化学工程学科集群分析
一、我国化学工程与技术专业学科集群现象
经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。
二、化学工程与技术专业学科集群的创新及竞争优势
本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。
三、化学工程与技术专业学科集群的协同创新模式
山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。
四、我国化学工程与技术专业集群的路径
从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。
五、结论
第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。
化工类毕业论文范文二:生物质化学人才培训思考
一、生物质化学工程人才的需求分析
能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。
二、生物质化学工程人才的知识结构
生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术 方法 、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。
三、生物质化学工程人才培养的探索与实践
(一)组织高水平学术会议,营造人才培养氛围
2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的 报告 ,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。
(二)理论与实验课程体系
根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。
(三)实习、实践和毕业环节
生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外 留学 经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践 渠道 ;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。
可以的了,帮助你搞好
这个在药物化学上应该有相关的文献资料的
那也应该要知道具体的题目和你们学校的要求那些吧。没有这些也不好确定吧。我给些选题你自己去看看,我根本不知道你要那个方向的。你自己参考参考吧离子交换纤维在生物制药及中药提纯方面的应用基于SCM的生物制药公共物流平台运营模式我国生物制药技术的研究进展生物制药的发展及医药领域的应用研究基于价值链分析的生物制药企业价值评估生物制药人才培养现状及培养对策探析生物制药技术及以其为主的产业基础情况 生物制药方向生物类课程建设刍议生物制药上市公司智力资本与经营绩效相关性研究吉林省生物制药产业国际合作模式研究基于因子分析法对我国生物制药上市公司投资价值分析美国生物制药研究进展与国家生物经济蓝图(英文) 生物制药注射剂检验方法的探究与建议课堂讨论在生物制药课程教学中的应用生物制药的接力创新与风险传导特性研究生物制药概念上市公司财务数据分析及发展建议对加强我国生物制药产业监管的几点建议纳米技术在生物制药领域的创新绩效研究生物制药行业合同生产方式的再次兴起基于财务视角的生物制药上市公司成长性评价研究我国生物制药上市公司的经营业绩评价哈药集团发展生物制药创新机制研究 我国海洋生物制药的发展及展望我国生物制药企业融资问题研究四川省生物制药产业的发展战略提高生物制药专业本科生创新能力的教学改革方法初探全球生物制药产业发展态势生物制药产业创新联盟知识协同研究生物制药上市公司价值评估研究我国生物制药专利现状及其发展建议综合性大学生物制药专业的建设方向基于生存分析的生物制药企业财务预警研究基于生命周期的生物制药企业之融资策略研究长春金海生物制药有限公司发展战略研究北京林业大学“生物制药”课程实验教学改革初探云南生物制药中小企业发展问题探索——基于创业板融资的分析广西生物制药产业发展与规划思考——以南宁生物制药产业园为例持续快速发展的生物制药产业国内外生物制药的现状及我国基因工程制药产业发展对策对我国生物制药产品临床应用策略的探讨生物制药工艺用水的循环管路及分配系统的技术生物制药新技术分析生物技术专业《生物制药》实践与探索我国生物制药产业研发与生产技术现状研究服务视角下的我国生物制药产业发展研究中国生物制药产业发展现状分析与建议
可以按你要求现做!
发酵工程的前景 2007-08-14 10:36:17 本文已公布到博客频道校园·教育分类 关于发酵工程的个人观点:1 该学科前途无量,需要发展:发酵工程作为最早从事微生物学的研究领域,在过去的3个世纪中为人类的生活、生存、社会的发展作出了重大的贡献。但这些都是过去的成就。发酵工程与现在的生物工程(基因工程)相比,是处于劣势,因为其是个老学科,在很多人看来,其没有什么大的学问,通过一些操作过程的控制和菌种的筛选难以达到基因工程那样迅捷的效果。但目前发酵工程不断在发展自己,不断整合其他学科的优点来发展自己:1 上游方面:在菌种选育方面与基因工程相结合,从源头上来发展自己的优势。但这一方面存在很大的问题,因为搞基因的人对发酵不很熟悉,使得许多基因工程菌难以发酵生产产品,而且基因工程菌发酵的乙酸问题到现在还没有解决;另一方面,基因工程领域的专家对发酵工业具有很大应用价值的菌种还没有做深入研究(我指的是国内情况),国内还没有哪个基因中心对工业微生物进行基因测序,据我知道,华中农业大学已经在农业微生物方面已经与基因中心在进行农业微生物的测序工作,而工业微生物还没有第一个吃螃蟹的人,主要是因为工业微生物这个菌种生产上不行了,换个就是了,舍不得花钱。当然哦,测序的费用也很大,需要基因工程进一步提高技术降低测序成本。2工艺方面: 在过程控制中,与微生物学、微生物生理学、计算机工程、控制工程、化工工程等学科相结合,将过程操作变数与微生物生理状态结合起来。基于微生物反应原理的培养基组成优化;基于微生物代谢特性的分阶段培养策略;基于代谢通量分析的发酵优化策略。等等策略的利用,华东理工大学的多尺度控制策略(叶勤教授等)就是将化工领域的策略运用到微生物学领域的典型范例,并取得很大的成就(华北制药等等)。3 下游方面:也是我个人认为最薄弱、最需要发展的方面。从我所知道的情况,目前我们很多产品都能通过发酵工程发酵生产出来,但我们没有办法将其从发酵液中拿出来,这是我们发酵工程最需要解决的问题。为什么会出现这样的问题呢?因为搞发酵工程的人大多是搞微生物学或者食品方向的,缺乏化学工程的学术背景,而发酵产品提取需要化工背景的人来做,但我们国家化学工程方面的人不屑于做这些事情,一方面是发酵工程方面的人搞不定产品的提取,一方面是化工背景的人不屑于做这样的事情,才导致我们国家很多发酵产品虽然能发酵出来,但不能提出出来进入市场。2 该学科在积极拓展自己的领域:最明显的例子是交叉学科的出现,如发酵工程与环境工程的交叉形成了环境生物技术,与化工交叉的生物化工,与纺织工业交叉的纺织生物工程等的等。
这不是正大老师布置的论文作业们 哈哈哈啊哈哈
药剂学的毕业论文
一段充实而忙碌的大学生活即将结束,我们都知道毕业前要通过毕业论文,毕业论文是一种有准备、有计划的检验大学学习成果的形式,写毕业论文需要注意哪些格式呢?下面是我收集整理的药剂学的毕业论文,仅供参考,大家一起来看看吧。
[摘要]
近年来,微生物在药学研究中被广泛应用,展现出良好的发展前景。通过查阅相关的医学文献资料,了解到微生物与药学之间有密切的关系,通过对微生物进行转化和发酵,将其应用到药学研究及生产工作中,展现出微生物在药学中的应用价值及广阔的发展前景。
[关键词]
微生物;药学;发酵
一、微生物与药学的关系
(1)微生物与药学存在着密切的关系,许多抗生素是微生物的代谢产物或合成的类似物,在小剂量情况下,能够有效抑制微生物的存活及生长,不会对宿主产生严重的毒性。在临床应用过程中,抗生素起到了抑制病原菌生长的目的,被广泛应用于细菌感染性疾病的治疗中。除了具备抗感染作用外,一些抗生素自身还具备较强的抗肿瘤活性,被应用于肿瘤化学治疗中。
(2)微生物在医药卫生方面被广泛应用,维生素及辅酶被大量应用。
(3)近年来,人们在微生物学检验的.基础上加大了对药品卫生行业的
关注力量,加大对药品卫生质量进行控制。
(4)药品及生物制剂被广泛应用于生物工程技术生产中,采用工程菌生产胰岛素、生长因子及干扰素等[1]。
二、微生物在药学中的应用
(一)微生物转化在药学中的应用
1、在手性药物合成中的应用
不同的化合物光学活性不同,自身展现出了不同的生物学活性。现阶段,手性药物拥有广阔的发展前景,拆分及不对称合成手性药物成为热点研究问题。在生物体系中,酶展现出了高度的立体选择性,通过利用及筛选微生物或酶的过程,能够产生活性较高及立体结构专一的化合物,是一种可行性和有效性较高的方法。例如,将氯—酮丁酸甲酯及乙酯作为底物,将酮基还原为羟基时,展现出较高的立体选择性。通过生物转化的过程,不仅能够得到立体结构专一的手性化合物,同时也完成了对手性化合物的拆分。微生物转化中的合成手性化合物被广泛应用于制药工业中。
2、在药物代谢中的应用
药物在动物体内代谢是较为复杂的过程,展现出生物学活性功能,会生成有毒性的气体和不良反应的产物,在药学中占有重要位置。现阶段,微生物转化主要是利用产生的代谢产物,将其作为制备代谢产物的标准样品,应用在鉴别哺乳动物代谢产物中,完成对毒理学及药理学的研究。甾体羟基化在哺乳动物体内展现出了较强的生理学特性,是引发外源性甾体药物中毒的主要原因,转化成的相关模型是哺乳动物代谢有用信息的来源,产生的代谢产物对人类的孕激素受体具有较强的亲和能力,对人的糖皮质激素及盐皮质激素受体产生了一定的亲和性,对雄性激素产生了较弱的亲和性。黄腐酚作为一种化合物,被广泛应用于骨质疏松治疗中,通过利用真菌模型来寻找哺乳动物产生的代谢产物,为代谢产物及黄腐酚在哺乳动物体内的生物学活性研究提供了方向。
3、在天然药物中的应用
天然活性药物自身具有资源有限、含量低、结构复杂等特点,增加了药物的开发难度,利用生物转化方法合成有活性的天然产物,为开发新药提供了有效途径。羟基喜树碱是从自然植物中分离和提取出来的,毒性较低,拥有良好的治疗效果,被广泛应用于抗癌治疗中。主要是利用微生物对喜树碱来完成转化。青蒿素具有溶解度低、复燃性高等特点,是一种有效的抗疟药物。加大对其结构的改造,寻找合适的青蒿素衍生物,成为现阶段的重点研究课题。通过微生物转化方法,能够快速寻找到新的青蒿素衍生物[2]。
(二)微生物发酵在药学中的应用
近年来,微生物学基础理论及实验技术发现迅速,微生物学的应用范围越来越广阔。主要是利用微生物发酵来制备各种药物,在医药领域形成了一门独立的微生物药物学科。目前,医学上常见的微生物发酵制品有维生素、抗生素、氨基酸及酶抑制剂等。
生物发酵工艺多种多样,包括菌种的选育、培养及培植。培植出合适的菌种,是发酵工程的前提,菌种需要从自然界中找,但是该种方法寻找到的菌种产量相对较低。到了20世纪40年代,微生物学家开始使用激光、紫外线及化学诱变剂等处理方法来寻找菌种,使筛选出来的菌种更加优良,科学家通过构建工程菌,对其进行发酵,生产出一般微生物不能生产出来的产品。医用抗生素自身的特点包括:
(1)差异独立较大。差异毒力由抗生素的作用机制所决定,被广泛应用于临床抗感染中,抗生素的差异毒力越大,临床应用效果越好。
(2)抗菌活性强。抗生素自身展现出了杀灭微生物及药物抑制等能力,极微量的抗生素就能够展现出抗菌活性作用,抗生素的抗菌活性强弱主要是运用最低抑菌浓度来衡量,最低抑菌浓度是指抗生素能抑制微生物生长的最低浓度,值越小,说明抗生素作用越强。
(3)不良反应及副作用小。抗生素在使用过程中,对人体的毒性较小,对病原菌具有较强的杀伤力,这主要是针对理想的抗生素,一般的抗生素都或多或少会对人体产生一些不良反应及副作用。
综上所述,本文通过对微生物与药学的关系,微生物转化及发酵在药学中的应用进行分析,印证了微生物在药学中的应用可行性及应用价值。因此,制药行业在未来的发展中,需要进一步对微生物进行研究和分析,了解微生物内存在的药学价值,促使其在药学中的价值最大化,提升药物工业生产效果。
参考文献:
[1]张孝林,马世堂,俞浩.浅谈药学专业《微生物学》教学中创新型应用人才培养[J].中国科技信息,2012(7):229.
[2]任春萍.抗微生物药物的临床应用调查结果分析与药学研究[J].中国医药指南,2015,13(18):143-145.
请大家不要相信其他设计的人 都是 他们是一个模板 所有专业都在用 拿到你手里能用的最多10% 我有同学就过。而我是去年制药工程专业毕业的 设计也是我去年做的 也是去年的本校优秀设计 所以绝对货真价实 需要请QQ联系。
报自己喜欢的
随着我国医药行业的快速发展,技术水平也得到了快速的提高,为人民做出了很大的贡献。下面是我为大家整理的中药制药专业论文,供大家参考。
《 现代中药制药工艺学的 教学 方法 探索 》
摘要:从课程的准确定位、多元化教学、补充新的中药制药工艺技术以及全面评价等四个方面论述中药制药工艺学课程教学方法,提高专业课的授课质量进行探讨。
关键词:中药制药工艺学;中药现代化;教学方法
中图分类号: 文献标志码:A 文章 编号:1674-9324(2014)22-0069-02
我过于上世纪90年代提出中药现代化,旨在继承和发扬我国中医药优势和特色,综合运用现代制药技术和手段,提供“安全、有效、稳定、可控”的中药产品。这既是提高中药竞争力和国际化的必由之路,也是中药发展的内在要求。实现中药现代化,不仅需要技术创新,也需要专业技术人员的培养;不仅需要科研院所的努力,更需要中药企业的积极参与。针对中药制药技术进行联合攻关,提高中药的质量和竞争力,现代中药制药工艺对于实现中药现代化具有举足轻重的作用。现代中药制药工艺涉及两个相辅相成的重要环节:中药原料药的生产工艺和中药制剂的生产工艺。其中本文所讨论的中药制药工艺主要是指中药原料药的生产工艺,涉及中药的前处理、中药有效成分的提取工艺、分离纯化工艺、浓缩工艺和干燥工艺,这也是决定现代中药质量的关键环节[1,2]。现代中药制药工艺学研究的对象是中药,涉及中药学、生药学、天然药物化学、中药制药工程等多门专业课的综合理论知识。中药制药工艺学与化学制药工艺学和生物制药工艺学的相通之处在于对现代制药技术的采用,但中药制药工艺又具有自身的显著特色:以中医理论为基础,新技术和手段的应用要围绕中医药理论进行,若离开这个基础,就成为植物药或天然药物。因此,在中药制药工艺学的教学中,要在中医药理论这个基础上,积极采用现代化的提取纯化工艺。
一、准确定位
中药制药工艺学是专业性课程,针对大三下学期或大四上学期的学生开设。所以在中药制药工艺学的教学工程中,要以专业性、技术性为导向,突出这门课的应用性。这门课以中药学、天然药物化学、制药工程学课程为基础,突出其综合性以及在日后中药生产中的桥梁作用。中药制药工艺学的落脚点是工艺技术,不能过于强调其基础原理。
二、多元化教学
虽然中药制药工艺学目前的发展总体上较化学制药和生物制药有所差距,但仍有不少发展良好的中药制药企业,积极采用新技术,实现了中药生产的升级换代。同时积极吸收现代化学制药与生物制药领域的先进技术,与中医药理论相结合,在保证中医特色的前提下,实现中药的现代化生产。这就需要高校为企业输送既懂传统中医药理论,又掌握现代制药工艺的专业人才,这对制药工程专业的教学,特别是中药制药工艺学提出了新的要求。该课程的教学,要立足课本,但也要根据实际需要采用多种资源提高教学成效。
1.充分利用网络资源。采用网络资源,特别是国际上植物药生产的工艺的相关资料,对于提高中药制药工艺学的教学质量非常重要。目前,限于课堂教学条件限制,学生不能从教材上直观地感受工艺过程。根据课堂教学的需要,选用一些直观、说明生产流程的视频讲义。水蒸气蒸馏法提取中药材的精油章节,可以利用flash演示加热、汽化、冷凝过程,同时播放水蒸气蒸馏提取薰衣草精油的视频,这比教材的示意图更加直观和富有吸引力。等视频网站有动态表现生产工艺的flash和视频资料,可以直观地表现工厂车间的生产流程和原理,同时增加学生的学习兴趣。
2.强化实践教学。工科专业的学生,在学习中药制药工艺学这门课之前,会有专业见习和实习的机会,充分利用这些机会,让学生在车间里最直接地认知中药生产工艺,同时,车间操作人员的现场操作也可以加深学生对工艺流程、参数设置的理解。充分利用学校资源和企业资源,将理论学习与基本训练结合起来,增强学生的专业技能,切实提高课堂教学的实际效果。切不可将见习或实习简单化、形式化,在开始实习前,老师要和车间的带教老师沟通好,在保证学生和生产安全的前提下,要让学生对生产流程有深入的了解,最好有一定的亲手操作的机会。同时利用学校的中试车间,让学生分组分批完成实验任务,让每个小组(3~4学生)都独立地完成提取、纯化、浓缩、干燥以及压片或灌装胶囊的中药制药流程。该课程配套的实验分为两部分:一次是集中实验,统一学习操作技能;一次是进入到中药或生药方向的课题组中,跟随研究生做实验,要求每位学生从提取、纯化、浓缩、干燥等环节中,挑1~2种练习。这部分实验需要和各课题组的负责人沟通好,虽然实行起来有难度,但效果较好。
三、充分吸收最新的工艺技术
目前所采用的教材对新技术、新工艺有所更新,但仍不充分。但目前在国家政策的支持下和研究院所的共同努力下,一些中药企业加大研发力度,对新技术和新工艺的采用比较积极,引进了一批较高技术含量的生产工艺。所以在教学中需要补充已经被企业采用或行将被企业采用的新的技术或手段。在这方面比较有代表性的是膜分离(浓缩)技术。比如一些中药企业采用无机陶瓷膜工艺代替传统的醇沉工艺,减少生产环节,缩短生产周期;减少乙醇使用量,对中药有效成份基本无截留,除杂彻底;无机膜性质稳定,再生方便等特点。与纤维滤膜组合使用,即可以延长滤膜的使用寿命,又可以提高药品品质。但关于无机陶瓷膜的介绍以及在中药生产中的应用,在目前的教材中较少,可以利用网络资源,及时补充到讲课材料中,使学生接触到代表中药制药工艺发展方向的新技术。采用有机超滤膜精制中药多糖类成分,较传统的水提醇沉工艺具有得糖率高、工序简省的优点,是非常具有前景的生产工艺。以香菇多糖的制备为例,可以从超滤原理、多糖分子截留、多糖的组成等几个方面介绍有机膜超滤工艺在中药多糖制备工艺中的应用。同时利用flash动画模拟超滤过程,多糖的电镜测定等手段直观的对比膜过滤与传统工艺的不同,让学生有更深入的理解。
四、全面评价教学效果
中药制药工艺学是一门突出技术工艺的专业课,不能当作理论课来讲授,在考察学生时也应兼顾课本知识和实际应用能力。因此考察环节中应该有一定比例的实验课环节,考察学生实际解决问题能力以及对中药制药工艺的理解。笔者在学习结束后设置了中药制药工艺学综合实验:银杏总黄酮的提取及滴丸制备,涉及微波、超声以及传统煎煮等不同的提取工艺,采用UV和HPLC定量法,考察不同工艺对总黄酮的提取效率的影响。比较大孔吸附树脂柱、膜分离以及醇沉工艺对总黄酮部位质量的影响。让学生不仅加深对课本知识的理解,而且锻炼工艺设计的能力。
现代中药制药工艺学是传统技术与现代技术的结合,在坚持传统中医药理论的基础上,积极采用现代的技术,特别是源于化学制药和生物制药领域的先进技术,对于提升中药的生产水平至关重要,毕竟,目前中药制药领域新技术的独立创新成果较少。在设置中药制药工艺学实验课时要兼顾中药学、中药制剂等传统学科和生物学、材料学、波普学等现代技术。既懂传统中医药理论,又掌握现代制药工艺的专业人才,是实现中药现代化的重要依赖,也是生产现代中药的重要保障。所以,现代中药制药工艺学的教学要立足课堂,联系实践,培养既有扎实理论功底,又有实际工艺设计能力的工学人才。
参考文献:
[1]陈平.中药制药工艺与设计[M],北京:化学工业出版社,2009:2-5.
[2]潘林梅.加强对中药制药工程专业人才工程综合技能的培养[J]. 教育 教学论坛,2013,(38):95-96.
[3]李淑清,李淑霞.《制药工艺技术》课程特色的探讨[J].教育教学论坛,2013,(38):129-130.
《 高新技术在中药制药领域应用的分析 》
摘 要:如今,人们对于中药制药质量要求越来越高,这也使中药制药面临了巨大的机遇和挑战,越来越多先进科学技术与专业设备出现在中药制药市场中。然而,我国目前中药制药领域中,高新技术得到了广泛的应用,高新技术的出现,不仅大大提高了中药制药生产的效率,还能够有效保障药品的安全卫生质量,对于中药制药行业的稳定发展有着重要的作用。因此,本文就具体介绍了高新技术在中药制药领域中的应用,并对其中存在的一些问题进行分析, 总结 出以下几点注意事项。
关键词:高新技术;中药制药;应用;分析
目前,高新技术受到了中药制药领域的高度重视,被广泛应用于中药制药过程中,取得非常好的效果。但是,就我国目前高新技术水平而言,虽然取得了一定的发展与进步,可总体来说尚不成熟,在实际的中药制药领域的应用中,仍旧存在很多的问题和不足,使得药品质量无法得到充足的保障,严重影响了中药制药的生产效率,这无疑会对中药制药领域产生一定的冲击。因此,本文以高新技术在中药制药领域的应用为主要内容,加少了几种不同类型的高新技术,提出一些自身的观点,仅供参考。
1 高新技术在中药制药工程中的应用与分析
泡制全浸润工艺与装备
一般情况下,我们对于中药的认识只存于表面,并不了解中药具体的制药过程。但是,在实际的中药的生产过程中,制药工艺非常繁琐,难度较大,这也导致大多数中药在制药过程中发生一些问题,使得药品的治疗效果受到一定的影响。其次,中药浸润工序是整个中药制药过程中最为关键的环节之一,制药人员必须要对浸润时间进行严格的控制,不能过长,也不能过短,充分保证药品的质量。因此,我们可以将先进的高新技术与设备应用到中药的泡制全浸润工艺中,以此来简化复杂的制药工艺,从而有效的降低制药生产工作的难度。此外,制药人员要对不同类型的药物进行分别处理,更根据药物的性质采取适合的制药工艺,并制定合理的浸润时间。
动态提取技术
结合目前我国中药制药生产过程现状而言,其中还存在很多的弊端,尤其是在进行重要药物的提取过程中,制药人员依旧延续了传统陈旧的提取方法,施工设备也非常滞后,这就导致药物的提出率不高,并不能发挥很好的治疗效果,从而严重制约了我国中药制药领域的发展。那么,如何才能提高中药的使用率,达到良好的治疗作用呢?那就必须将动态提出技术应用于中药制药的生产中,并对滞后的设备进行及时的更新,这样不仅能够充分保障药物的提出率,还大大提高了药物的使用率,使得我国中药制药领域真正满足于现代社会发展的需求。
仿生技术
仿生技术是从生物药剂学的角度模拟人口服给药及药物经胃、肠运转的原理,将药物研究与分子药物研究相结合,为经消化道给药的中药制剂设计的一种新的提取工艺技术。中药材粉末在一定的pH酸性水溶液提取,然后再用一定PH碱性水溶液提取,选择pH的最佳值和其他一些辅助条件和工艺参数。它主要是以生物学的相关理念为基础,从而对药物特性进行相应的分析,通过人体环境模拟的办法,来对中药药物生产的相关内容进行详细的分析和了解。而且在药物提纯的过程中,人们也可以采用仿生技术来对其进行相应的处理,从而使得药物在提取的过程中,药材的利用率得到了进一步的提升。
生物酶技术
与上述仿生技术使用一样,生物酶技术是借鉴了生物工程技术的酶工程技术来实现对中药的提取。生物酶是一种具有特殊催化性质的高效催化剂,大多数酶的主要构成成分是蛋白质,利用这项技术的优点在于,一方面多数植物中药的有效成分主要是靠生物酶的作用才能实现将其溶解出来,同时还可以借助酶的运输将药物的有效成分作用于细胞内部发挥药效。另一方面中药材在经过提取后其中还是含有一定量的杂质,如大分子的多糖、蛋白质、胶质类等,这些物质通过生物酶的催化都会将其降解而挥发出去。但是在使用生物酶技术时要注意,由于中药材包含的领域十分的广阔,包括了植物、动物、矿物质等物质,生物酶具有专一性,一种酶只能催化一种物质。
2 中药制剂应用高新技术应注意的问题
重要活性成分或药物配比的关系
一种中药的发现,其中活性成分和要用部位的确定和使用,使之进一步成为确定的药物很重要,但是研究清楚每一味中草药植物中所含有的活性成分的种类、用药部位之间的量效关系在医学研究领域有着更重要的意义,因为这种研究和最终各项理论的确定为人类利用中药开拓了广泛的药物资源。目前,我国中医中药药性和药味组成之间的关系研究主要是从哲学的辩证态度的分析进行的,缺乏相关药物之间量效方面的深入研究。因此,我们在继承和发扬我国传统中医中药理论和处方方剂的基础上,要从理论研究与实验方式相结合的方式进行发展和研究。
中药产品的内在质量和技术含量问题
目前我国中药制药生产过程中常常出现农药超标、化学成分过多等质量问题,这些药品一旦投入市场中,将会极大威胁人们的身心健康,甚至还会引发其他的并发症,后果不堪设想。虽然现代中药制药领域中引入了更多的高新技术和施工设备。但是,中药产品内在质量问题仍是中药制药行业非常关注的问题,还需要相关技术人员更加深入的研究和开发,不断加强和完善高新技术,进一步提高高新技术水平,促进中药制药领域长期稳定的发展。因此,中药制药行业要高度重视中药产品内在质量和技术含量问题,对于农药超标和化学成分较高的中药药材进行分析调查,充分保障药物的使用质量,达到理想的治疗效果,从而大大缓解了患者的病痛情况,为我国中药制药行业做出巨大的贡献。
应用现代检测技术控制
为了提高中药制药产业的生产技术和质量控制水平,大力发展想指纹图谱技术和其他的相关控制技术是十分有必要的,在未来应采用更加先进的高新技术,例如薄层色谱、高效液相色谱、并与二极管阵列检测器、质谱联用等。
3 结束语
综上所述,可以得知,高新技术的出现,对于中药制药领域的生存和发展起到了重要的作用,不仅提高了中药制药的生产效率,还充分保障了药物的质量,减少了繁琐的制药工序,打破以往传统的中药制药生产方法,采取更多先进的制药技术,加大对高新技术的推广和应用,及时对制药设备进行优化和更新,使其能够充分满足于现代社会发展的需求,对药物内在质量进行严格的质量把关,根据不同类型的药物,采用适合的高新技术,确保药物能够起到绝佳的治疗效果,从而进一步提高我国高新技术水平,促进中药制药领域长期稳定的发展。
参考文献
[1] 付廷明,来庆发.超高分子量聚乙烯纤维的发展与应用现状浅析[J].硅谷,2011,8(05):22.
[2] 徐少萍,何熹.超临界流体萃取技术的应用及其发展[J].山东轻工业学院学报,2003,4(02):45.
[3] 王成东,杨华登,季晓. 先进萃取技术及装备在中药生产中的应用[J]. 机电信息. 2008(11)
有关中药制药专业论文推荐:
1. 关于中药毕业论文
2. 生物制药技术论文范文
3. 生物制药专业论文范文
4. 中药学本科论文
5. 生物工程论文范文
6. 有机化学教育论文
制药专业就是培养具备药物设计与产品研究、工程技术研究与设计以及工程技术应用能力,能够独立承担专业技术或管理工作,具有良好职业素养的高层次人才。 主要研究方向⑴药物合成技术与工艺⑵药物制剂技术与工艺⑶生物制药技术与工艺⑷制药过程工程与车间设计⑸药物生产质量过程控制与分析这个专业是对数学有要求的,看自己数学基础了,也可以自己学一学,不是太难的。如果自己对这个专业感兴趣就提前开始准备啊,如果对数学不感兴趣,可以考虑跨专业考研,提前决定下来啊,加油,考研,让坚持与梦想同在!
随着全球经济的发展和现代工业的日新月异,人们对工业生产设备的自动化水平、对自动化产品的综合功能及可靠性、对新产品的上市速度、对根据客户和市场要求修改配方的灵活性均提出了更高的要求。在这样的大环境下,批量(Batch)控制管理软件作为一个十分重要的产品,在越来越多的工业控制过程(尤其是精细化工、制药和食品行业)中得到了广泛的应用。本文以Invensys集团旗下的美国Foxboro公司的I/ABatch软件在国内某一精细化工厂的生产装置上的应用为例,介绍了该控制管理软件的全貌及其应用要点。纵观Foxboro的I/ABatch发展历史,可以追溯到1969年首个冗余批量控制器的发布。早在上世纪90年代前,伴随着不同的DCS系统发展阶段,Foxboro的批量控制软件也分别经历了LargeScaleBatch、EasyBatch、BatchPlantManager、R-Batch4个不同时期。一直到1992年,基于Unix平台并和I/A系统集成在一起的Foxbatch才诞生,被称为核心。1996年开始,著名的工业软件公司Wonderware开始为Foxbatch编写具有更友好客户界面的批量软件。该软件基于WindowsNT平台,可以和工厂管理软件集成在一起使用,亦可以同时被Foxboro公司I/A系统外的其他控制系统使用。1998年,Foxbatch正式更名为I/ABatch,之后分别经历了、等,直到现在被广泛运用于WindowsXP平台上的I/。I/ABatch是一套具有很大灵活性的批量生产管理软件,是针对生产过程中的建模和实现批量生产的自动化控制而设计的,完全符合标准,具有模块化的特点。用I/ABatch软件,用户可以很方便地1引言2I/ABatch的发展回顾及主要特点创建配方,用批量离线组态环境模拟新配方的运行过程,查询到有关产品的历史数据,并得到一些产品物料汇总信息。可以说它是一个“成品化”的批量控制引擎,如果和I/ADCS系统联合使用,还有参数自动连接生成、便于组态集成等特点。3精细化工装置的工艺流程及控制要求I/ABatch具有十分广阔的应用范围,小到一个最简单的加料混合过程,大到十几条批量生产线几十个反应釜的生产过程,均可以用这套软件来组态实现。以某精细化工装置为例,共有两条生产线并行生产两种相关联的化工产品A和B。由于该化工产品具有很强的季节性,在连续生产两三个月后要清洗设备,重新更换原料(包括调整原料比),生产另两种相关产品C和D。其中前两者的基本工艺过程是一致的。整套装置有两个进料贮槽、两个反应釜、两个成品槽,有模拟量输入100点、模拟量输出50点、数字量输入200点、数字量输出250点。从同时投入生产的两条生产线来看,在A线进入到该线反应釜初始阶段前,必须检查B线是否已经正常完成KOH的进料,并且反应釜内的压力、温度达到了工艺工程师预定的值。每条生产线的每一生产步骤中都有很严格的反应条件检测,一旦有连锁发生,工艺会要求控制程序根据不同的连锁原因转入到不同的子步骤中去,直到连锁条件完全解除,继续该条生
例如压缩机、离心泵、换热器等,但只能写一种。告诉我用得上的网站或给个范文也行!急!谢谢了各位.
搜狐你就出来了
医药化工生物技术的现状与产业化方向 来源:学习中国网 点击: 更新:2006-7-1 3:21:39 生物化工已成为国外著名化学公司争夺的热点。生物技术从医药、农业逐渐向化工领域转移,使传统的以石油为原料的化学工业发生变化,向条件温和,以可再生资源为原料的生物Jjn-v过程转移。目前西方各国较大的化工企业,如美国杜邦、孟山都、道化学公司,德国赫司特、拜尔公司,英国ICI公司等都投入巨资和庞大的科技力量进行生物技术研究,并取得了许多重要成果。1.1高价位产品的发展速率高于低价位产品目前,全球生物化工年销售额在4OO亿美元左右,每年约以7%-8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料、日用与农业化制品等低价位产品(部分价格不到l美元,g)。高价位的产品市场份额在50%一60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。1.2 生物倦化成为生物化工的技术核心生物催化因其有转化条件温和、选择性高、生物催化剂制造成本低等优势,已发展成为化学工业重要技术之一。以催化作用为基础的化学品占化工产品的60%,其技术渗入量占目前化工生产技术的90% 。生物催化剂为生物催化的核心,已经成为各国学者及工程技术人员研究的重要内容。生物催化的主要前沿领域有手性催化、极端菌研究、生物能源、生物新材料等。1.2.1手性化合物的研究利用生物催化酶、微生物等催化合成化学品不但具有条件温和、转化率高的优点,而且可以合成手性化合物及高分子。手性化合物是国外生物技术的主要产品。应用手性技术最多的是制药领域,包括手性药物制剂,手性原料和手性中间体。手性药物不同的对映体作用不同,从疗效和安全性出发,单一对映体的分离和定性合成十分必要。如巴比妥药DMBB与MPPB左旋(一)一异构体均具有抗惊厥性,而右旋(+)一异构体的功能则是促惊厥。合成手性药物的生物转化反应可分为两类:一类是把外消旋体拆分为两个光活性的对映体;另一类是从外消旋或手性前体出发,通过催化反应得到不对称的光活性产物。手性化合物研究一个成功的例子是:生物法合成头孢菌素。生物法生产利用了酶的对映体催化专一性,只用两步就可以替代传统的化学法生产,从而减少了工艺流程,提高了产量和纯度。近期研究发现,当以外消旋化合物进行酶催化反应时,反应底物可以在反应的同时不断进行外消旋化,从而得到超过50%的对映体纯的异构体。1.2.2 极端菌的研究近年来,人们发现一些菌在高温、高盐浓度等条件下仍然可以生存。对这些极端菌进行研究,有望逐步改善工业生物催化剂对温和环境依赖等缺陷,从而提高酶在高温、高压等条件下的催化活性,增加酶对底物和反应物抑制作用的抵抗程度,从而拓宽生物催化剂使用的范围。极端菌包括喜高温菌、喜低温菌、喜盐菌、耐pH值等。近期的研究集中在与工业生物催化相联系的极端的认定上,它们包括了酯酶,且旨肪酶、糖苷酶、缩醛酶、腈水解酶/酰胺酶、磷酸酶以及消旋酶。喜高温菌主要应用于食品工业和洗涤剂工业,喜低温菌主要应用于提高热敏性产品的产量,喜盐菌由于在高盐浓度下稳定而被用于低含水体系的催化剂。1.3 传统发酵工业已由基因重组菌种取代或改良许多传统的发酵工程产品如柠檬酸、青霉素等都已开始采用基因工程手段进行改造,大大地提高了产量,在以基因工程为主导的现代生物技术产品中,医药生物技术产品占75%左右。 医药生物技术的现状我国医药消费水平与国际水平相比差距很大,1997年全国人均年消费仅为l16.87元,每年以16%的幅度增长;医药销售总额约1400亿元(医药七大类),每年以21%-22%速度增长,但进口药、合资药和国产药在国内市场的占有率基本上是三分天下。我国将成为原料药的出口基地和成品药的销售市场,其危机在加入WTO以后将越来越突出。因此,加速研制、开发、生产新药是我国的重要国策。l基因工程药物中国已经批准上市的基因工程药物有:重组人干扰素alb(商品名为干扰灵、赛若金),重组人干扰素a2a(商品名为福康泰、莱福隆、因特芬、迪恩安、贝尔芬),重组人干扰素et2b(商品名为利芬能、安福窿、安达芬、安福莱、隆化诺),重组人干扰素,重组人白介素-2(商品名为安特鲁克、德路生、辛洛尔、因路英、悦康仙、欧耐特、因特康),重组人粒细胞集落刺激因子(商品名为吉粒芬、促粒素、吉粒强、金磊赛强、粒生素、苏粒素),重组人巨噬细胞粒细胞集落刺激因子(商品名为特立尔、吉立强、格宁、里亚尔、利白多),重组链激酶rSK,重组人红细胞生长素(商品名为宁红欣、益比奥、依普定、EPO、爱血宝、依倍能),碱性成纤维细胞生长因子(商品名为贝复济),重组表皮生长因子。目前国内正在研究的产品有神经生长因子类NGF,CNTF,GDNF,BDNF,SOD,瘦素(LE吣,抗溶凝栓药物设计,IGF一1,hGH拮抗剂,人胰岛素C肽,水蛭素,降钙素,葡激酶,人IL-6,Fit3配体,人肿瘤血管生长抑制因子,bFGF,血小板生成素,治疗老年性痴呆基因工程新药96718,表皮生长因子,胰岛素,生长激素,链激酶。2.2徽生物发酵(奠棚药基因工程医用抗生素进行了丙酰螺旋霉素、麦迪霉素、丝裂霉素、麦白霉素等多种抗菌素的研究。青霉素、Ve是我国重要发酵产品。固定化青霉素酰化酶和青霉素酰化酶基因工程菌用细胞膜反应器实现了工厂化大规模裂解青霉素C生产6一氨基青霉烷酸(6一APA)。自行构建的基因工程菌发酵生产头孢菌素C,发酵单位提高到2800单位以上,已经广泛使用。7一ACA是半合成头孢霉素的母核,1997年进口额为4亿元,用二步酶法将头孢菌素C转化和水解为7一ACA,已成功克隆出2种酶的基因工程菌,对CPC钠盐转化率达73.4% ,7一ACA纯度达9o%以上。此外,还开发了几种抗生素,如:妥布霉素、利福霉素SV、丝裂霉素C、泰乐霉素等;尼克霉素X、宁南霉素、庆大霉素、农用抗生素66oB等。抗感染药物销售在全球仅次于心血管药,居第二位,而我国抗感染药一直居第一位,在开放农村市场后尤为突出。随着人体抗药性增强,新的抗菌要求将越来越迫切。2.3 动、植物来源镧药’这是传统制药的一个重要领域,除了药物还有生物制品、预防药品和营养品,目前该行业存在分离技术落后、收率低、生产分散等问题。引人生物技术进行改进有了一些新进展,如:中药现代化中,对天然植物的基因、酶和生化、构效进行分析研究,用生物技术方法提取植物有效成分,用植物细胞反应器培养工厂化生产紫杉醇、银杏内酯、青蒿素、紫草宁、麻黄素等;用动物细胞反应器培养生产单克隆抗体、干扰素、生长激素、生长因子、酶等生物药物。3 生物制药正在发展的领域随着肥胖及老龄化问题的加剧,除心血管药物外,减肥降脂药、糖尿病药、抗老年痴呆症药成了畅销药。随着生活节奏的加快,竞争的剧烈,形势的多变,世界主要国家精神病发病率迅速上升,已成为严重影响人们生活质量的新问题,因此研发与生产心血管药、抗癌药、艾滋病药、糖尿病药、防老年痴呆症药及精神病药成为重点。对于大多数城市而言,建立生物药物生产企业,尚缺乏上游研究机构,但从战略考虑,需用一二个”五年计划”建立龙头研究机构、龙头开发机构和龙头生物制药企业。教育部和国家计委批准36所高校建立的”国家生命科学与技术人才培养基地”提出的”四个结合,四个创新,两个配套”的总体思路(即:上下游结合、产学研结合、国内外结合、不同学科交叉结合;体制创新、机制创新、模式创新;政策配套、投人配套)值得借鉴。3.1基因组学和蛋白质组学药物基因组学(pharmnacogenomics)是利用人类基因信息指导新药开发的一个领域,该领域是研究遗传多样性的个体差异对用药的特异性,用已知的基因理论研究用药的个性化和进行优化药物的设计,在临床上发现具有潜在效应式毒性的化合物,对市场上低效和高毒性药物通过药物基因组学加以改善。人类基因组计划完成后,基因组学能为人类提供基因活性和疾病的相关性的有力证据,但实际上大部分疾病并不是因为基因改变所造成,且基因表达方式错综复杂,同样一个基因在不同条件下,不同时期可能会起到完全不同的作用,这是基因组学无法回答的, 因而产生了后基因组学和蛋白质组学(proteomics)。完成生命功能过程是:DNA-+mRNA_十蛋白质,在此过程中一个基因可能编码出几个、几十个各异蛋白质。基因转录产生一个蛋白前体,再进行加工、修饰成为活性蛋白,通过一系列的运输、定位才能发挥正常的生理作用,蛋白质组学是研究”一种基因所表达的全套蛋白质”。通过对正常个体及病体个体的蛋白组比较分析,我们可以找到”疾病特异性的蛋白质分子”成为新药设计的分子靶点。3.2药物的筛选和组合化学药物筛选是指从众多的化合物中挑选出具有生物活性的化合物过程,其中以特定的生物学指标为依据找到的第一个化合物为先导化合物。新药筛选分两类:一是随机筛选(普筛),即从完全未知的化合物群中寻找先导化合物;二是定向筛选,即根据已知的先导化合物定向设计新化合物以筛选出药效更好的化合物。天然化合物、动植物、中药经验是我们进行药物筛选的有利条件。组合化学(combinatorial chemistry)是把化学合成、电脑设计、计算机技术结合为一体,能同时产生许多结构相关但变化有序的化合物,然后用高灵敏度的生物方法对这些化合物同时进行筛选,从中确定具有生物活性的物质,再经结构测定,以期找到全新的先导化合物。组合化学包括分子多样性化合物库的建立、群集筛选(分固、固/液两相),确认活性分子结构。33 基因诊断和基因治疗基因诊断主要是针对病原体、肿瘤和遗传病的基因检测,现代化城市的优生、疑难病(与基因及遗传相关)的控制是先进的标志之一,有关产前诊断基本空白,由此起步建立基因诊断,在服务社会的同时积累数据为基因治疗做好准备。基因治疗(gene therapy)是把功能基因导人病人体内使之表达,其表达产物一蛋白质发挥功能使疾病得以治疗。基因变异或缺陷可导致各种疾病,也可能遗传给后代。基因治疗是给基因做一次手术,又称为“分子外科”。体细胞基因治疗是当前的研究主流。3.4基因剔除、转基因动物和生物反应器基因剔除gene knock out)是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除(包括引人定点突变),然后从整体观察动物,推测相应的功能,其技术主要包括构建重组基因载体、转人受体细胞核内、筛选已击中细胞,将细胞转人胚胎使其生长成为基因剔除的动物。转基因动物是用实验导入方法使外源基因在染色体基因组内稳定整合,亦能遗传给后代的一类动物。1974年美国学者首次用显微注射法获得了转基因小鼠,转基因动物已广泛用于基础研究、疾病动物模型的建立、药用蛋白的生产、农业(转基因家畜的生产,如无毛鸡)等各个领域。3.5 生物芯片和生街传感器生物芯片是利用微电子、微机械、化学、物理技术、计算机技术、样品检测、分析过程连续化、集成化、微型化。包括芯片实验室(Lab—on—a—chip)、基因芯片(DNAchip)、蛋白芯片(protein chip)、细胞芯片(cellchip)、组织芯片等。生物芯片技术包括芯片方阵的结构、样品制备、生物分子反应和信号检测及分析,主要用于疾病诊断、药物筛选、基因测序,此外在农业、食品监督、环境保护、司法鉴定等方面都将做出重大贡献。生物传感器具有检测专一、灵敏、响应快等特点,可用于许多生物产品代谢、中间产物的测定,可测定非生物化学物质。生物传感器使用的酶和细胞可以反复使用。生物传感器利用酶、免疫系统、组织、细胞器或完整细胞作为催化剂,制成固定化膜与物化仪器化学、热、光、声波)相连,将生理信号转变为物化信号输出,可制备成微型传感器和多参数传感器。美国每年投人约l3亿美元用于生物传感器技术及产品开发研究。生物工程与计算机工程结合发展颇具工业前景。3.6 组织工程和器官移植组织工程是应用生物学和工程学原理,研制和开发能够修复和改善组织损伤或缺失功能的人造组织或器官的一门新兴学科。软骨、骨、肌腱、皮肤等组织再造成功,血管、气管等复合组织再生,胰、肝脏等组织再生研究取得不同程度进展,其他组织如输尿管、尿道、食管、小肠、肾脏、血管和血细胞等组织工程也取得了某些进展。3.7 药物新拊型治疗、预防和诊断用的药物都以一定的剂型服务于人类,权威的观点认为”提供新型的药物传输方法与提供新药几乎同等重要”。药物必须制成一定的剂型,以制剂的形式应用于治疗、预防或诊断,而制剂的 医1l5 匕工有效性、安全性、合理性和精密性等都反映了医药的水平,决定了用药的效果。提高药物的疗效、降低药物的毒副作用和减少药源性疾病,对药物制剂不断提出了更高的要求,药物的新剂型和新制剂技术也正发挥愈来愈大的作用。4 生物制药的产业化问题由于欧美等发达国家药品市场渐趋饱和,加之目前一些受专利保护的畅销药物专利期将至,以及新的专利药物开发速度缓慢等原因,国际药品市场结构发生了十大变化:生物技术药物异军突起;通用名药品(专利期已过的药品)在处方药品中的销售额比例激增,远高于世界整个制药工业的平均年增长速度;非处方药(OTC)的增长速度也不断加快;在药品开发方面,胆固醇控制、充血性心力衰竭、精神分裂症、老年记忆衰退、老年性痴呆症、糖尿病、艾滋病以及各种癌症等治疗领域,研究开发速度加快,市场前景广阔;在药物制剂和剂型方面,透皮吸收、控缓释药物制剂前景广阔;为减少住院病人,缓解住院病床负担,节约医疗费用,将住院治疗改为门诊治疗的新药不断面市;老年病及妇女儿童用药的市场发展迅速;预防性药物、保健、营养滋补药的发展将持续升温;天然药物发展潜力巨大;新药研究开发的难度越来越大。生物制药具有高投入、高效益、高风险、长周期的特征,一个生物药品,前期开发需投入大的资金、技术、人力,并历经数年。药品的审批、临床试验也要数年,所以生物药品的成功率仅为5%-10%。但与传统制药相比,又有便于大规模生产、利润高、生产工艺简单、人力投入少、无污染、生产周期短等优点,新药一旦开发成功利润巨大。据Ernst-yong公司分析,有0o种生物技术新药处于后期临床实验阶段,到2007年将有240个新药上市。基因工程药物开发和产业化有以下几个问题需特别重视:(1)选择好项目新生物技术商品化竞争剧烈,因此除人类基因组计划中部分成果无专利外,所有新发现均申请了专利,如何获得专利的使用权,是新药开发必须首先研究的;其次是市场评估,有的基因药物适于全世界,有的只能适用于某些区域,对企业而言,只有可掌握的市场才有意义;三是项目的可行性,包括成熟程度(有药证不一定代表成熟)、是否能工业化、工艺成本是否低以及环保问题等,也要考虑接受后的再开发投入。基因工程药物的发展方向:①开发针对神经系统、肿瘤、心血管系统、艾滋病及免疫缺陷等重大疾病的多肽、蛋白质和核酸等新生物技术产品。此方面开发重点将主要是干扰素、生长激素与T-PA等。②选择一批市场前景好的生物技术产品及疫苗、诊断用单克隆抗体进行开发,我国在这方面已有一定基础,开发重点是乙肝基因疫苗与单克隆抗体诊断试剂。③开发靶向药物主要是开发抗肿瘤药物。目前治疗肿瘤药物存在一个”敌我不分”的问题,在杀死癌细胞的同时,也杀死正常细胞。导向治疗就是针对这个问题提出来的,所谓导向治疗就是利用抗体寻找靶标,如同导弹的导航器,把药物准确引入病灶,而不伤及其他组织和细胞。④人源化的单克隆抗体的研究开发。抗体可以对抗各种病原体,亦可作为导向器,但目前的单克隆抗体多为鼠源抗体,注入人体后会产生抗体(抗抗体)或激发免疫反应。目前国外已研究噬菌体抗体技术、嵌合抗体技术、基因工程抗体技术以解决人源化抗体问题。⑤血液替代品的研究与开发仍然占重要地位。血液制品是采用大批混合的人体血浆制成的,由于人血难免被各种病原体所污染,如艾滋病病毒及乙肝病毒等,通过输血而使患者感染艾滋病或乙型肝炎的案例时有发生,因此利用基因工程开发血液替代品引人注目。(2)理好t、中、下游的关系人类基因组计划意义巨大,影响深远,随着”人类基因组计划”初具成果,一个更加令人振奋的后基因组计划的蛋白质工程研究时代即将到来。首先得益的是服务于人类健康的预防、治疗药物与服务。基因工程药物将会蓬勃发展,但必须处理好上、中、下游的关系。(3)建立好先进的工程技术平台①药物筛选平台~ 新药的发现;②药物中试转化平台;③ 动物实验平台。(4)加强生物药物开发中的生化工程技术保证人类健康的诊断和治疗新药的发现与制备就是通过生物大分子的相互作用与识别的研究,通过外源药物与外场作用及生物信息的传递与调控,进行有效合成和生物转化,将发现的有用活性物质经制备、提取、分离和纯化获得有益于人类健康的产品。(5)智能化的生化过程工程生化工程的研究包括基础生物反应的模拟,生物表面和界面,传质、传热、动量传递、信号分子传输和反应,复杂生物系统的工程分析等。生物化工朝智能化工的方向努力,应主动吸收现代物理、数学、生物学、计算机、信息学等最新成就。智能化工是针对广义化工过程,精心设计新产品及其反应、分离提高选择性和过程调优控制,利用现代计算机、智能仪器、系统工程等新技术,密切组合计算机控制、有关模型和专家系统、局部检测点和执行器,使传统化工实现微型化、模块化和非集中化。即通过对化工过程多尺度研究集成和智能操作,以解决物质转化过程中宏观层次的工程与技术中的科学问题。(6)充分发挥国家生化工程中心的桥粱和孵化器作用国家计委和国家科技部抽出一部分资金建立中游(中试放大和工程化)研发机构一国家工程技术中心。1996年科技部在北京、上海、南京、深圳分别建立生物技术产业孵化器一国家生化工程技术研究中心。深圳国家生化中心针对国内外基因工程药物成熟的实验室成果争夺激烈并要价极高,进行的中试放大试验的改进工作量大等因素,运用中心的设备和人才条件,建立起基因工程实验室进行的源头项目研究工作,即节省了大量资金,又充分发挥了现有设备的潜力,更加速了项目开发的速度,有利于赶上国际先进水平和市场的需求,也有利于中心的发展。(7)发展CliO服务产业对于生物技术以及制药公司来说,把新药推向市场并不容易。一个典型新药申请至少需要4000例临床试验,有时需要进行多达50项不同的试验。由于候选药物数目愈来愈多,公司的负担不断增加,为了减少每个药物上市时间上的压力,许多生物技术和制药公司开始整合外部资源进行药物开发。委托研究机构(Contract Research Organization,CRO)具有生物技术及制药公司所需要的特殊专长,全球化、高质量的临床试验管理能力,可以满足这些公司对新药上市时间上的要求。CRO主要面对医药、生物技术公司,提供与药物开发有关的各种专业服务。现已扩展到前期药物先导化合物的发现,一直到新药上市后的一系列服务。如药物发现、临床前研究、药物基因组学、I~Ⅲ期临床、信息学、临床文件、政策法规咨询、生产和包装、推广、市场、产品发布和销售支持、药物经济学以及商业咨询等。主要参考文献1.河北化工。2004(4):1-52.现代化工,2004(6):13.精细与专用化学品,2004,12(2):1-3