光合作用(photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。参考文献:
光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。参考文献:
植物光合作用的多样性光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。1.光合作用的多种途径据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。此外,C4植物的光合作用还有三种变式,即PEP-CK型C4植物,NAD-ME型C4植物和NADP-ME型C4植物,这三类C4植物都具有相似的叶片解剖结构,即花环状维管束和具叶绿体的维管束鞘,其主要差别是产生的中间产物和脱羧酶不同。PEP-CK型C4植物在叶肉细胞内固定CO2形成草酰乙酸,然后转变为天冬氨酸传导至维管束鞘细胞,经丙酮酸磷酸双羧酶脱羧,其碳架以丙酮酸或丙氨酸重新返回到叶肉细胞;NAD-ME型C4植物在叶肉细胞中固定CO2形成天冬氨酸并传导至维管束鞘细胞,然后转化为苹果酸.并在线粒体内脱羧,其碳架再以丙酮酸或丙氨酸转回到叶肉细胞;NADP-ME型C4植物在叶肉细胞固定CO2形成草酰乙酸,而后转化为苹果酸,并被输送到维管束鞘细胞中,在叶绿体内经苹果酸脱羧酶氧化脱羧,产生的碳架以丙氨酸重新返回叶肉细胞。以上三类C4植物在维管束鞘细胞内脱羧后,产生的CO2最终还是通过C3途径被还原,C4途径实际上只起“CO2泵”的作用,以增加反应位置CO2的浓度,从而显著提高光合效率。2.不同光合途径的判定叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。δ13C是近来发展起来的一种新的检测技术,主要依据是C3途径中的 RuBP羧化酶比C4途径中的PEP羧化酶对13CO2具有更大的排斥性,即在13CO2和12CO2中C4植物比C3植物更易消耗13CO2,因此,C4植物有机质中的13C/12C要比C3植物有机质中的13C/12C更大。13CO2和12CO2含量的测定是以国际标样(即普通石灰岩CaCO3)为对照,通过焚烧干燥的植物材料测定的。最后根据下式计算出δ13C(‰)值,即:从上式可以看出,如果在光合作用的碳固定期间13C/12C没有变化,δ13C(‰)将等于零;如果对13CO2有排斥,δ13C(‰)将是一个负数,排斥能力愈大,δ13C(‰)负值也越大。实验证明,在25℃和条件下,PEP羧化酶的δ13C(‰)是-3‰,而在24℃和条件下,RuBP羧化酶的δ13C(‰)是%,这清楚地表明,RuBP羧化酶对13CO2具有比PEP羧化酶更大的排斥性。当温度升高(37℃,)时,RuBP羧化酶的δ13C(‰)显著变负的程度要小一些(‰),这与C3植物光合作用的最适温度偏低(15-25℃)相一致。应用此法目前已测得C3植物的δ13C(‰)在-23到-34‰之间,C4植物的δ13C(‰)在-10到一18‰之间,并据此发现了一些δ13C(‰)居于C3植物与C4植物之间的C3/C4中间类型植物。对于CAM植物来说,得到的δ13C(‰)在-14到-33%之间,显然较低的值落在C4植物的δ13C(‰)范围内,而较高的值则落在C3植物的δ13C(‰)范围内。对此种情况的解释是,许多CAM植物在变化着的环境条件中,能够从光合作用的C3方式转变到CAM,反之亦然。从上新世到二叠纪的代表性化石植物材料中得到的δ13C(0/00),都在现代典型的C3植物范围内,并且目前古老植物中也很少发现有CAM植物存在,这表明植物自来到陆上以来,C3途径就作为一个固定空气中CO2的主要方式进行着。而C4途径和CAM途径似乎比C3途径进化较晚,是C3途径对环境变化的一种适应性反应。3 光合作用多样性与植物系统演化的关系在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。单子叶禾本科被认为是进化程度很高的被子植物类群,其适应性特强,分布极广是众所周知的。研究表明,该科差不多存在几乎所有的光合作用类型,并且公认较原始的竹亚科只有C3型,而进化较高级的虎耳草亚科和须芒草亚科等均为C4型,有些亚科如芦竹亚科等既有C3型,又有C4型。因此,在这种“高级进化科”中研究光合作用的多样性及其进化关系是很有代表意义的。4 结束语据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。
研究动机: 我这次会选「光对植物的影响」这个题目的原因是:世界上到处都是植物,而且我知道植物在生长的过程中,一定需要适度的阳光,所以我想要了解光的强弱对植物的生长是否有影响;不同的光对植物的生长是否有影响;不同颜色的光对植物的生长是否有影响。研究目的: (一)光的强弱,对植物生长的影响?(二)不同颜色的光,对植物生长的影响?(三)光的强弱,对植物生产养分的影响?研究结论与建议:实验一、光的强弱,对植物生长的影响 从这个实验中,发现 (一)25W下的植物长的最快,平均每天长,因为25W的光最强,所以植物有足够的光线可以使自己快速生长。 (二)8W下的植物长的最慢,平均每天长,因为8W的光线最弱,所以植物没有足够的光线可以使自己生长。实验二、不同颜色的光,对植物生长的影响从这个实验中,发现(一)在8W的叶子加上碘液,发现颜色稍淡,可能是因为8W的灯光不够强,无法使植物大量的制造养分,因此颜色较淡。(二)在25W的叶子加上碘液,发现两个的颜色都差不多,颜色较深,可能是因为25W的光线已足够植物制造养分,所以在25W灯光下的植物,养分较多。实验三、光的强弱,对植物生产养分的影响从这个实验中,发现(一)在8W的叶子加上碘液,发现颜色稍淡,可能是因为8W的灯光不够强,无法使植物大量的制造养分,因此颜色较淡。(二)在25W的叶子加上碘液,发现两个的颜色都差不多,颜色较深,可能是因为25W的光线已足够植物制造养分,所以在25W灯光下的植物,养分较多。一、光的强弱,对植物生长的影响?(一)从实验中发现,绿豆的茎都长的特别高,可能是因为给植物光照的时间不够,导致植物的叶子特别少,而茎却特别高,所以在实验中,植物高度的差异性很小,在下次实验的时候,光的瓦数差异要更大,光照的时间要很久,才能做出差异性较显著的实验。(二)当初,是把为发芽的绿豆埋进去,但是,每颗绿豆发芽的时间都不一样,导致实验有误差,下次做实验,应该把一样高的芽放在一起,才能减少实验的误差。二、光的颜色,对植物生长的影响? 我们发现不同波长的光对植物生长发育有不同的影响。植物在行光合作用过程中,并不是所有波长的光能都可利用,光线中的红光与蓝光(红色光的波长范围为640-740nm,蓝色光为420-490nm)是被植物吸收最多的,并能促进叶绿素的形成,具有最大的光合活性(行光合作用的能力)。绿光容易被绿色叶子反射和透射,因此很少被吸收利用。但是在本次的实验中观察到照射紫光的绿豆长的最高,其次才是照射蓝光与红光的绿豆,是否还有其他的重要因素影响本次的实验,导致实验结果不如预期,是一个值得探讨的好问题。 三、光的强弱,对植物生产养分的影响 ? 从实验中发现,植物滴上碘液以後,并没有明显的差距,可能是因为光照的时间不够久,导致叶子的养分都被拿来使用。在摘下来以後,都处於阴暗处,导致养分拿来供给叶子,使得实验并没有明显的差距,在下次的实验中,让植物照光时,照得久一点,并且放置在有阳光的地方,才能避免养分的流失。
植物光合作用及其对光的需求无论是采用太阳光还是人工光进行植物生产,最终都是通过光合作用来完成产物的积累。光合作用是通过植物叶绿素等光合器官,在光能作用下将CO2和水转化为糖和淀粉等碳水化合物并释放出氧气的生理过程;与光合作用相对应的是呼吸作用,呼吸作用是通^植物线粒体等呼吸器官,吸收氧气和分解有机物而释放CO2与能量的生理过程,是植物把光合作用形成的碳水化合物作为能量用来形成根、茎、叶等形态建成的重要生理活动。呼吸作用包括与光合作用毫无关系的暗呼吸以及与光合作用同时进行的光呼吸2个部分。作物的光合作用与呼吸作用之间有一个相互平衡的过程,随着生长阶段的不同,其平衡点也不同。实际生产中经常利用控制作物的光合速度和呼吸速度来调节营养生长和生殖生长的相对平衡,达到提高目标产量或改善产品品质的目的。植物的光合作用与CO2的吸收、释放关系密切,光合时吸收CO2,呼吸时排放CO2,这2种生理活动是同时进行的,所以光合器官的叶片内外的CO2交换速度也就等于光合速度减去呼吸速度。通常把该CO2交换速度也叫做净光合速度,其中的呼吸速度则是暗呼吸速度与光呼吸速度的总和。一般而言,C3植物光呼吸速度高,C4植物光呼吸速度低。因此,净光合速度为0时,光合速度等于光呼吸速度。光合速度的单位为kg/cm2・s)或mol/cm2・s)(以CO2计),表示单位叶面积单位时间内CO2的吸收、排放或交换量。光强对作物光合的影响光合产物的形成与光照的强度及其累积的时间密切相关。光照的强弱一方面影响着光合强度,同时还能改变作物形态,如开花、节间长短、茎的粗细及叶片的大与厚薄等。在某一CO2浓度和一定的光照强度范围内,光合强度随光照强度的增加而增加。当光照强度超过光饱和点时,净光合速度不但不会增加,反而还会形成抑制作用,使叶绿素分解而导致作物的生理障碍。不同类型植物的光饱和点的差异较大,光饱和点一般会随着环境中CO2浓度的增加而提高。因此,植物生产中给予光饱和点以上的光照强度毫无意义;而另一方面,当光照强度长时间处于光补偿点之下,植物的呼吸作用超过了光合作用,有机物消耗多于积累,作物生长缓慢,严重时还会导致植株枯死,因此对植物生长也极为不利。通常情况下,耐荫植物的光补偿点为200~1000 lx,喜阳植物的光补偿点为1000~2000 lx。植物对光照强度的要求可分为喜光型、喜中光型、耐弱光型植物。蔬菜多数属于喜光型植物,其光补偿点和光饱和点均比较高,在人工光植物工厂中作物对光照强度的相关要求是选择人工光源的最重要依据,了解不同植物的光照需求对设计人工光源、提高系统的生产性能都是极为必要的。光质对作物光合的影响光质或光谱分布对植物光合作用和形态建成同样具有重要影响,地球上的植物都是在经过亿万年的自然选择来不断适应太阳辐射,并依据种类不同而具有光选择性吸收特征的。到达地面的太阳辐射的波长范围为300~2000 nm,而以500 nm处能量最高。太阳辐射中,波长380nm以下的成为紫外线,380~760 nm的叫可见光,760 nm以上的是红外线也称为长波辐射或热辐射。太阳辐射总能量中,可见光或光合有效辐射占45%~50%,紫外线占1%~2%,其余为红外线。波长400~700 nm的部分是植物光合作用主要吸收利用的能量区间,称为光合有效辐射;波长700~760 nm的部分称为远红光,它对植物的光形态建成起到一定的作用。在植物光合过程中,植物吸收最多的是红、橙光(600~680 nm),其次是蓝紫光和紫外线(300~500nm),绿光(500~600 nm)吸收的很少。紫外线波长较短的部分,能抑制作物的生长,杀死病菌孢子、波长较长的部分,可促进种子芽、果实成熟,提高蛋白质、维生素和糖的含量;红外线还对植物的萌芽和生长有刺激作用,并产生热效应。不同的光谱成分对植物的影响效果也不尽相同(表1),强光条件下蓝色光可促进叶绿素的合成,而红色光则阻碍其合成。虽然红色光是植物光合作用重要的能量源,但如果没有蓝色光配合则会造成植物形态的异常。大量的光谱实验表明,适当的红色光(600~700 nm)/蓝色光(400~500 nm)比(R/B比)才能保证培育出形态健全的植物,红色光过多会引起植物徒长,蓝色光过多会抑制植物生长。适当的红色光(600~700 nm)/远红色光(700~800 nm)比(R/FR比)能够调节植物的形态形成,大的R/FR比能够缩短茎节间距而起到矮化植物的效果,相反小的R/FR比可以促进植物的生长。所有这些特征都是植物工厂选择人工光源时必须考虑的重要因素,尤其是对于近年来发展起来的新型节能光源,如LED、LD以及冷阴极管等来说显得更为重要,因为这些光源需要通过不同光谱的单色光组合构成作物最适直的光质配比,以保障高效生产和节能的需求。光周期对植物的影响植物的光合作用和光形态建成与日长(或光期时间)之间的相互关系称其为植物的光周性。光周性与光照时数密切相关,光照时数是指作物被光照射的时间。不同的作物,完成光周期需要一定的光照时数才能开花结实。长日照作物,如白菜、芜青、芭英菜等,在其生育的某一阶段需要12~14 h以上的光照时数;短日照作物,如洋葱、大豆等,需要12~14h一下的光照时数;中日照作物,如黄瓜、番茄、辣椒等,在较长或较短的光照时数下,都能开花结实。
才十分,会写都不帮你写哦。。。。。
一谈你对生物的了解2谈现今生物的发展状况3谈生物学上的生活例子4谈你对生物学用于生活的感受。5谈你对学习生物的感受6谈人类对生活的态度7谈你对未来生活发展与人类发展的观点8总结前7点~
植物光合作用及其对光的需求无论是采用太阳光还是人工光进行植物生产,最终都是通过光合作用来完成产物的积累。光合作用是通过植物叶绿素等光合器官,在光能作用下将CO2和水转化为糖和淀粉等碳水化合物并释放出氧气的生理过程;与光合作用相对应的是呼吸作用,呼吸作用是通^植物线粒体等呼吸器官,吸收氧气和分解有机物而释放CO2与能量的生理过程,是植物把光合作用形成的碳水化合物作为能量用来形成根、茎、叶等形态建成的重要生理活动。呼吸作用包括与光合作用毫无关系的暗呼吸以及与光合作用同时进行的光呼吸2个部分。作物的光合作用与呼吸作用之间有一个相互平衡的过程,随着生长阶段的不同,其平衡点也不同。实际生产中经常利用控制作物的光合速度和呼吸速度来调节营养生长和生殖生长的相对平衡,达到提高目标产量或改善产品品质的目的。植物的光合作用与CO2的吸收、释放关系密切,光合时吸收CO2,呼吸时排放CO2,这2种生理活动是同时进行的,所以光合器官的叶片内外的CO2交换速度也就等于光合速度减去呼吸速度。通常把该CO2交换速度也叫做净光合速度,其中的呼吸速度则是暗呼吸速度与光呼吸速度的总和。一般而言,C3植物光呼吸速度高,C4植物光呼吸速度低。因此,净光合速度为0时,光合速度等于光呼吸速度。光合速度的单位为kg/cm2・s)或mol/cm2・s)(以CO2计),表示单位叶面积单位时间内CO2的吸收、排放或交换量。光强对作物光合的影响光合产物的形成与光照的强度及其累积的时间密切相关。光照的强弱一方面影响着光合强度,同时还能改变作物形态,如开花、节间长短、茎的粗细及叶片的大与厚薄等。在某一CO2浓度和一定的光照强度范围内,光合强度随光照强度的增加而增加。当光照强度超过光饱和点时,净光合速度不但不会增加,反而还会形成抑制作用,使叶绿素分解而导致作物的生理障碍。不同类型植物的光饱和点的差异较大,光饱和点一般会随着环境中CO2浓度的增加而提高。因此,植物生产中给予光饱和点以上的光照强度毫无意义;而另一方面,当光照强度长时间处于光补偿点之下,植物的呼吸作用超过了光合作用,有机物消耗多于积累,作物生长缓慢,严重时还会导致植株枯死,因此对植物生长也极为不利。通常情况下,耐荫植物的光补偿点为200~1000 lx,喜阳植物的光补偿点为1000~2000 lx。植物对光照强度的要求可分为喜光型、喜中光型、耐弱光型植物。蔬菜多数属于喜光型植物,其光补偿点和光饱和点均比较高,在人工光植物工厂中作物对光照强度的相关要求是选择人工光源的最重要依据,了解不同植物的光照需求对设计人工光源、提高系统的生产性能都是极为必要的。光质对作物光合的影响光质或光谱分布对植物光合作用和形态建成同样具有重要影响,地球上的植物都是在经过亿万年的自然选择来不断适应太阳辐射,并依据种类不同而具有光选择性吸收特征的。到达地面的太阳辐射的波长范围为300~2000 nm,而以500 nm处能量最高。太阳辐射中,波长380nm以下的成为紫外线,380~760 nm的叫可见光,760 nm以上的是红外线也称为长波辐射或热辐射。太阳辐射总能量中,可见光或光合有效辐射占45%~50%,紫外线占1%~2%,其余为红外线。波长400~700 nm的部分是植物光合作用主要吸收利用的能量区间,称为光合有效辐射;波长700~760 nm的部分称为远红光,它对植物的光形态建成起到一定的作用。在植物光合过程中,植物吸收最多的是红、橙光(600~680 nm),其次是蓝紫光和紫外线(300~500nm),绿光(500~600 nm)吸收的很少。紫外线波长较短的部分,能抑制作物的生长,杀死病菌孢子、波长较长的部分,可促进种子芽、果实成熟,提高蛋白质、维生素和糖的含量;红外线还对植物的萌芽和生长有刺激作用,并产生热效应。不同的光谱成分对植物的影响效果也不尽相同(表1),强光条件下蓝色光可促进叶绿素的合成,而红色光则阻碍其合成。虽然红色光是植物光合作用重要的能量源,但如果没有蓝色光配合则会造成植物形态的异常。大量的光谱实验表明,适当的红色光(600~700 nm)/蓝色光(400~500 nm)比(R/B比)才能保证培育出形态健全的植物,红色光过多会引起植物徒长,蓝色光过多会抑制植物生长。适当的红色光(600~700 nm)/远红色光(700~800 nm)比(R/FR比)能够调节植物的形态形成,大的R/FR比能够缩短茎节间距而起到矮化植物的效果,相反小的R/FR比可以促进植物的生长。所有这些特征都是植物工厂选择人工光源时必须考虑的重要因素,尤其是对于近年来发展起来的新型节能光源,如LED、LD以及冷阴极管等来说显得更为重要,因为这些光源需要通过不同光谱的单色光组合构成作物最适直的光质配比,以保障高效生产和节能的需求。光周期对植物的影响植物的光合作用和光形态建成与日长(或光期时间)之间的相互关系称其为植物的光周性。光周性与光照时数密切相关,光照时数是指作物被光照射的时间。不同的作物,完成光周期需要一定的光照时数才能开花结实。长日照作物,如白菜、芜青、芭英菜等,在其生育的某一阶段需要12~14 h以上的光照时数;短日照作物,如洋葱、大豆等,需要12~14h一下的光照时数;中日照作物,如黄瓜、番茄、辣椒等,在较长或较短的光照时数下,都能开花结实。
我家的花盆里种着许多绿色的植物。有茶花、对对红、四季兰、杜鹃花……它们用自己的叶绿体在阳光下进行光合作用。将二氧化碳和水转化为有机食物,放出氧气。可是,红色叶子的植物能进行光合作用吗?如红苋菜、秋海棠,它们的叶子都不是绿色的,怎么进行光合作用呢?我带着这个疑问查阅了《十万个为什么》等科普书籍,终于找到了答案,原来红色叶子里也有叶绿素。之所以成为红色,主要是含有红色的花青素的缘故,它们含的花青素很多,颜色很浓,把叶绿素的绿色盖住了。所以看上去是红色的。但是红叶子也能进行光合作用。可是怎么证实这件事呢?书中还说:只需把红叶子放在热水里煮一下,就真相大白了。于是,我去野外采来几张红苋菜和秋海棠的叶子,放在热水中,然后进行加热.不一会儿,奇迹出现了,红叶子变成了绿叶子.这是什么原因呢?我又查阅了其它书籍,原来花青素是很容易溶于水的,而叶绿素是不溶于水的。在热水里,花青素溶解了,叶绿素仍留在叶子中,煮过后的叶子由红变绿了,这就证明红叶子里的确有叶绿素存在。这就是大自然的奥秘。科学是一门了不起的学问,需要我们不断探索、研究,才会有收获。
植物光合作用的多样性光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。1.光合作用的多种途径据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。此外,C4植物的光合作用还有三种变式,即PEP-CK型C4植物,NAD-ME型C4植物和NADP-ME型C4植物,这三类C4植物都具有相似的叶片解剖结构,即花环状维管束和具叶绿体的维管束鞘,其主要差别是产生的中间产物和脱羧酶不同。PEP-CK型C4植物在叶肉细胞内固定CO2形成草酰乙酸,然后转变为天冬氨酸传导至维管束鞘细胞,经丙酮酸磷酸双羧酶脱羧,其碳架以丙酮酸或丙氨酸重新返回到叶肉细胞;NAD-ME型C4植物在叶肉细胞中固定CO2形成天冬氨酸并传导至维管束鞘细胞,然后转化为苹果酸.并在线粒体内脱羧,其碳架再以丙酮酸或丙氨酸转回到叶肉细胞;NADP-ME型C4植物在叶肉细胞固定CO2形成草酰乙酸,而后转化为苹果酸,并被输送到维管束鞘细胞中,在叶绿体内经苹果酸脱羧酶氧化脱羧,产生的碳架以丙氨酸重新返回叶肉细胞。以上三类C4植物在维管束鞘细胞内脱羧后,产生的CO2最终还是通过C3途径被还原,C4途径实际上只起“CO2泵”的作用,以增加反应位置CO2的浓度,从而显著提高光合效率。2.不同光合途径的判定叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。δ13C是近来发展起来的一种新的检测技术,主要依据是C3途径中的 RuBP羧化酶比C4途径中的PEP羧化酶对13CO2具有更大的排斥性,即在13CO2和12CO2中C4植物比C3植物更易消耗13CO2,因此,C4植物有机质中的13C/12C要比C3植物有机质中的13C/12C更大。13CO2和12CO2含量的测定是以国际标样(即普通石灰岩CaCO3)为对照,通过焚烧干燥的植物材料测定的。最后根据下式计算出δ13C(‰)值,即:从上式可以看出,如果在光合作用的碳固定期间13C/12C没有变化,δ13C(‰)将等于零;如果对13CO2有排斥,δ13C(‰)将是一个负数,排斥能力愈大,δ13C(‰)负值也越大。实验证明,在25℃和条件下,PEP羧化酶的δ13C(‰)是-3‰,而在24℃和条件下,RuBP羧化酶的δ13C(‰)是%,这清楚地表明,RuBP羧化酶对13CO2具有比PEP羧化酶更大的排斥性。当温度升高(37℃,)时,RuBP羧化酶的δ13C(‰)显著变负的程度要小一些(‰),这与C3植物光合作用的最适温度偏低(15-25℃)相一致。应用此法目前已测得C3植物的δ13C(‰)在-23到-34‰之间,C4植物的δ13C(‰)在-10到一18‰之间,并据此发现了一些δ13C(‰)居于C3植物与C4植物之间的C3/C4中间类型植物。对于CAM植物来说,得到的δ13C(‰)在-14到-33%之间,显然较低的值落在C4植物的δ13C(‰)范围内,而较高的值则落在C3植物的δ13C(‰)范围内。对此种情况的解释是,许多CAM植物在变化着的环境条件中,能够从光合作用的C3方式转变到CAM,反之亦然。从上新世到二叠纪的代表性化石植物材料中得到的δ13C(0/00),都在现代典型的C3植物范围内,并且目前古老植物中也很少发现有CAM植物存在,这表明植物自来到陆上以来,C3途径就作为一个固定空气中CO2的主要方式进行着。而C4途径和CAM途径似乎比C3途径进化较晚,是C3途径对环境变化的一种适应性反应。3 光合作用多样性与植物系统演化的关系在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。单子叶禾本科被认为是进化程度很高的被子植物类群,其适应性特强,分布极广是众所周知的。研究表明,该科差不多存在几乎所有的光合作用类型,并且公认较原始的竹亚科只有C3型,而进化较高级的虎耳草亚科和须芒草亚科等均为C4型,有些亚科如芦竹亚科等既有C3型,又有C4型。因此,在这种“高级进化科”中研究光合作用的多样性及其进化关系是很有代表意义的。4 结束语据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。
生物学是 自然 科学中的一门基础学科,学科的特点不仅具有理论的严密性,同时更具有应用的广泛性。下面是我为大家精心推荐的关于生物的科技论文范文,希望能够对您有所帮助。 关于生物的科技论文范文篇一 如何学好高中生物 生物学是 自然 科学中的一门基础学科,学科的特点不仅具有理论的严密性,同时更具有应用的广泛性。高中生物更侧重于生物科学理论的学习和其应用方面,它研究的内容包括生物的结构,生理,分布,遗传和变异,进化,生态及稳态等。它与人类生存息息相关,大到发明创造,小到衣食住行,人类片刻也离不开生物科学。所以学好高中生物非常重要,如何学好高中生物,我认为可以尝试以下的措施。 一、学会预习的方法 预习是学生正式听课学习之前所做的知识准备,是一种初步的自我学习行为。通过预习可以有效地提高课堂学习质量,这己是许多优秀学生取得好成绩的必由之路。那么,预习有哪些步骤,如何掌握良好的预习方法呢? (1)初步了解教材内容,对即将学习的基本内容先作一个初步的了解,并记下要点。如在预习阅读过程中可对一些生物学概念、 规律等结论性内容用笔勾勾划划。 (2)加强新旧知识联系。预习过程中,学生会发现前面所学的知识若掌握不牢,就会影响新知识的学习。因此,预习时可以及时复习旧知识,使新旧知联系起来。 (3)生物教材中的图表较多,预习应做到看书与思考相结合,看书与看图表相结合,看书与解题相结合,看书与质疑问难相结合,然后带着问题听课,有的放矢,提高听课效率。 二、学会课堂学习的方法 (1)学会记笔记 学习生物时还要学会记笔记,笔记是一项技巧性的活动。学习记笔记不但要求学生具有一定的书写、绘图能力,而且要求学生具有一定的学科知识和提炼笔记内容的能力。刚一开始学生可能跟不上,可每节课后找适量时间整理补充笔记。但要避免将笔记记为教师上课的流水账,不加选择地全部记下,也要避免将笔记记成教师板书的翻版。上课是紧张的脑力劳动过程。生物课是理科课程,理解思维是上课的关键所在,因此要教学生处理好听课、思考和记笔记的关系。如果思考与记笔记发生矛盾,要先跟随老师思路思考,避免因记笔记而使后继内容无法理解,对于笔记可采用写标题留空白课后补充的方法。笔记可以使课后复习的效率得以提高,并丰富完善知识体系。 (2)学会理论联系实际 生物知识内容十分丰富,实践性强,应用性广,学习时要紧密结合,密切联系周围的事物和现象、国内外新的生物技术等热点,让学习更贴近生活实际,更为鲜活有趣。例如,糖尿病患者是因为吃得糖太多吗?还可以调查或观察环境污染对周围生物的影响等。学生要尽可能地走进大 自然,亲身感受生活中的生物知识和现象,将书本、课堂上学到的知识和能力在现实生活中得到应用,培养观察分析、活学活用、理论联系实际、解决具体问题的能力以及交流合作、实践创新的能力。 (3)学会思考生物问题 学习生物不仅要认识和记住一些必要的知识,还要善于通过分析综合、对比判断,研究生命现象的特征与成因,思考它们之间的相互关系,这就要懂得学会思考分析生物问题。如运用综合的观点观察现象、分析联系、找出 规律,如DNA和RNA的区别、物质循环和能量流动的异同及联系等,形成鲜明而准确的印象。学生学习时要善于观察、勇于探索、敢于思考质疑,做生活和学习的有心人。 三、学会收集处理信息 现代社会是信息社会,生活中处处蕴含着信息。如电视新闻、报纸杂志、媒体 网络、 旅游科技、综艺 体育等,经常为人们提供大量的知识信息。这些信息中很多是人们普遍关心的鲜活生动的生物知识和敏感具体的生物问题,要善于收集和处理,不断补充丰富的生物知识。学生课外要注意博览群书,养成良好的信息素养,如走进图书馆,访问互联网站,参加社会实践调查等,及时查阅收集、检索处理生物信息。这不仅是生物课堂教学的重要延伸,也是学生收集资料、获取信息、充实知识、丰富阅历的有效途径。信息就是资源,信息就是知识,要使自己成为生活和学习的主人,不断提高学生搜集和处理信息的能力和培养勇于实践、创新学习的意识。 此外,学生还要学会复习,学会归纳 总结、学会图文转换、学会知识迁移等。当然,学有法而无定法。学生力求形成行之有效的学习方法。培养自己的非智力因素,提高自己的生物学兴趣,增强学习的信心,从而更好的学好高中生物这门课程。 关于生物的科技论文范文篇二 浅谈初中生物教学 摘要:如何提高学生学习生物的兴趣,如何组织和设计好每一堂课,努力提高生物教学质量,是每一位生物教师在新课程理念下必须探讨的问题。 关键词:生物;教学;兴趣;热情 新课标明确规定,在实施素质教育的今天,教师不仅要教学生学会,更重要的是教学生会学。然而,在当前中学生物学教学中,培养学生自学能力不是被忽视就是束手无策。那么,如何在生物学教学中培养学生的自学能力呢?下面就把我在这方面的一些探索介绍如下,以抛砖引玉。 1.掌握方法,增强自学效果。自学的主要形式是阅读。阅读有预习阅读、课中阅读、复习阅读和课外阅读等形式,不论哪种形式的阅读,教师都必须在方法上给予正确指导,才能收到良好的自学效果。 课中阅读是教师随教学进程提出问题让学生阅读一个或几个重点的相关段落。为了使学生对所阅读的重点段落做到字斟句酌,我常变换形式提出问题让学生阅读思考。如阅读减数分裂概念时,我提出的问题是:①进行减数分裂的生物对象是什么?②什么数被减?③数被减了多少?④在第几次分裂发生减数?⑤全过程染色体数的变化规律是什么?我指导学生在阅读容易混淆的概念时,要运用对比法加以区分,找出异同点,从而掌握概念的实质。如呼吸作用和光合作用,有氧呼吸和无氧呼吸,无性生殖和有性生殖,DNA和RNA,无籽西瓜和无籽番茄等。 复习阅读是在教师授完一个单元或全部课程后,要求学生进行系统的阅读。为了使学生对所学知识融会贯通、强化记忆,我指导学生运用分析综合法进行专题阅读,对不同章节出现的同类知识进行归纳、整理,组合成完整的知识体系。如在复习高中《生物》时,我要求以染色体为线索,整理出以下几个方面的知识:①染色体的形态、数目;②染色体的化学成分——染色体与DNA的关系;③染色体的存在部位及存在形态;④染色体的复制(时期与方式);⑤染色体的传递规律:有丝分裂的传递与减数分裂的传递的比较;⑥染色体在减数分裂中的行为与3个遗传规律的关系;⑦染色体变异与单倍体育种、多倍体育种。 课外阅读通常是学生在参加课外科技活动实践中,为解决所遇到的问题去查阅课外参考书。由于生物学课外参考书种类很多,为了遵循可读性、实用性和科学性原则,我都主动帮助学生选好课外书。我在指导学生阅读时,要求做到:①有所侧重;②弃粗取精;③做好笔记。为了促进学生积极参与课外读,我要求每位学生每学期根据自己课外科技活动实践写一篇生物小论文。课外阅读不仅可扩大学生的知识眼界、激发学习生物学的兴趣,还能加深对课内知识的理解,有助于培养学生的自学能力。 2.检查评价,激发自学热情。不论是让学生阅读还是让学生参加实践,单有布置而没有检查无法落实,而有检查没有评价无法激发自学热情。我的做法是:每节新课前,都要利用预习提纲中的问题先提问学生。在教学进程中,对一些较易混淆的概念和较难懂的问题先让学生讨论,再由学习基础较好的学生进行回答。对学生的作答,我都是当场给予评价,肯定正确,指出错误,对回答好的打成绩予以鼓励。对学生的生物学小论文和生物学小报,组织全教研组教师进行评选,这些做法使学生感受到获得自学成就的喜悦,进而增强自学的信心。 3.养成习惯,提高自学能力。无数事实证明,大凡学习成绩优异的学生都掌握了较好的自学方法和养成良好的自学习惯。因此,我在平时教学中就有意培养学生以下4种自学习惯: (1)养成不先预习不听课、不先复习不做作业的自学习惯。课前预习可使学生对新课有大概了解,哪些难懂的地方需要在课堂上问老师也心中有数,这既提高了学生听课的效率,也提高了教师授课的针对性。课后及时复习不仅有利于对新知识的消化吸收和强化记忆,也有利于提高完成作业的效率。 (2)养成勤查工具书的自学习惯。中学生物学教材中涉及到许多生物学理论、学说和定律,生物学现象,动植物和微生物名称、名词,生物学著作和生物学家等知识,由于在教材中没有做详细的注解,学生在自学中必然会遇到许多疑惑不解的名词术语,那么解决的最好办法就是查阅工具书。 (3)养成爱思考、爱质疑的自学习惯。“学源于思,思源于疑。”我启发学生在自学过程中要善于发现疑点,敢于提出自己独立的见解。教会学生质疑不仅可调动学生自学的兴趣,还可以培养学生的发散思维、激发学生的智慧潜力。边阅读边思考也有利于知识迁移。 (4)养成博览群书的自学习惯。中学生单从课本中获取知识是很有限的,因此我引导学生要多读一些与生物 科学有关的报刊和课外书籍,通过摘录、剪贴建立自己的“生物学资料库”。这不仅可扩大学生的科学视野,还能吸取更多的课外知识、提高自身的综合素质。 看了关于生物的科技论文范文的人还看 1. 浅谈高中生物科技论文 2. 关于高中生物科技小论文 3. 生物技术论文范文 4. 浅谈高中生物论文范文 5. 生物学论文范文
在网上有很多关于植物光合作用与人的关系的资料,多下一点,整理一下就成了你的文章,不过,这样的文章不能用来发表,交作业是可以的。
植物光合作用的多样性光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。1.光合作用的多种途径据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。此外,C4植物的光合作用还有三种变式,即PEP-CK型C4植物,NAD-ME型C4植物和NADP-ME型C4植物,这三类C4植物都具有相似的叶片解剖结构,即花环状维管束和具叶绿体的维管束鞘,其主要差别是产生的中间产物和脱羧酶不同。PEP-CK型C4植物在叶肉细胞内固定CO2形成草酰乙酸,然后转变为天冬氨酸传导至维管束鞘细胞,经丙酮酸磷酸双羧酶脱羧,其碳架以丙酮酸或丙氨酸重新返回到叶肉细胞;NAD-ME型C4植物在叶肉细胞中固定CO2形成天冬氨酸并传导至维管束鞘细胞,然后转化为苹果酸.并在线粒体内脱羧,其碳架再以丙酮酸或丙氨酸转回到叶肉细胞;NADP-ME型C4植物在叶肉细胞固定CO2形成草酰乙酸,而后转化为苹果酸,并被输送到维管束鞘细胞中,在叶绿体内经苹果酸脱羧酶氧化脱羧,产生的碳架以丙氨酸重新返回叶肉细胞。以上三类C4植物在维管束鞘细胞内脱羧后,产生的CO2最终还是通过C3途径被还原,C4途径实际上只起“CO2泵”的作用,以增加反应位置CO2的浓度,从而显著提高光合效率。2.不同光合途径的判定叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。δ13C是近来发展起来的一种新的检测技术,主要依据是C3途径中的 RuBP羧化酶比C4途径中的PEP羧化酶对13CO2具有更大的排斥性,即在13CO2和12CO2中C4植物比C3植物更易消耗13CO2,因此,C4植物有机质中的13C/12C要比C3植物有机质中的13C/12C更大。13CO2和12CO2含量的测定是以国际标样(即普通石灰岩CaCO3)为对照,通过焚烧干燥的植物材料测定的。最后根据下式计算出δ13C(‰)值,即:从上式可以看出,如果在光合作用的碳固定期间13C/12C没有变化,δ13C(‰)将等于零;如果对13CO2有排斥,δ13C(‰)将是一个负数,排斥能力愈大,δ13C(‰)负值也越大。实验证明,在25℃和条件下,PEP羧化酶的δ13C(‰)是-3‰,而在24℃和条件下,RuBP羧化酶的δ13C(‰)是%,这清楚地表明,RuBP羧化酶对13CO2具有比PEP羧化酶更大的排斥性。当温度升高(37℃,)时,RuBP羧化酶的δ13C(‰)显著变负的程度要小一些(‰),这与C3植物光合作用的最适温度偏低(15-25℃)相一致。应用此法目前已测得C3植物的δ13C(‰)在-23到-34‰之间,C4植物的δ13C(‰)在-10到一18‰之间,并据此发现了一些δ13C(‰)居于C3植物与C4植物之间的C3/C4中间类型植物。对于CAM植物来说,得到的δ13C(‰)在-14到-33%之间,显然较低的值落在C4植物的δ13C(‰)范围内,而较高的值则落在C3植物的δ13C(‰)范围内。对此种情况的解释是,许多CAM植物在变化着的环境条件中,能够从光合作用的C3方式转变到CAM,反之亦然。从上新世到二叠纪的代表性化石植物材料中得到的δ13C(0/00),都在现代典型的C3植物范围内,并且目前古老植物中也很少发现有CAM植物存在,这表明植物自来到陆上以来,C3途径就作为一个固定空气中CO2的主要方式进行着。而C4途径和CAM途径似乎比C3途径进化较晚,是C3途径对环境变化的一种适应性反应。3 光合作用多样性与植物系统演化的关系在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。单子叶禾本科被认为是进化程度很高的被子植物类群,其适应性特强,分布极广是众所周知的。研究表明,该科差不多存在几乎所有的光合作用类型,并且公认较原始的竹亚科只有C3型,而进化较高级的虎耳草亚科和须芒草亚科等均为C4型,有些亚科如芦竹亚科等既有C3型,又有C4型。因此,在这种“高级进化科”中研究光合作用的多样性及其进化关系是很有代表意义的。4 结束语据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。
才十分,会写都不帮你写哦。。。。。
在农作物种种植技术上,可以采取多种措施增大单位空间的叶总面积,以提高光能利用的效率。立体种植是充分利用光能的典型实力之一,立体种植就是把两种或两种以上的作物,在空间和时间上进行最优化组合,达到增产、增收的目的。比如葡萄栽植后的1~3年内,株小而产量低。可在葡萄的行间栽植夏季怕强光高温的草莓,通过葡萄的遮阳作用,为夏季草莓成长提供有利条件。
[编辑本段]1. 光合作用的基本概念 中文解释光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化 为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。 英文描述Photosynthesis is the conversion of energy from the Sun to chemical energy (sugars) by green plants. The "fuel" for ecosystems is energy from the Sun. Sunlight is captured by green plants during photosynthesis and stored as chemical energy in carbohydrate molecules. The energy then passes through the ecosystem from species to species when herbivores eat plants and carnivores eat the herbivores. And these interactions form food chains. [编辑本段]2. 光合作用的基本原理光合作用可分为光反应和暗反应(又叫碳反应)两个阶段。 光反应条件:光照、光合色素、光反应酶。场所:叶绿体的类囊体薄膜。过程:①水的光解:2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)。②ATP的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)。影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度等。意义:①光解水,产生氧气。②将光能转变成化学能,产生ATP,为暗反应提供能量。③利用水光解的产物氢离子,合成NADPH,为暗反应提供还原剂NADPH。 暗反应暗反应的实质是一系列的酶促反应。 条件:暗反应酶。场所:叶绿体基质。影响因素:温度、CO2浓度、酸碱度等。 过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。暗反应可分为C3、C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与NADPH及ATP提供的能量反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与暗反应。光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。 [编辑本段]3. 光合作用的详细机制植物利用阳光的能量,将二氧化碳转换成淀粉,以供植物及动物作为食物的来源。叶绿体由于是植物进行光合作用的地方,因此叶绿体可以说是阳光传递生命的媒介。 原理 植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。 这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气 注意事项上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。 光反应和暗反应请参见本词条的“基本原理”栏目。 吸收峰 叶绿素a,b的吸收峰叶绿素a、b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子(以蓝紫光为主,伴有少量红色光),作为能量,将从水分子光解过程中得到电子不断传递,(能传递电子得仅有少数特殊状态下的叶绿素a) 最后传递给 辅酶二 NADP+。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP+带走。一分子NADP+可携带两个氢离子,NADP +2e- +H+ =NADPH .还原性辅酶二 DANPH则在暗反应里面充当还原剂的作用。 有关化学方程式H20→2H+ 1/2O2(水的光解) NADP+ + 2e- + H+ → NADPH(递氢) ADP+Pi→ATP (递能) CO2+C5化合物→2C3化合物(二氧化碳的固定) 2C3化合物→(CH2O)+ C5化合物(有机物的生成或称为C3的还原)ATP→ADP+PI(耗能)能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)注意:光反应只有在光照条件下进行,而只要在满足暗反应条件的情况下暗反应都可以进行。也就是说暗反应不一定要在黑暗条件下进行。 光反应阶段和暗反应阶段的关系①联系:光反应和暗反应是一个整体,二者紧密联系。光反应是暗反应的基础,光反应阶段为暗反应阶段提供能量(ATP)和还原剂(【H】),暗反应产生的ADP和Pi为光反应合成ATP提供原料。②区别:(见下表) 项目光反应暗反应 实质光能→ 化学能,释放O2同化CO2形成(CH2O)(酶促反应)时间短促,以微秒计较缓慢 条件需色素、光和酶不需色素和光,需多种酶场所在叶绿体内囊状结构薄膜上进行在叶绿体基质中进行物质转化2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下) ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)CO2+C5→2C3(在酶的催化下)C3+【H】→(CH2O)+ C5(在酶和ATP的催化下)能量转化叶绿素把光能转化为活跃的化学能并储存在ATP中ATP中活跃的化学能转化变为糖类等有机物中稳定的化学能[编辑本段]4. 光合作用的要点解析 光合色素和电子传递链组分 光合色素 类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:1, 在许多藻类中除叶绿素a,b外,还有叶绿素c,d和藻胆素,如藻红素和藻蓝素;在光合细菌中是细菌叶绿素等。叶绿素a,b和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。类胡罗卜素与叶黄素能对叶绿素a,b启一定的保护作用。几类色素的吸收光谱不同,叶绿素a,b吸收红,橙,蓝,紫光,类胡罗卜素吸收蓝紫光,吸收率最低的为绿光。特别是藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件,有生态意义。 集光复合体(light harvesting complex) 由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。 光系统Ⅱ(PSⅡ) 吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体(oxygen evolving complex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。 细胞色素b6/f复合体(cyt b6/f complex)可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。 光系统Ⅰ(PSI) 能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。 光反应与电子传递P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原 绿叶是光合作用的场所初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。 2H 2O→O2 + 2【2H】+ 4e- 在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin,PC)中的Cu2+,再将电子传递到光系统Ⅱ。 P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原。 以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。 光合磷酸化一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原 NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。 ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。 卡尔文原理卡尔文循环(Calvin Cycle)是光合作用的暗反应的一部分。反应场所为叶绿体内的基质。循环可分为三个阶段: 羧化、还原和二磷酸核酮糖的再生。大部分植物会将吸收到的一分子二氧化碳通过一种叫二磷酸核酮糖羧化酶的作用整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此过程称为二氧化碳的固定。这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。但这种六碳化合物极不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。后者被在光反应中生成的NADPH+H还原,此过程需要消耗ATP。产物是3-磷酸丙糖。后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。循环运行六次,生成一分子的葡萄糖。 C3类植物 二战之后,美国加州大学伯利克分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2。此时C14示踪技术和双向纸层析法技术都已经成熟,卡尔文正好在实验中用上此两种技术。 他们将培养出来的藻放置在含有未标记CO2的密闭容器中,然后将C14标记的CO2注入容器,培养相当短的时间之后,将藻浸入热的乙醇中杀死细胞,使细胞中的酶变性而失效。接着他们提取到溶液里的分子。然后将提取物应用双向纸层析法分离各种化合物,再通过放射自显影分析放射性上面的斑点,并与已知化学成份进行比较。 卡尔文在实验中发现,标记有C14的CO2很快就能转变成有机物。在几秒钟之内,层析纸上就出现放射性的斑点,经与一直化学物比较,斑点中的化学成份是三磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子, 所以将这种CO2固定途径称为C3途径,将通过这种途径固定CO2的植物称为C3植物。后来研究还发现,CO2固定的C3途径是一个循环过程,人们称之为C3循环。这一循环又称卡尔文循环。 C3类植物,如米和麦,二氧化碳经气孔进入叶片后,直接进入叶肉进行卡尔文循环。而C3植物的维管束鞘细胞很小,不含或含很少叶绿体,卡尔文循环不在这里发生。
才十分,会写都不帮你写哦。。。。。
植物光合作用及其对光的需求无论是采用太阳光还是人工光进行植物生产,最终都是通过光合作用来完成产物的积累。光合作用是通过植物叶绿素等光合器官,在光能作用下将CO2和水转化为糖和淀粉等碳水化合物并释放出氧气的生理过程;与光合作用相对应的是呼吸作用,呼吸作用是通^植物线粒体等呼吸器官,吸收氧气和分解有机物而释放CO2与能量的生理过程,是植物把光合作用形成的碳水化合物作为能量用来形成根、茎、叶等形态建成的重要生理活动。呼吸作用包括与光合作用毫无关系的暗呼吸以及与光合作用同时进行的光呼吸2个部分。作物的光合作用与呼吸作用之间有一个相互平衡的过程,随着生长阶段的不同,其平衡点也不同。实际生产中经常利用控制作物的光合速度和呼吸速度来调节营养生长和生殖生长的相对平衡,达到提高目标产量或改善产品品质的目的。植物的光合作用与CO2的吸收、释放关系密切,光合时吸收CO2,呼吸时排放CO2,这2种生理活动是同时进行的,所以光合器官的叶片内外的CO2交换速度也就等于光合速度减去呼吸速度。通常把该CO2交换速度也叫做净光合速度,其中的呼吸速度则是暗呼吸速度与光呼吸速度的总和。一般而言,C3植物光呼吸速度高,C4植物光呼吸速度低。因此,净光合速度为0时,光合速度等于光呼吸速度。光合速度的单位为kg/cm2・s)或mol/cm2・s)(以CO2计),表示单位叶面积单位时间内CO2的吸收、排放或交换量。光强对作物光合的影响光合产物的形成与光照的强度及其累积的时间密切相关。光照的强弱一方面影响着光合强度,同时还能改变作物形态,如开花、节间长短、茎的粗细及叶片的大与厚薄等。在某一CO2浓度和一定的光照强度范围内,光合强度随光照强度的增加而增加。当光照强度超过光饱和点时,净光合速度不但不会增加,反而还会形成抑制作用,使叶绿素分解而导致作物的生理障碍。不同类型植物的光饱和点的差异较大,光饱和点一般会随着环境中CO2浓度的增加而提高。因此,植物生产中给予光饱和点以上的光照强度毫无意义;而另一方面,当光照强度长时间处于光补偿点之下,植物的呼吸作用超过了光合作用,有机物消耗多于积累,作物生长缓慢,严重时还会导致植株枯死,因此对植物生长也极为不利。通常情况下,耐荫植物的光补偿点为200~1000 lx,喜阳植物的光补偿点为1000~2000 lx。植物对光照强度的要求可分为喜光型、喜中光型、耐弱光型植物。蔬菜多数属于喜光型植物,其光补偿点和光饱和点均比较高,在人工光植物工厂中作物对光照强度的相关要求是选择人工光源的最重要依据,了解不同植物的光照需求对设计人工光源、提高系统的生产性能都是极为必要的。光质对作物光合的影响光质或光谱分布对植物光合作用和形态建成同样具有重要影响,地球上的植物都是在经过亿万年的自然选择来不断适应太阳辐射,并依据种类不同而具有光选择性吸收特征的。到达地面的太阳辐射的波长范围为300~2000 nm,而以500 nm处能量最高。太阳辐射中,波长380nm以下的成为紫外线,380~760 nm的叫可见光,760 nm以上的是红外线也称为长波辐射或热辐射。太阳辐射总能量中,可见光或光合有效辐射占45%~50%,紫外线占1%~2%,其余为红外线。波长400~700 nm的部分是植物光合作用主要吸收利用的能量区间,称为光合有效辐射;波长700~760 nm的部分称为远红光,它对植物的光形态建成起到一定的作用。在植物光合过程中,植物吸收最多的是红、橙光(600~680 nm),其次是蓝紫光和紫外线(300~500nm),绿光(500~600 nm)吸收的很少。紫外线波长较短的部分,能抑制作物的生长,杀死病菌孢子、波长较长的部分,可促进种子芽、果实成熟,提高蛋白质、维生素和糖的含量;红外线还对植物的萌芽和生长有刺激作用,并产生热效应。不同的光谱成分对植物的影响效果也不尽相同(表1),强光条件下蓝色光可促进叶绿素的合成,而红色光则阻碍其合成。虽然红色光是植物光合作用重要的能量源,但如果没有蓝色光配合则会造成植物形态的异常。大量的光谱实验表明,适当的红色光(600~700 nm)/蓝色光(400~500 nm)比(R/B比)才能保证培育出形态健全的植物,红色光过多会引起植物徒长,蓝色光过多会抑制植物生长。适当的红色光(600~700 nm)/远红色光(700~800 nm)比(R/FR比)能够调节植物的形态形成,大的R/FR比能够缩短茎节间距而起到矮化植物的效果,相反小的R/FR比可以促进植物的生长。所有这些特征都是植物工厂选择人工光源时必须考虑的重要因素,尤其是对于近年来发展起来的新型节能光源,如LED、LD以及冷阴极管等来说显得更为重要,因为这些光源需要通过不同光谱的单色光组合构成作物最适直的光质配比,以保障高效生产和节能的需求。光周期对植物的影响植物的光合作用和光形态建成与日长(或光期时间)之间的相互关系称其为植物的光周性。光周性与光照时数密切相关,光照时数是指作物被光照射的时间。不同的作物,完成光周期需要一定的光照时数才能开花结实。长日照作物,如白菜、芜青、芭英菜等,在其生育的某一阶段需要12~14 h以上的光照时数;短日照作物,如洋葱、大豆等,需要12~14h一下的光照时数;中日照作物,如黄瓜、番茄、辣椒等,在较长或较短的光照时数下,都能开花结实。