首页

> 期刊论文知识库

首页 期刊论文知识库 问题

人工智能发展毕业论文

发布时间:

人工智能发展毕业论文

人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!

摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2人工智能的应用领域

人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3人工智能的发展方向

人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

4结语

由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。

下一页分享更优秀的<<<人工智能的毕业论文范文

目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。以下是我精心整理的浅谈人工智能发展的大学期末论文的相关资料,希望对你有帮助!

人工智能发展现状与未来发展

一、人工智能概述

人工智能自诞生几十年来, 在崎岖的道路上取得了可喜的进展。目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。人工智能虽然取得了快速的发展,但像许多新兴学科一样,人工智能至今尚无统一的定义。人工智能的发展引起了学术界的关注,尽管学术界有各种不同的说法和定义,但就其本质而言,人工智能是研究、设计和应用智能系统,来模拟人类智能活动的新学科。人工智能的目的就是利用各种自动化机械或者智能机器,来模仿、延伸和扩展人类的智能思维,从而实现计算机网络管理的人性化。

二、人工智能的研究历史

(一)1956年-1970年

人工智能诞生于一次历史性的聚会。为使计算机变得更“聪明”,或者说是计算机具有智能,1965年夏季,在美国达特莫斯大学举行了一次为期两个月的夏季学术研讨会。10位来自美国神经学、心理学、数学、信息科学和计算机科学方面的杰出科学家,在一起共同学习和探讨了用机器模拟人类智能的有关问题,并提议正式采用了“人工智能AI”这一术语。从而,一个以研究如何用机器来模拟人类智能的新兴学科——人工智能诞生了。

(二)1971年-80年代末

在科学上,前进的道路从来就不是平坦的,成功和失败、顺利和挫折总会交织在一起。人工智能也是如此,自它诞生至发展一段时间后,就遇到了不少的问题。在这种困难的环境下,仍有一大批人工智能的学者潜心研究。他们在总结前一段研究工作经验、教训的同时,从费根鲍姆“以知识为中心”开展人工智能研究的观点中找到了新的出路。

(三)20世纪80年代至今

人工智能逐步向多技术、多方法的综合集成与多领域、多学科的综合发展。其他学科的学者陆续将本学科的理论与方法向人工智能渗透,从而导致人工智能出现研究多学科交叉的现象。各学科对人工智能的渗透反映了目前人工智能发展的一种趋势,其渗透的结果现在还不是很明显,还需要时间的考验。目前,人工智能技术正在向大型分布式多专家协同系统、大型分布式人工智能、广义知识表达、并行推理、综合知识库、多种专家系统开发工具、大型分布式人工智能开发环境和分布式环境下的多智能协同系统等方向发展。

三、人工智能应用领域

目前 , 人工智能在许多领域都得到了应用,其应用领域如下:

(一)在企业管理中的应用

刘玉然在《谈谈人工智能在企业管理中的应用》中提到要把人工智能应用于企业管理中,认为要做的工作就是弄清楚人的智能和人工智能的关系,从企业的发展目标出发,深入了解人工智能的内涵,搭建人工智能的应用平台,研究并开发企业智能化软件,这样一来,人工智能就能在企业决策中起到关键的作用。

(二)在医学领域中的应用

人工智能在国外发展很快,在医学方面取得了很大的成就。国外最早将人工智能成功应用于医疗诊断的是MYCIN专家系统。美国及其他发达国家的科学家已成功研制出了用于人类血管治疗的微型机器人,此外,在不久的将来,就会制造出能够在毛细血管里自由活动的机器人。20世纪80年代初,我国已成功将人工智能应用于医学,且在这方面有了新的突破,例如许多高等院校和研究机构共同开发了基于人工智能的医学计算机专家系统,并成功地应用于临床。

(三)在矿业中的应用

第一个将人工智能专家系统应用于矿业的是美国的专家系统PROSPECTOR,该系统用于勘探评价、区域资源估值和钻井井位选择等等,为矿业的开采带来了方便。1980年以来,美国的矿业公司在人工智能上加大了投资,其中矿山局匹兹堡研究中心与其它单位合作开发了用于煤矿开发的专家系统。

(四)在技术研究中的应用

人工智能在技术研究中的应用,首先是应用于超声无损检测与无损评价领域。在超声无损检测与无损评价领域,目前主要广泛采用专家系统对超声损伤中缺陷的性质,大小和形状进行判断和归类。此应用节省了许多人力,另外这些技术的应用,使得无损检测的定位、定性和定量的可靠性有了大幅度提高,为无损评价奠定了良好的判定基础。

(五)在电子技术方面的应用

人工智能在电子技术领域的应用由来已久。随着网络的迅速发展,网络问题日益突出,网络技术的安全成了我们关心的重点。因此在传统技术的基础上进行网络安全技术的改进,,大力发展挖掘技术、免疫技术,及开发智能机器,人工智能技术在这方面为我们提供了可能性。

四、人工智能的发展现状

国外发展现状。目前,人工智能技术在发达国家发展很快。尤其是在美国,发展更为迅速。在人工智能技术领域十分活跃的IBM公司,在智能电脑方面有了新的突破,成功地生产了具有人脑千分之一智力的电脑,而且正在开发功能更为强大的超级电脑。据其内部消息透露,预计该超级电脑研制成后,其智力水平将大致与人脑相当。除了IBM公司外,其他公司也加紧了这方面的研究,估计在未来几年内其成果更为惊人。

国内发展现状。二十一世纪是信息化时代,作为现代信息技术的精髓,人工智能技术必然成为新世纪科学技术的前沿和焦点。在我国,很长一段时间,专家们都把研制具有人行为特征的类人性机器人作为奋斗目标。机器人的发展水平不仅与计算机科技水平相关,而且与一个国家工业的各方面的发展水平密切相关。中国科技大学在国家基金的支持下,经过十年攻关和钻研,于2000年,成功地研制出我国第一台类人性机器人。

五、未来发展

人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生; 另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。

人工智能一直处于计算机技术的前沿,其研究的领域和方向在很大程度上将决定了计算机技术的发展方向。今天,已经有很多人工智能产品融入了我们的日常生活。将来,人工智能技术的发展将会给我们的学习、生活、工作带来更大的影响。

下一页分享更优秀的<<<浅谈人工智能发展的大学期末论文

人工智能发展趋势毕业论文

虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。科技产出与人才投入1. 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 增长至2017 年的 ,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 。2. 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。

现如今,随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动,能减轻人们的工作负担。下面是由我整理的工业机器人技术论文 范文 ,希望能对大家有所帮助!工业机器人技术论文范文篇一:《浅谈工业机器人在工业生产中的应用》 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。就工业机器人在工业生产中的应用进行探讨。 关键词:工业机器人 应用 工业 1 引言 工业机器人最早应用于汽车制造工业,常用于焊接,喷漆,上、下料和搬运。工业机器人延伸和扩大了人的手、足和大脑功能,它可代替人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。工业机器人与数控加工中心、自动搬运小车以及自动检测系统可组成柔性制造系统和计算机集成制造系统,实现生产自动化。 2 工业机器人的主要运用 (1)恶劣工作环境及危险工作军事领域及核工业领域有些作业是有害于人体健康并危及生命,或不安全因素很大而不宜由人去做的作业,用工业机器人去做最合适。例如核工厂设备的检验和维修机器人,核工业上沸腾水式反应堆燃料自动交换机。 (2)特殊作业场合和极限作业火山探险、深海探密和空间探索等领域对于人类来说是力所不能及的,只有机器人才能进行作业。如航天飞机上用来回收卫星的操作臂;用于海底采矿和打捞的遥控海洋作业机器人。 (3)自动化生产领域早期的工业机器人在生产上主要用于机床上、下料,点焊和喷漆。用得最多的制造工业包括电机制造、汽车制造、塑料成形、通用机械制造和金属加工等工业。随着柔性自动化的出现,机器人在自动化生产领域扮演了更重要的角色。下面主要针对工业机器人在自动化生产领域的应用进行简单介绍。 焊接机器人 点焊机器人工业机器人首先应用于汽车的点焊作业,点焊机器人广泛应用于焊接车体薄板件。装焊一台汽车车体一般大约需要完成3000~4000个焊点,其中60%是由点焊机器人来完成的。在有些大批量汽车生产线上,服役的点焊机器人数量甚至高达150多台。 点焊机器人主要性能要求:安装面积小,工件空间大;快速完成小节距的多点定位;定位精度高(土0 .25 mm ),以确保焊接质量;持重大(490~980N ) ,以便携带内装变压器的焊钳;示教简单,节省工时。 弧焊机器人 弧焊机器人应用于焊接金属连续结合的焊缝工艺,绝大多数可以完成自动送丝、熔化电极和气体保护下进行焊接工作。弧焊机器人应用范围很广,除汽车行业外,在通用机械、金属结构等许多行业中都有应用。弧焊机器人应是包括各种焊接附属装置在内的焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机。如图1所示为弧焊机器人的基本组成。适合机器人应用的弧焊 方法 主要有惰性握体保护焊、混合所体保护焊、埋弧焊和等离子弧焊接。 1-机器人控制柜2-焊接电源3-气瓶4-气体流量计5-气路6-焊丝轮7-柔性导管8-弧焊机器人9-送丝机器人10-焊枪11-工件电缆12-焊接电缆13-控制电缆 图1 弧焊机器人系统的基本组成 弧焊机器人的主要性能要求:在弧焊作业中,要求焊枪跟踪工件的焊道运动,并不断填充金属形成焊道。因此,运动过程中速度的稳定性和轨迹是两项重要指标,一般情况下,焊接速度约取5~50 mm/s ,轨迹精度约为.2 ~ ) mm;由于焊枪的姿态对焊缝质量也有一定影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。此外,还有一些其他性能要求,这些要求包括:设定焊接条件(电流、电压、速度等)、抖动功能、坡口填充功能、焊接异常检测功能(断弧、工件熔化)及焊接传感器(起始焊点检测,焊道跟踪)的接口功能。 喷漆机器人 喷漆机器人广泛应用于汽车车体、家电产品和各种塑料制品的喷漆作业。喷漆机器人在使用环境和动作要求上有如下特点: (1)工作环境空气中含有易爆的喷漆剂蒸气; (2)沿轨迹高速运动,途经各点均为作业点; (3)多数被喷漆部件都搭载在传送带上,边移动边喷漆。如图2所示为关节式喷漆机器人。 搬运机器人 随着计算机集成制造技术、物流技术、自动仓储技术的发展,搬运机器人在现代制造业中的应用也越来越广泛。机器人可用于零件的加工过程中,物料、工辅量具的装卸和储运,可用来将零件从一个输送装置送到另一个输送装置,或从一台机床上将加工完的零件取下再安装到另一台机床上去。 装配机器人 装配在现代工业生产中占有十分重要的地位。有关资料统计表明,装配劳动量占产品生产劳动量的50%~60%,在有些场合,这一比例甚至更高。例如,在电子器件厂的芯片装配、电路板的生产中,装配劳动量占产品生产劳动量的70 %~80%。因此,用机器人来实现自动化装配作业是十分重要的。 机器人柔性装配系统 机器人正式进入装配作业领域是在“机器人普及元年”的1980年前后,引人装配作业的机器人在早期主要用来代替装配线上手工作业的工序,随后很快出现了以机器人为主体的装配线。装配机器人的应用极大地推动了装配生产自动化的进展。装配机器人建立的柔性自动装配系统能自动装配中小型、中等复杂程度的产品,如电机、水泵齿轮箱等,特别适应于中小批量生产的装配,可实现自动装卸、传送、检测、装配、监控、判断、决策等机能。 机器人柔性装配系统通常以机器人为中心,并有诸多周边设备,如零件供给装置、工件输送装置、夹具、涂抹器等与之配合,此外还常备有可换手等。但是如果零件的种类过多,整个系统将过于庞大,效率降低,这是不可取的。在机器人柔性装配系统中,机器人的数量可根据产量选定,而零件供给装置等周边设备则视零件和作业的种类而定。因此,和装配线比较,产量越少,机器人柔性装配系统的投资越大。 3 结束语 工业机器人是以机械、电子、电子计算机和自动控制等学科领域的技术为基础,融合而成的一种系统技术;也可说是一门知识、技术密集的,多学科交叉的综合化的高新技术。随着这些相关学科技术的进步和发展,工业机器人技术也一定会到迅速发展和提高。 工业机器人技术论文范文篇二:《探讨工业机器人的发展趋势》 摘 要 随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动。目前,机器人是一种制造业与自动化设备中的典型代表,这将会是人造机器的“终极”版。它的应用已经涉及信息化、自动化、智能化、传感器与知识化等多个学科和领域,这是目前,是我国乃至世界高新技术成果的最佳集成,因此,它的发展是与许多学科的发展有着密切的联系。以现在的发展趋势来看,工业机器人的应用范围越来越广泛,同时在技术操作中,他也变得越来越标准化、规范化,提高工业机器人的安全性。另一方面,工业机器人发展越来越微型化、智能化,在人类生活中应用越来越广泛。 关键词 工业机器人 智能化 应用领域 安全性 随着社会复杂的需求,工业机器人在应用领域中越来越广泛。一方面,工业机器人被广泛应用于工业生产中,代替工人危险、复杂、单调的长时间的作业,例如在机械加工、压力铸造、塑料制品成形及金属制品业等各种工序上,同时还应用于原子能工业等高危险的部门,这已经在发达国家中应用比较广泛。另一方面,工业机器人在其他的领域应用也比较多,随着科学技术的飞速发展,提高了工业机器人的使用性能和安全性能,其应用的范围越来越广泛,应用的范围已经突破了工业,尤其在医疗业中应用比较好。 一、工业机器人的发展历程 第一代机器人,一般指工业上大量使用的可编程机器人及遥控操作机。可编程机器人可根据操作人员所编程序完成一些简单重复性作业。遥控操作机制每一步动作都要靠操作人员发出。1982年,美国通用汽车公司在装配线上为机器人装备了视觉系统,从而宣告了第二代机器人―感知机器人的问世。这代机器人,带有外部传感器,可进行离线编程。能在传感系统支持下,具有不同程度感知环境并自行修正程序的功能。第三代机器人为自治机器人,正在各国研制和发展。它不但具有感知功能,还具有一定决策和规划能力。能根据人的命令或按照所处环境自行做出决策规划动作即按任务编程。 我国机器人研究工作起步较晚,从“七五”开始国家投入资金,对工业机器及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发和研制。1986 年国家高技术研究发展计划开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 我国工业机器人起步于70年代初期,经过30多年的发展,大致经历了3个阶段:70年代的萌芽期,80年代的开发期和90年代的适用化期。 上世纪70年代是世界科技发展的一个里程碑:人类登上了月球,实现了金星、火星的软着陆。我国也发射了人造卫星。世界上工业机器人应用掀起一个高潮,尤其在日本发展更为迅猛,它补充了日益短缺的劳动力。在这种背景下,我国于1972年开始研制自己的工业机器人。 进入80年代后,在高技术浪潮的冲击下,随着改革开放的不断深入,我国机器人技术的开发与研究得到了政府的重视与支持。“七五”期间,国家投入资金,对工业机器人及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷涂、点焊、弧焊和搬运机器人。1986年国家高技术研究发展计划(863计划)开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 从90年代初期起,中国的国民经济进入实现两个根本转变时期,掀起了新一轮的经济体制改革和技术进步热潮,我国的工业机器人又在实践中迈进一大步,先后研制出了点焊、弧焊、装配、喷漆、切割、搬运、包装码垛等各种用途的工业机器人,并实施了一批机器人应用工程,形成了一批机器人产业化基地,为我国机器人产业的腾飞奠定了基础。 我国工业机器人经过“七五”攻关计划、“九五”攻关计划和863计划的支持已经取得了较大进展,工业机器人市场也已经成熟,应用上已经遍及各行各业。 我国未来工业机器人技术发展的重点有:第一,危险、恶劣环境作业机器人:主要有防暴、高压带电清扫、星球检测、油汽管道等机器人;第二,医用机器人:主要有脑外科手术辅助机器人,遥控操作辅助正骨等;第三,仿生机器人:主要有移动机器人,网络遥控操作机器人等。其发展趋势是智能化、低成本、高可靠性和易于集成。 二、工业机器人的发展趋势 机器人是先进制造技术和自动化装备的典型代表,是人造机器的“终极”形式。它涉及到机械、电子、自动控制、计算机、人工智能、传感器、通讯与网络等多个学科和领域,是多种高新技术发展成果的综合集成,因此它的发展与众多学科发展密切相关。当今工业机器人的发展趋势主要有:一是工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降。二是机械结构向模块化可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;有关节模块、连杆模块用重组方式构造机器人。三是工业机器人控制系统向基于 PC机的开放型控制器方向发展,便于标准化,网络化;器件集成度提高,控制柜日渐小巧,采用模块化结构,大大提高了系统的可靠性、易操作性和可维修性。四是机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,视觉、力觉、声觉、触觉等多传感器的融合技术在产品化系统中已有成熟应用。五是机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来这种新型装置已成为国际研究的 热点 之一,纷纷探索开拓其实际应用的领域。 总体趋势是,从狭义的机器人概念向广义的机器人技术概念转移,从工业机器人产业向解决方案业务的机器人技术产业发展。机器人技术的内涵已变为 灵活应用机器人技术的、具有实际动作功能的智能化系统。机器人结构越来越灵巧,控制系统愈来愈小,其智能也越来越高,并正朝着一体化方向发展。 三、我国工业机器人发展面临的挑战与前景 我国工业底子薄,工业机器人发展一直处于一个初步发展阶段,虽然我国从上个世纪70年代开始研发工业机器人,但是技术力量不足与西方国家的技术封锁,对此,在发展过程中,存在着比较多的问题。细分起来,有如下几点: 首先,我国基础零部件制造能力差。虽然我国在相关零部件方面有了一定的基础,但是无论从质量、产品系列全面,还是批量化供给方面都与国外存在较大的差距。特别是在高性能交流伺服电机和精密减速器方面的差距尤其明显,因此造成关键零部件的进口,影响了我国机器人的价格竞争力。 第二,我国的机器人还没有形成自己的品牌。虽然已经拥有一批企业从事机器人的开发,但是都没有形成较大的规模,缺乏市场的品牌认知度,在机器人市场方面一直面临国外机器人品牌的打压。国外机器人作为成熟的产业采用整机降价,吸引国内企业购买,而在后续的维护备件费用很高的策略,逐步占领中国市场。 第三,认识不到位,在鼓励工业机器人产品方面的政策少。工业机器人的制造及应用水平,代表了一个国家的制造业水平,我们必须从国家高度认识发展中国工业机器人产业的重要性,这是我国从制造大国向制造强国转变的重要手段和途径。□ 参考文献: [1]任俊.面向熔射快速制模的机器人辅助曲面自动抛光系统的研究.华中科技大学,2006年. [2]钟新华,蔡自兴,邹小兵.移动机器人运动控制系统设计及控制算法研究.华中科技大学学报(自然科学版),2004年S1期. [3]张中英.基于遗传算法的机器人神经网络控制系统.太原理工大学,2005年. [4]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002年05期. [5]杜玉红,李修仁.生产线组装单元气动搬运机械手的设计.液压与气动,2006年05期. [6]徐晓峰.基于串行通信技术的机器人实时控制研究.南京林业大学,2005年. 工业机器人技术论文范文篇三:《试论工业机器人机电一体化》 1机电一体化技术的应用现状 工业机器人。 工业机器人的出现在一定程度上可替代人的劳动,对于高辐射、高噪声污染、高浓度有害气体的工作场合来说,工业机器人是一个理想的选择。工业机器人的发展经历了三个阶段,第一代工业机器人智能化程度较低,只能通过预设的程序进行简单的重复动作,无法应对多变的工作环境和工作岗位。随着科技的发展,在第一代机器人的基础上通过各种传感器的应用使其可通过对环境信息的获取、分析、处理并反馈给动作单元,从而进行一些适应性的工作,这种机器人虽然智能化程度较低,但已经在一些特定的领域得以成功应用。在机电一体化技术相对成熟的今天,第三代机器人的智能化水平已经得到了较大的提升,其可以通过强大的传感原件收集信息数据,并根据实际情况作出类似于人脑的判断,因此可以在多种环境下进行独立作业,但成本较高,在一定程度上限制了实际应用。 分布式控制系统。 分布式控制系统是相对于集中式控制系统而言的,是通过一台中央计算机对负责现场测控的多台计算机进行控制和指挥,由于其强大的功能和安全性,使其成为当前大型机电一体化系统的主流技术。根据实际情况分布式控制系统的层级可分为两级、三级或更多级,通过中央计算机完成对现场生产过程的实时监控、管理和操作控制等,同时,随着测控技术的不断发展与创新,分布式控制系统还可以对生产过程实现实时调度、在线最优化、生产计划统计管理等功能,成为一种集测、控、管于一体的综合系统,具有功能丰富、可靠性高、操作方便、低故障率、便于维护和可扩展等优点,因此使系统的可靠性大幅提高。 2机电一体化技术的发展趋势 人工智能化。 人工智能就是使工业机器人或数控机床模拟人脑的智力,使其在生产过程中具备一定的推理判断、 逻辑思维 和自主决策的能力,可大幅提升工业生产过程的自动化程度,甚至实现真正的无人值守,对于降低人力成本,提高加工精度和工作效率具有十分重要的意义。目前,人工智能已经不只是停留在概念上,因此可预见机电一体化技术将向着人工智能化的方向发展。虽然以当前的科学技术水平不可能使机器人或数控机床完全具备人类的思维模式和智力特点,但在工业生产中,使这些机电一体化设备具备部分人类的职能是完全可以通过先进的技术达到的。 网络化。 网络技术 的发展给机电一体化设备远程监视和远程控制提供了便利条件,因此,将网络技术与机电一体化技术结合起来将是机电一体化技术发展的重点。在生产过程中,操作人员需要在车间内来回走动,对设备的状态进行掌握,并对机床的操作面板进行操作,通过在机电一体化设备与控制终端之间建立通信协议,并通过光纤等介质实现信息数据的传递,即可实现远程监视和操作,降低工人的劳动量,并且各种控制系统功能的实现,理论上来说都是建立在网络技术基础上的。 环保化。 在人类社会发展的最近几十年里,虽然经济得到了迅猛的发展,人们生活水平得到了显著的提高,然而以牺牲资源和环境为代价的发展模式使得人类赖以生存的环境遭到严重的污染,因此,在可持续发展战略提出的今天,发展任何技术都应当以对环境友好作为前提,否则就是没有前途的,故环保化是机电一体化技术发展的必然趋势。在机电一体化应用过程中,通过对资源的高效利用,并在制造过程中做到达标排放甚至零排放,产品在使用过程中对生态环境不造成影响,即便报废后也可对其进行有效回收利用,这就是机电一体化技术环保化的具体表现形式,符合可持续发展的要求。 模块化。 由于机电一体化装置的制造商较多,为降低系统升级改造的成本,并为维修提供便利,模块化将是一个非常有前途的研究方向。通过对功能单元进行模块化改造,可在需要增加或改变功能时直接将对应的功能模块进行组装或更换,即便出现故障,只需将损害的模块进行更换即可,工作效率极高,通用性的增强为企业节约了大量的成本。 自带能源化。 机电一体化对电力的要求较高,如果没有充足的电能供应就会影响生产效率,甚至由于停电造成数据的丢失等,因此通过设备自带动力能源系统可始终保持充足的电力供应,使系统运行更流畅。 3结语 综上所述,机电一体化技术的应用可使产品的生产效率和精度大幅提高,在当前工业生产中具有较大的技术优势,相信随着科技的发展,机电一体化技术水平也会不断提高,为工业生产做出更大贡献。 猜你喜欢: 1. 初三机器人科学论文2000字 2. 工业智能技术论文 3. 传感器技术论文范文 4. 机器人科技论文3000字 5. 初三智能机器人科技论文2000字 6. 人工智能机器人的相关论文

人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!

摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2人工智能的应用领域

人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3人工智能的发展方向

人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

4结语

由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。

下一页分享更优秀的<<<人工智能的毕业论文范文

人工智能发展现状论文

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。以下是我精心整理的人工智能的利与弊论文的相关资料,希望对你有帮助!

摘要:自1956年人工智能诞生起,几十年的发展让其有了许多的进步,并广泛用于机器视觉,专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等各大领域,并且与人类生活联系越来越紧密。在安全性没有得到确切认证的情况下广泛发展人工智能是否是可行的做法,人工智能是否会战胜人类智能,现在还存在广泛的争论。本文从人工智能的概况,应用领域与人类生活的联系等方面讨论,联系有关理论,认为人工智能的发展需要在人类智能可控的范围内进行。

关键字:人工智能 超越 人类智能 退化

一.人工智能的概况

(一)人工智能的概念

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

(二)人工智能的兴起

1956年,被认为是人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论。他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"。从那时起,这个领域被命名为 "人工智能"。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。 Minsky从心理学的研究出发,提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则

来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。

(三)人工智能的发展状况

1956年,Samuel研制了跳棋程序,它在1959年击败了Samuel本人

1959年美籍华人学者、洛克菲勒大学教授王浩 自动定理证明

1976年 “四色定理”的证明

1977年,曾是赫伯特·西蒙的研究生、斯坦福大学青年学者费根鲍姆

(),在第五届国际人工智能大会上提出了”知识工程”的概念 1976年美国斯坦福大学肖特列夫开发医学专家系统MYCIN

80年代,AI 被引入了市场,并显示出实用价值

1997年 “深蓝”

2011年9月,在印度古瓦哈蒂举行的电脑科技展上,一个“聪明机器(Cleverbot)”成功过近800名观众,使他们难以分辨对话出自真人还是电脑软件。当日参加聊天试验的30名志愿者被安排进行4分钟在线文字聊天,聊天的对象可能是“聪明机器人”,也可能是一个真人。他们的对话内容展示在一个

大屏幕上,1334名普通观众观看对话内容后进行投票。结果,超过的观众 把人与“聪明机器人”的对话误认成人与人之间的对话“聪明机器人”的发明 者、英国人罗洛·卡彭特很高兴地告诉记者:“过一半以上观众,你可以说聪明机器人算是通过了"图灵测试"

二.人们对人工智能的依靠

(一)人工智能主要应用领域

目前人工智能主要的应用领域在机器视觉(指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别),专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。

(二)人们生活与人工智能的密切关系

从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通

中推荐最畅通的线路;帮助识别信用卡„„虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。

在美国硅谷,尼古拉斯·亚宁早上起来准备去上班,到公司需要40分钟车程。这位在Google工作的技术员走向他的Lexus汽车。汽车即将驶上加州拥挤的高速路,此时他的“司机”———汽车开始掌控大局。亚宁的这辆车是Google正在实验的自动驾驶汽车,安装有复杂的人工智能技术,使得他可以放松地坐在驾驶座上充当乘客。

在马萨诸塞州贝德福特的iRobot公司,一名参观者看着5英尺高的机器人爱娃小心翼翼地行走在大厅里,躲避着周围的障碍物———包括人类。今年年底它将开始自己的第一份真正工作———远程医疗助手,让数千英里之外的专家通过安装在它“头”上的视频屏幕给医院的病人看病。当医生准备看望下一位病人时,他只需点击电脑地图上的新位置。爱娃根据地图找到并赶往下一个病房,它还会自己乘坐电梯。

在华盛顿普尔曼,华盛顿州立大学的研究者们正在给“智能”房间安装上感应器,使之能够根据需要自动调节房间的光线,监控住户的一切活动,包括他们每天睡眠多少小时,锻炼多少分钟。听上去有点像是被监禁,但事实上,倡导者们认为这样的技术就像一个富有爱心的保姆:智能房屋可以帮助老年人,尤其是有身体或智力障碍的老人过上独立的生活。

从今年夏天在火星登陆的好奇号太空探测器,到仪表盘能够与人对话的汽车,再到智能手机,人工智能正在改变我们的生活———有时候以一种显而易见的方式,更多的时候,我们甚至没有意识到它的存在。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中推荐最畅通的线路;帮助识别信用卡;告诉驾驶员什么时候越过了道路中央的分道线。

甚至连烤面包机也即将加入人工智能革命。你可以将一个面包放进去,用智能手机拍张照片,手机将把所有需要的信息传送给烤面包机,指导它如何将面包烤得恰到好处。

从某个方便说,人工智能几乎无处不在,从控制数码相机的光圈和快门速度的智能感应器,到干衣机中的温度和湿度探测器,再到汽车中的自动泊车功能。更复杂的应用还在源源不断地走出实验室。

三.人工智能的弊端

(一)关于人工智能超越人类智能的假说

人工智能只可以作为人类智能的补充,但是人工智能的发展速度远远超过人类智能的发展速度,即根据进化论来说人工智能的进化速度比人类智能进化得快许多。由于人工智能起步较低,故现在和人类智能有一定差距,但其表现出了在局部超越了人类智能的现状,让人有理由相信人工智能超越人类智能只是时间上的问题。

人工智能超越人类智能论据有:一是达尔文进化论;二是类比人类的创造性即由于人类智能的不断探索欲会把自己独有创造赋予人工智能,这会导致人工智能战胜人类智能;三是“量变质变定律”人工智能不断的在某些领域超越人类智能,最终将在质上战胜人类智能。

其代表人物有四川大学社科系教授王黔玲从世界观角度提出的“人工智能将超越人类智能”的论断。华东师范大学哲学系教授郦全民认为在好奇心的驱使下,在不前进就会落后的“象棋皇后”效应的作用下,人类不会停止对比自己先进的更高的智能系统的探索。而进化法则又不可违背,将使得进化之链朝着超越人类的方向发展。因此地球上出现超越人类的高智能物种是进化的必然。代维也大胆预测“人工智能将在不远的将来战胜人类智能,但会有自己的存在方式,不会对人类构成威胁”。约翰·麦卡锡——人工智能之父认为“没有理由相信我们不能写出一个能使电脑像人一样思考的公式。”斯蒂芬·霍金 说过“在我看来,如果非常复杂的化学分子可以在人体内活动并使人类产生智慧的话,那么太阳复杂的电子电路也可以使计算机以智能化的方式采取行动。”德国班贝克大学心理学教授德尔纳认为“有灵魂的机器是存在的。”

(二)人类退化的假说

从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中

第5 / 6页

推荐最畅通的线路;帮助识别信用卡等。虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。人们总是趋向于安逸的生活,人工智能的出现满足了人们许多的需求,这会导致人们满足于享受当前的生活而忘记许多自己的本能。根据达尔文的进化学说,那些我们不在经常使用的本能会在生物的繁衍中逐渐的退化消失。人工智能化的发展,我们的衣食住行都可以有简单的解决方法,并且也越来越为人们所依赖。就像过去几千年我们没有电话手机,一样可以有自己的通讯方式,可是现在手机发展不过几十年,就没有几个人能离得开手机了。试想一下日益进入我们生活中的人工智能,等你习惯后还能离得开吗。如果有了人工智能,你什么都不用自己动手,那经过生物衍变,人类的未来还能剩下什么呢。经过退化衍变的人类还有什么能力呢。

四.结语

现阶段人工智能在专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等方面都有许多的应用,并且范围越来越广,虽然看似都是促进科学发展的,但是我们得注意其使用的度,就像克隆的应用一样,具有双面性的东西在发展时都应该慎重考虑。人工智能智能作为一种工具被人类智能限定在一定的范围里发展,才能在保证其安全的条件下最大程度的为人类发挥作用。 参考文献:

【1】史忠植. 高级人工智能(第二版). 科学出版社, 2006.

【2】玛格丽特·博登,人工智能哲学,上海译文出版社2001-11-01

【3】 Russell S., Peter Norvig,人工智能——一种现代方法(第二版)北京:人民邮电出版社, 2004 【4】史忠植. 智能主体及其应用.科学出版社,2000.

【5】 叶世伟, 史忠植 译. 神经网络原理(Simon Haykin: Neural Networks) . 机械工业出版社,2004.

【6】蔡自兴,徐光佑,人工智能及其应用(第三版). 北京:清华大学出版社,2003年

【7】卢格尔,人工智能,机械工业出版社,2009-03-01

【8】CarolynAbate,人工智能改变生活,南方都市报,2012-09-30

【9】门泽尔,机器人的未来,上海辞书出版社,2002年

【10】钱学森,关于思维科学,上海人民出版社,1986

【11】钱铁云,人工智能是否可以超越人类智能?,科学社会与辩证法,2004

【12】代维,人工智能VS人类智能。20年后谁称雄,青年探索,2002

【13】姜长阳,人类正在退化,自然辨证法研究,2000年11期

只要谈及科技对人类的意义,有一个词语出语率颇高――“双刃剑”。即科技在给人们带来便捷、舒适和高质量生活的同时,也不可避免地会带来诸多弊端。在这种种弊端中,有看得见的,如环境污染;而更多的则是看不见的,如科技对文化的冲击。

有关科技的利与弊,近年来舆论界一直争论不休,莫衷一是。这一现象也直接反映在了高考语文试题中――连续几年的高考作文都涉及到这一话题,且有逐年增多的趋势。

据统计,在近几年高考作文中讨论最多的话题是“科技对文化(尤其是传统文化)的冲击”――即科技会不会对文化构成冲击?又会构成什么样的冲击?如2012年高考湖北卷作文题就提供了这样一则材料:

语文课堂上,老师在讲到杜甫《春望》“烽火连三月,家书抵万金”时,不无感慨地说:“可惜啊,我们现在已经很难见到家书了,书信这种形式恐怕要消失了。”学生甲:“没有啊,我上大学的表哥就经常给我写信,我觉得这种交流方式是不可替代的。”学生乙:“信息技术这么发达,打电话、发短信、写邮件更便捷,谁还用笔写信啊?”学生丙:“即使不用笔写信,也不能说明书信消失了,只不过是书信的形式变了。”学生丁:“要是这样说的话,改变的又何止是书信?社会发展了,科技进步了,很多东西都在悄然改变。”……

诚然,电话、短信、邮件在带给我们方便、快捷的同时,也消减了我们生活中的诗意。可是我们不妨思量一下,“云中谁寄锦书来”或许能带给我们诗意和遐想,可在“烽火连三月”的情况下,恐怕还是一条快捷的短信更让人放心。因此,我们要充分考虑到两者的得失,对如何处理好科技与文化的关系作出深刻的反思:是为了保存传统的美好而抱残守缺,还是为了方便快捷就抛弃传统?是在传统的树干上嫁接上时尚的枝条,还是在崭新的文化中打上旧补丁?笔者想:应该思考这类问题的绝不仅仅是我们的中学生,更有我们的决策者、我们的专家,甚至我们每一个普普通通的公民。反思永远强于抱怨,只有总结反思,才能使我们的下一步走得更好,走得更稳健,从而一步步接近我们理想中的伊甸园。

与此一脉相承的是2014年高考广东卷的作文题。所不同的是广东卷的材料放弃了书信与手机,取而代之的是黑白胶片与数码技术:

黑白胶片的时代,照片很少,只记录下人生的几个瞬间,在家人一次次的翻看中,它能唤起许多永不褪色的记忆。但照片渐渐泛黄,日益模糊。数码技术的时代,照片很多,记录着日常生活的点点滴滴,可以随时上传到网络与人分享。它从不泛黄,永不模糊,但在快速浏览与频繁更新中,值得珍惜的“点滴”也可能被稀释。

黑白胶片与数码技术就像尺素与短信、马车与高铁、书法与“键谈”、远足与网游、品茗与快餐,品评它们又岂是一个“利”字或“弊”字可以概括的?这当中,掺和有科技的因素,有文化的因素,有传统的因素,有心理习惯的因素……其实,人们最希望拥有的是现代科技的便捷加上传统文化的醇香,而这恰如鱼与熊掌,兼而得之实在不易。

高考作文涉及到的又一方面的话题是“科技对传统审美观念的冲击”。如2014年高考辽宁卷作文题提供了这样一则材料:

夜晚,祖孙二人倚窗远眺。“瞧万家灯火,大街通明,霓虹闪耀,真美!”男孩说,“要是没有电,没有现代科技,没有高楼林立,上哪儿看去?”老人颔首,又沉思摇头:“可惜满天繁星没有了。沧海桑田,转眼之间啊!当年那些祖先,山洞边点燃篝火,看月亮初升,星汉灿烂,他们欣赏的也许才是美景。”

读罢这则材料,笔者觉得:如果“当年那些祖先”能够“穿越”回来,即便他们依然认为篝火、明月、星汉是大自然中最美丽的景观,但他们还乐意栖居在山洞里燃着篝火欣赏那满天繁星吗?现代科技早已潜入到了人们的灵魂深处,纵然我们会偶尔生出几许怀旧的情愫,那不过是我们在内心珍存的原始记忆陨落时的惆怅,纵然我们心向往之,也未必愿意返璞归真。在现代社会中,像陶渊明、梭罗这些真正倾心于自然的隐者已经很难寻觅了。

高考作文所涉及的有关科技的材料,还触及到了近乎于“科幻”的话题。如2014年高考天津卷的作文材料,讲的是一则带有几分科幻色彩的故事,揭示了现代科技给人带来的“荒诞感”:

也许将来有这么一天,我们发明了一种智慧芯片,有了它,任何人都能古今中外无一不知,天文地理无所不晓。比如说,你在心里默念一声“物理”,人类有史以来有关物理的一切公式、定律便纷纷浮现出来,比老师讲的还多,比书本印的还全。你逛秦淮河时,脱口一句“旧时王谢堂前燕”,旁边卖雪糕的老大娘就接茬说“飞入寻常百姓家”,还慈祥地告诉你,这首诗的作者是刘禹锡,这时一个金发碧眼的外国小女孩抢着说,诗名《乌衣巷》,出自《全唐诗》365卷4117页……这将是怎样的情形啊!

不知道是否真的有那么一天,不知道这样的情形是否真的会出现,也不知道这样的情形出现究竟是喜是悲。

平心而论,科技带给我们的永远是利大于弊,否则我们绝不会视之为“第一生产力”,也不会有那么多仁人志士为科技献身,为科技发展不遗余力了。我们现在要探究的是在发展科技的同时怎样将它的负面效应降到最低,乃至使之成为促进文化传承与发展的助力;而不是因噎废食,视科技为文化的宿敌,甚至视若洪水猛兽――而承担这一重任的主力,将会是今天走上考场的一代青年。从这一意义上看,让他们先写这样的文章真的很有价值。想必“科技”这一话题在随后的高考作文中仍会有一定的地位。

目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。以下是我精心整理的浅谈人工智能发展的大学期末论文的相关资料,希望对你有帮助!

人工智能发展现状与未来发展

一、人工智能概述

人工智能自诞生几十年来, 在崎岖的道路上取得了可喜的进展。目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。人工智能虽然取得了快速的发展,但像许多新兴学科一样,人工智能至今尚无统一的定义。人工智能的发展引起了学术界的关注,尽管学术界有各种不同的说法和定义,但就其本质而言,人工智能是研究、设计和应用智能系统,来模拟人类智能活动的新学科。人工智能的目的就是利用各种自动化机械或者智能机器,来模仿、延伸和扩展人类的智能思维,从而实现计算机网络管理的人性化。

二、人工智能的研究历史

(一)1956年-1970年

人工智能诞生于一次历史性的聚会。为使计算机变得更“聪明”,或者说是计算机具有智能,1965年夏季,在美国达特莫斯大学举行了一次为期两个月的夏季学术研讨会。10位来自美国神经学、心理学、数学、信息科学和计算机科学方面的杰出科学家,在一起共同学习和探讨了用机器模拟人类智能的有关问题,并提议正式采用了“人工智能AI”这一术语。从而,一个以研究如何用机器来模拟人类智能的新兴学科——人工智能诞生了。

(二)1971年-80年代末

在科学上,前进的道路从来就不是平坦的,成功和失败、顺利和挫折总会交织在一起。人工智能也是如此,自它诞生至发展一段时间后,就遇到了不少的问题。在这种困难的环境下,仍有一大批人工智能的学者潜心研究。他们在总结前一段研究工作经验、教训的同时,从费根鲍姆“以知识为中心”开展人工智能研究的观点中找到了新的出路。

(三)20世纪80年代至今

人工智能逐步向多技术、多方法的综合集成与多领域、多学科的综合发展。其他学科的学者陆续将本学科的理论与方法向人工智能渗透,从而导致人工智能出现研究多学科交叉的现象。各学科对人工智能的渗透反映了目前人工智能发展的一种趋势,其渗透的结果现在还不是很明显,还需要时间的考验。目前,人工智能技术正在向大型分布式多专家协同系统、大型分布式人工智能、广义知识表达、并行推理、综合知识库、多种专家系统开发工具、大型分布式人工智能开发环境和分布式环境下的多智能协同系统等方向发展。

三、人工智能应用领域

目前 , 人工智能在许多领域都得到了应用,其应用领域如下:

(一)在企业管理中的应用

刘玉然在《谈谈人工智能在企业管理中的应用》中提到要把人工智能应用于企业管理中,认为要做的工作就是弄清楚人的智能和人工智能的关系,从企业的发展目标出发,深入了解人工智能的内涵,搭建人工智能的应用平台,研究并开发企业智能化软件,这样一来,人工智能就能在企业决策中起到关键的作用。

(二)在医学领域中的应用

人工智能在国外发展很快,在医学方面取得了很大的成就。国外最早将人工智能成功应用于医疗诊断的是MYCIN专家系统。美国及其他发达国家的科学家已成功研制出了用于人类血管治疗的微型机器人,此外,在不久的将来,就会制造出能够在毛细血管里自由活动的机器人。20世纪80年代初,我国已成功将人工智能应用于医学,且在这方面有了新的突破,例如许多高等院校和研究机构共同开发了基于人工智能的医学计算机专家系统,并成功地应用于临床。

(三)在矿业中的应用

第一个将人工智能专家系统应用于矿业的是美国的专家系统PROSPECTOR,该系统用于勘探评价、区域资源估值和钻井井位选择等等,为矿业的开采带来了方便。1980年以来,美国的矿业公司在人工智能上加大了投资,其中矿山局匹兹堡研究中心与其它单位合作开发了用于煤矿开发的专家系统。

(四)在技术研究中的应用

人工智能在技术研究中的应用,首先是应用于超声无损检测与无损评价领域。在超声无损检测与无损评价领域,目前主要广泛采用专家系统对超声损伤中缺陷的性质,大小和形状进行判断和归类。此应用节省了许多人力,另外这些技术的应用,使得无损检测的定位、定性和定量的可靠性有了大幅度提高,为无损评价奠定了良好的判定基础。

(五)在电子技术方面的应用

人工智能在电子技术领域的应用由来已久。随着网络的迅速发展,网络问题日益突出,网络技术的安全成了我们关心的重点。因此在传统技术的基础上进行网络安全技术的改进,,大力发展挖掘技术、免疫技术,及开发智能机器,人工智能技术在这方面为我们提供了可能性。

四、人工智能的发展现状

国外发展现状。目前,人工智能技术在发达国家发展很快。尤其是在美国,发展更为迅速。在人工智能技术领域十分活跃的IBM公司,在智能电脑方面有了新的突破,成功地生产了具有人脑千分之一智力的电脑,而且正在开发功能更为强大的超级电脑。据其内部消息透露,预计该超级电脑研制成后,其智力水平将大致与人脑相当。除了IBM公司外,其他公司也加紧了这方面的研究,估计在未来几年内其成果更为惊人。

国内发展现状。二十一世纪是信息化时代,作为现代信息技术的精髓,人工智能技术必然成为新世纪科学技术的前沿和焦点。在我国,很长一段时间,专家们都把研制具有人行为特征的类人性机器人作为奋斗目标。机器人的发展水平不仅与计算机科技水平相关,而且与一个国家工业的各方面的发展水平密切相关。中国科技大学在国家基金的支持下,经过十年攻关和钻研,于2000年,成功地研制出我国第一台类人性机器人。

五、未来发展

人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生; 另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。

人工智能一直处于计算机技术的前沿,其研究的领域和方向在很大程度上将决定了计算机技术的发展方向。今天,已经有很多人工智能产品融入了我们的日常生活。将来,人工智能技术的发展将会给我们的学习、生活、工作带来更大的影响。

下一页分享更优秀的<<<浅谈人工智能发展的大学期末论文

智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!

建筑智能化设计的相关探讨

【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。

【关键词】智能建筑;智能化系统;设计

一、建筑智能化系统的设计原则

(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。

(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。

(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。

(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。

(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。

(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。

二、建筑智能化系统的设计

(一)供电系统设计

智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。

(二)接地系统设计

智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:

1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。

2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。

(三)智能化管理间与智能化竖井

通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。

(四)综合布线系统设计

在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:

C=(102-H)/ W=C-5

其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。

三、目前智能建筑存在的问题

(一)国产化系统集成产品

现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。

(二)技术障碍

在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。

(三)人才缺乏

从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。

智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。

四、结束语

智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。

参考文献:

[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期

[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期

[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)

下一页分享更优秀的>>>人工智能的论文

人工智能的发展历程论文

自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。以下是我整理分享的人工智能发展的结课论文的相关资料,欢迎阅读!

浅谈人工智能技术的发展

摘要:自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。本文从人工智能的概念开始,对人工智能的发展进行讲述,并从哲学的角度对人工智能能否超过人的智能这个问题进行了分析。

关键词:人工智能 发展 智能

1、人工智能的概念

人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的 思维方式 和 方法 产生了深刻的变革。人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。

2、人工智能的发展

对于人工智能的研究一共可以分为五个阶段。

第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、 跳棋 程序、LISP语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。

第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。

第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。

第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学诞生的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。

第五个阶段是20世纪90年代后。 网络技术 的出现和发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3、人工智能可否超过人的智能

那么人工智能可否超过人的智能呢?关于这个问题可以从下面几个方面来分析:

首先,从哲学量变会引起质变的角度来说,人工智能的不断发展必定会产生质的飞跃。大家都知道,人工智能从最初的简单模拟功能,到现在能进行推理分析 (比如计算机战胜了 国际象棋 世界冠军),这本身就是巨大的量变。在一部科幻电影中,父亲把儿子生前的记忆输人芯片,装在机器人中,这个机器人就与他的儿子死去时具有相同的思维和记忆,虽然他不会长大。从技术的角度来说,科幻电影中的东西在不久的将来也可以成为现实。到那个时候,真的就很难辨别是人还是机器了。

第二,有的人会说,人工智能不会超过人的智能,因为人工智能是人制造出来的,所以不可能超过人的智能。对于这个观点,我们这样想一想,起重机也是人造出来的,它的力量不是超过人类很多吗?汽车也是人制造出来的,它的速度不也远超过人类的速度吗?从科学技术的角度来说,智能和力气、速度一样,也是人的某个方面的特性,为什么人工智能就不能超过人类的智能呢?

第三,还有的人认为,人工智能是人制造的,必有其致命的弱点,所以人的智能胜于人工智能。我认为这一点也不成立,因为人与机器人比较,也可以说有致命弱点,比如说人如果没有空气的话,就不能生存,就好比是机器人没有电一样。再比如,人体在超过一定的温度或压力的环境下,不能生存,在这一点上,机器人却可以远胜于人类。因此,在弱点比较方面,我认为人工智能的机器人并不比人差,在某些方面还远胜于人类。

第四,随着科学技术的发展,人工智能不单需要 逻辑思维 与模仿。科学家对人类大脑和精神系统研究得越多,他们越加肯定情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能不仅在于赋予它情感能力。

4、结束语

人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术、控制科学与技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和 教育 等带来更大的影响。

下一页分享更优秀的<<<人工智能发展的结课论文

近十多年来,随着算法与控制技术的不断提高,人工智能正在以爆发式的速度蓬勃发展。并且,随着人机交互的优化、大数据的支持、模式识别技术的提升,人工智能正逐渐的走入我们的生活。本文主要阐述了人工智能的发展历史、发展近况、发展前景以及应用领域。 人工智能(Artificial Intelligence)简称AI,是麦卡赛等人在1956年的一场会议时提出的概念。 近几年,在“人机大战”的影响下,人工智能的话题十分的火热,特别是在“阿尔法狗”(AlphaGo)战胜李世石后,人们一直在讨论人是否能“战胜”自己制造的有着大数据支持的“人工智能”,而在各种科幻电影的渲染中,人工智能的伦理性、哲学性的问题也随之加重。 人工智能是一个极其复杂又令人激动的事物,人们需要去了解真正的人工智能,因此本文将会对什么是人工智能以及人工智能的发展历程、未来前景和应用领域等方面进行详细的阐述。 人们总希望使计算机或者机器能够像人一样思考、像人一样行动、合理地思考、合理地行动,并帮助人们解决现实中实际的问题。而要达到以上的功能,则需要计算机(机器人或者机器)具有以下的能力: 自然语言处理(natural language processing) 知识表示(knowledge representation) 自动推理(automated reasoning) 机器学习(machine learning) 计算机视觉(computer vision) 机器人学(robotics) 这6个领域,构成了人工智能的绝大多数内容。人工智能之父阿兰·图灵(Alan Turing)在1950年还提出了一种图灵测试(Turing Test),旨在为计算机的智能性提供一个令人满意的可操作性定义。 关于图灵测试,是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。 图灵测试是在60多年前就已经提出来了,但是在现在依然适用,然而我们现在的发展其实远远落后于当年图灵的预测。 在2014年6月8日,由一个俄罗斯团队开发的一个模拟人类说话的脚本——尤金·古斯特曼(Eugene Goostman)成为了首个通过图灵测试的“计算机”,它成功的使人们相信了它是一个13岁的小男孩,该事件成为了人工智能发展的一个里程碑。 在2015年,《Science》杂志报道称,人工智能终于能像人类一样学习,并通过了图灵测试。一个AI系统能够迅速学会写陌生文字,同时还能识别出非本质特征,这是人工智能发展的一大进步。 ①1943-1955年人工智能的孕育期 人工智能的最早工作是Warren McCulloch和Walter Pitts完成的,他们利用了基础生理学和脑神经元的功能、罗素和怀特海德的对命题逻辑的形式分析、图灵的理论,他们提出了一种神经元模型并且将每个神经元叙述为“开”和“关”。人工智能之父图灵在《计算机与智能》中,提出了图灵测试、机器学习、遗传算法等各种概念,奠定了人工智能的基础。 ②1956年人工智能的诞生 1956年的夏季,以麦卡锡、明斯基、香农、罗切斯特为首的一批科学家,在达特茅斯组织组织了一场两个月的研讨会,在这场会议上,研究了用机器研究智能的一系列问题,并首次提出了“人工智能”这一概念,人工智能至此诞生。 ③1952-1969年人工智能的期望期 此时,由于各种技术的限制,当权者人为“机器永远不能做X”,麦卡锡把这段时期称作“瞧,妈,连手都没有!”的时代。 后来在IBM公司,罗切斯特和他的同事们制作了一些最初的人工智能程序,它能够帮助学生们许多学生证明一些棘手的定理。 1958年,麦卡锡发表了“Program with Common Sense”的论文,文中他描述了“Advice Taker”,这个假想的程序可以被看作第一个人工智能的系统。 ④1966-1973人工智能发展的困难期 这个时期,在人工智能发展时主要遇到了几个大的困难。 第一种困难来源于大多数早期程序对其主题一无所知; 第二种困难是人工智能试图求解的许多问题的难解性。 第三种困难是来源于用来产生智能行为的基本结构的某些根本局限。 ⑤1980年人工智能成为产业 此时期,第一个商用的专家系统开始在DEC公司运转,它帮助新计算机系统配置订单。1981年,日本宣布了“第五代计算机”计划,随后美国组建了微电子和计算机技术公司作为保持竞争力的集团。随之而来的是几百家公司开始研发“专家系统”、“视觉系统”、“机器人与服务”这些目标的软硬件开发,一个被称为“人工智能的冬天”的时期到来了,很多公司开始因为无法实现当初的设想而开始倒闭。 ⑥1986年以后 1986年,神经网络回归。 1987年,人工智能开始采用科学的方法,基于“隐马尔可夫模型”的方法开始主导这个领域。 1995年,智能Agent出现。 2001年,大数据成为可用性。 在1997年时,IBM公司的超级计算机“深蓝”战胜了堪称国际象棋棋坛神话的前俄罗斯棋手Garry Kasparov而震惊了世界。 在2016年时,Google旗下的DeepMind公司研发的阿尔法围棋(AlphaGo)以4:1的战绩战胜了围棋世界冠军、职业九段棋手李世石,从而又一次引发了关于人工智能的热议,随后在2017年5月的中国乌镇围棋峰会上以3:0的战绩又战胜了世界排名第一的柯洁。 2017年1月6日,百度的人工智能机器人“小度”在最强大脑的舞台上人脸识别的项目中以3:2的成绩战胜了人类“最强大脑”王峰。1月13日,小度与“听音神童”孙亦廷在语音识别项目中以2:2的成绩战平。随后又在1月21日又一次在人脸识别项目中以2:0的成绩战胜了“水哥”王昱珩,更在最强大脑的收官之战中战胜了人类代表队的黄政与Alex。 2016年9月1日,百度李彦宏发布了“百度大脑”计划,利用计算机技术模拟人脑,已经可以做到孩子的智力水平。李彦宏阐述了百度大脑在语音、图像、自然语言处理和用户画像领域的前沿进展。目前,百度大脑语音合成日请求量亿,语音识别率达97%。 “深度学习”是百度大脑的主要算法,在图像处理方面,百度已经成为了全世界的最领先的公司之一。 百度大脑的四大功能分别是:语音、图像,自然语言处理和用户画像。 语音是指具有语音识别能力与语音合成能力,图像主要是指计算机视觉,自然语言处理除了需要计算机有认知能力之外还需要具备推理能力,用户画像是建立在一系列真实数据之上的目标用户模型。 工业是由德国提出来的十大未来项目之一,旨在提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂。 工业已经进入中德合作新时代,有明确提出工业生产的数字化就是“工业”对于未来中德经济发展具有重大意义。 工业项目主要分为三大主题:智能工厂、智能生产、智能物流。 它面临的挑战有:缺乏足够的技能来加快第四次工业革命的进程、企业的IT部门有冗余的威胁、利益相关者普遍不愿意改变。 但是随着AI的发展,工业的推进速度将会大大推快。 人工智能可以渗透到各行各业,领域很多,例如: ①无人驾驶:它集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。英国政府也在资助运输研究实验室(TRL),它将在伦敦测试无人驾驶投递车能否成功用于投递包裹和其他货物,使用无人驾驶投递车辆将成为在格林威治实施的众多项目之一。 ②语音识别:该技术可以使让机器知道你在说什么并且做出相应的处理,1952年贝尔研究所研制出了第一个能识别10个英文数字发音的系统。在国外的应用中,苹果公司的siri一直处于领先状态,在国内,科大讯飞在这方面的发展尤为迅速。 ③自主规划与调整:NASA的远程Agent程序未第一个船载自主规划程序,用于控制航天器的操作调度。 ④博弈:人机博弈一直是最近非常火热的话题,深度学习与大数据的支持,成为了机器“战胜”人脑的主要方式。 ⑤垃圾信息过滤:学习算法可以将上十亿的信息分类成垃圾信息,可以为接收者节省很多时间。 ⑥机器人技术:机器人技术可以使机器人代替人类从事某些繁琐或者危险的工作,在战争中,可以运送危险物品、炸弹拆除等。 ⑦机器翻译:机器翻译可以将语言转化成你需要的语言,比如现在的百度翻译、谷歌翻译都可以做的很好,讯飞也开发了实时翻译的功能。 ⑧智能家居:在智能家居领域,AI或许可以帮上很大的忙,比如模式识别,可以应用在很多家居上使其智能化,提高人机交互感,智能机器人也可以在帮人们做一些繁琐的家务等。 专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 机器学习(Machine Learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等的多领域交叉学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径,也是深度学习的基础。 机器学习领域的研究工作主要围绕以下三个方面进行: (1)面向任务的研究 研究和分析改进一组预定任务的执行性能的学习系统。 (2)认知模型 研究人类学习过程并进行计算机模拟。 (3)理论分析 从理论上探索各种可能的学习方法和独立于应用领域的算法 机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。但是现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)进行随机化搜索,它是由美国的教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。 Deep Learning即深度学习,深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。是机器学习中一种基于对数据进行表征学习的方法。 他的基本思想是:假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失,设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。Deep Learning需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设设计了一个系统S(有n层),通过调整系统中参数,使得它的输出仍然是输入I,那么就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。 深度学习的主要技术有:线性代数、概率和信息论;欠拟合、过拟合、正则化;最大似然估计和贝叶斯统计;随机梯度下降;监督学习和无监督学习深度前馈网络、代价函数和反向传播;正则化、稀疏编码和dropout;自适应学习算法;卷积神经网络;循环神经网络;递归神经网络;深度神经网络和深度堆叠网络; LSTM长短时记忆;主成分分析;正则自动编码器;表征学习;蒙特卡洛;受限波兹曼机;深度置信网络;softmax回归、决策树和聚类算法;KNN和SVM; 生成对抗网络和有向生成网络;机器视觉和图像识别;自然语言处理;语音识别和机器翻译;有限马尔科夫;动态规划;梯度策略算法;增强学习(Q-learning)。 随着人工智能的发展,人工智能将会逐渐走入我们的生活、学习、工作中,其实人工智能已经早就渗透到了我们的生活中,小到我们手机里的计算机,Siri,语音搜索,人脸识别等等,大到无人驾驶汽车,航空卫星。在未来,AI极大可能性的去解放人类,他会替代人类做绝大多数人类能做的事情,正如刘慈欣所说:人工智能的发展,它开始可能会代替一部分人的工作,到最后的话,很可能他把90%甚至更高的人类的工作全部代替。吴恩达也表明,人工智能的发展非常快,我们可以用语音讲话跟电脑用语音交互,会跟真人讲话一样自然,这会完全改变我们跟机器交互的办法。自动驾驶对人也有非常大的价值,我们的社会有很多不同的领域,比如说医疗、教育、金融,都会可以用技术来完全改变。 [1] Russell,.人工智能:一种现代的方法(第3版)北京:清华大学出版社,2013(重印) [2]库兹韦尔,人工智能的未来杭州:浙江人民出版社, [3]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技(上旬刊),2017,(04):107-108. [4]王超.从AlphaGo的胜利看人工智能的发展历程与应用前景[J].中国新技术新产品,2017,(04):125-126. [5]朱巍,陈慧慧,田思媛,王红武.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,(21):66-70. [6]王江涛.浅析人工智能的发展及其应用[J].电子技术与软件工程,2015,(05):264. [7]杨焱.人工智能技术的发展趋势研究[J].信息与电脑(理论版),2012,(08):151-152. [8]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7. [9]王永忠.人工智能技术在智能建筑中的应用研究[J].科技信息,2009,(03):343+342. [10]李德毅,肖俐平.网络时代的人工智能[J]中文信息学报,2008,(02):3-9. [11]李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,(05):17-18 [12]孙科.基于Spark的机器学习应用框架研究与实现[D].上海交通大学,2015. [13]朱军,胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展,2015,(01):16-26. [14]何清,李宁,罗文娟,史忠植.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,(04):327-336. [15]郭亚宁,冯莎莎.机器学习理论研究[J].中国科技信息,2010,(14):208-209+214. [16]陈凯,朱钰.机器学习及其相关算法综述[J].统计与信息论坛,2007,(05):105-112. [17]闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,(07):4-10+13. [18]张建明,詹智财,成科扬,詹永照.深度学习的研究与发展[J].江苏大学学报(自然科学版),2015,(02):191-200. [19]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,(01):48-59. [20]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,(07):1921-1930+1942 [21]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,(04):1201-1206+1210. [22]曹道友.基于改进遗传算法的应用研究[D].安徽大学,2010

随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。以下是我整理分享的人工智能神经网络论文的相关资料,欢迎阅读!

人工神经网络的发展及应用

摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。

关键词人工神经网络;发展;应用

随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。

1人工神经网络概述

关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。

2人工神经网络的发展历程

萌芽时期

在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。

低谷时期

在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。

复兴时期

美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。

稳步发展时期

随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。

随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。

3人工神经网络的应用

在信息领域中的应用

人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。

在医学领域的应用

人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。

在经济领域中的应用

经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。

在其他领域的应用

人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。

4总结

随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。

参考文献

[1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.

[2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.

[3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.

[4]过效杰,祝彦知.人工神经网络的发展及其在岩土工程领域研究现状[J].河南水利,2004(1):22-23.

[5]崔永华.基于人工神经网络的河流汇流预报模型及应用研究[D].郑州大学,2006.

下一页分享更优秀的<<<人工智能神经网络论文

论文人工智能研究与发展

你还是自己去汉斯出版社 的官网找下相关文献看看学习学习吧

人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读!

摘要:人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。

关键词:人类智能,人工智能,认知,心理学

人工智能技术无论是在过去,现在还是将来,都作为科学研究的热点问题之一。人类对自己本身的秘密充满好奇,随着生物技术的飞速发展,人类不断破译人体的生命密码。而以生物科学为基础的人工智能技术也得到了长足的发展。人们希望通过某种技术或者某些途径能够创造出模拟人思维和行为的“替代品”,帮助人们从事某些领域的工作。为了让计算机能够从事一些只有人脑才能完成的工作,解脱人的繁重的脑力劳动,人类对自身的思维和智能不断地研究探索。但是,科学技术是一柄双刃剑,人们对人工智能技术的飞速发展存在着恐慌。如果机器真的具有了人类的智能,在未来的某一天,他们会不会取代人类而成为地球的主宰者?人类智能和人工智能,谁才是未来的传奇?

1.你在和谁说话?

“先进的人工智能机器人不但拥有可以乱真的人类外表,而且还能像人类一样感知自己的存在。”这是人工智能发展到高级阶段的目标和任务。那么,我们在不久的未来能否实现这样一个目标呢?人类真的能发明出足以乱真的智能人类吗?隔着一堵墙,我们是否能分辨出正在与我们对话的是一部机器还是人类?

. 人工智能的定义

人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法心理学,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能发展的过程归纳为机器不断取代人的过程。

. 人工智能技术的发展

几个世纪以来,人类依靠智慧,发明了许多机器,使人类能够从许多体力劳动中解放出来。从1956年正式提出人工智能学科算起,40多年来取得长足的发展,成为一门广泛的交叉和前沿科学。科学家发明了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是这些不能模仿人类大脑的功能。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。1997年5月,IBM公司研制的深蓝(Deep Blue)计算机战胜了国际象棋大师卡斯帕洛夫(Kasparov)。在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。计算机的出现,使得人工智能有了突破性的进展。计算机不仅能代替人脑的某些功能,而且在速度和准确性上大大超过人脑,它不仅能模拟人脑部分分析和综合的功能,而且越来越显示某种意识的特性。真正成了人脑的延伸和增强。

. 人工智能的研究领域

人工智能是一种外向型的学科,也是一门多领域综合学科。它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。而人工智能的最根本目的是模拟人类的思维,因此,它的研究领域与人类活动息息相关。什么地方只要有人在工作,他就可以运用到那个领域。

现阶段主要研究领域有专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计心理学,机器人学,博弈,智能决定支持系统和人工神经网络等等。

2.机器真的可以思考吗?

机器真的可以思考吗?机器的思考归根结底还是模仿人类的思维模式,正是“思考”这一人类的本质属性,使得人工智能和心理学从最初就紧密地联系在一起。心理学研究人脑中信息的输入、输出、存储和加工,并研究人脑各个部位的功能。最早的双核计算机模仿人的左右脑,在人脑不同区域主管各个不同功能这一原理的基础上,来设计负责不同功能的芯片。以此为出发点,心理学家和计算机学者进一步合作,通过研究人解决问题的方法来研究开发人工智能。随着人工智能的发展,所要求实现的职能愈加复杂,但最基本的方式还是逻辑推理和归纳,这正是心理学家和逻辑学家的专业领域。心理学家以研究探讨人类逻辑思维方式为人工智能提供了基本原理和原则。

. 人类意识的本质

意识是世界的内在规定、一般规律和组成部分,是具有客观实在性同世界的其它组成部分处在对立统一关系中的事物。意识普遍存于世界和万物之中,世界是包含意识的世界,万物是包含意识的万物。没有意识存在于其中的世界不是我们现实生活中的世界,没有意识存在于其中的万物也不是我们天天眼见手触的万物。有了意识的存在,世界和万物就有了生机和活力。

. 意识是与物质相对应的哲学范畴,与物质既相对立又相统一的精神现象。

意识是自然界长期发展的产物,由无机物的反应特性,到低等生物的刺激感应性,再到动物的感觉和心理这一生物进化过程是意识得以产生的自然条件。意识是社会的产物,人类社会的物质生产劳动在意识的产生过程中起决定的作用。辩证唯物主义在强调物质对意识起决定作用的前提下肯定意识对于物质具有能动的反作用,在意识活动中人们从感性经验抽象出事物的本质、规律形成理性认识,又运用这些认识指导自己有计划、有目的地改造客观世界。

. 从意识的起源看,意识是物质世界发展到一定阶段的产物;从意识的本质来看,意识是客观存在在人脑中的反映。

意识是人脑对客观存在的反映:第一,正确的思想意识与错误的思想意识都是客观存在在人脑中的反映;第二,无论是人的具体感觉还是人的抽象思维,都是人脑对客观事物的反映;第三,无论是人们对现状的感受与认识,还是人们对过去的思考与总结,以至人们对未来的预测,都是人脑对客观事物的反映。 意识的能动作用首先表现在,意识不仅能够正确反映事物的外部现象,而且能够正确反映事物的本质和规律;意识的能动作用还突出表现在,意识能够反作用于客观事物,以正确的思想和理论为指导心理学,通过实践促进客观事物的发展。

. 人类意识与人工智能的关系

认知心理学和人工智能,是认知科学的两个组成部分。人工智能使用了心理学的理论,心理学又借用了人工智能的成果。人类意识与人工智能两者具有以下关系:

l人工智能是研究用机器模拟和扩展人的智能的科学。它撇开了人脑的内在结构和意识的社会性,而只是把人脑作为一种信息处理的过程,包括信息的接收、记忆、分析、控制和输出五部分。现代科学技术用相应的部件来完成着五个过程,就构成了人工智能或电脑。

l人工智能可以代替人的某些脑力劳动,甚至可以超过人的部分思维能力,随着现代科学技术的发展,它发挥着越来越重要的作用。人工智能的出现不仅解放了人的智力,而且为研究人脑的意识活动提供了新的方法和途径。它说明了人的意识活动不管多么复杂,都是以客观物质过程为基础的,而不是什么神秘的超物质的东西,人们完全可以用自然科学的精确方法来加以研究和模拟,它进一步证实了辩证唯物主义意识论的科学性。

l人工智能的产生和发展,深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。

随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。

3. 人工智能的未来

人工智能是为了模拟人类大脑的活动而产生的科学,人类已经可以用许多新技术新材料模拟人体的许多功能,诸如皮肤,毛发,骨骼等等,也就是说,人类可以创造出“类人体”。只要能够模拟人的大脑的功能,人就可以完成人工生命的研究工作,人创造自己,这不但在科学上,而且在哲学上都具有划时代的意义。这就是人工智能承担的历史使命。

在科学技术日新月异的今天,知识爆炸,科技的增长超出了人类承受的速度。各种新科技的出现层出不穷,随之而来的成果简直让人瞠目结舌,克隆、基因芯片、转基因等等,人类自身的秘密开始一层一层的揭开。我们人脑的复杂结构,人体的基因链也逐渐被科学技术解剖。我们希望将来的人工智能机器能将我们从繁重的体力劳动和脑力劳动中解放出来心理学,例如机器人做家务,带孩子,做司机,秘书等等一系列我们不愿意花太多精力或者有太多限制条件的工作。然而,人类由于多种“性能”都不如机器人,反而退化成为机器人的奴隶?他们会不会有一天无法忍受人类对他们的“剥削”和“压迫”,挑战人类的统治?很多的科幻作品和电影中都预言了这样的场景,未来的智能机器人和人类争夺有限的地球资源,并最终打败人类,成为新的地球统治者。这也正是绝大多数心理学家和哲学家对人工智能的发展忧心忡忡的原因。

人工智能的发展,也只能无限接近于人的智能,而不能超越人的智能。因为人工智能技术的本质,是模拟人类的思维过程,是为人类服务的。我们在进行发明创造的同时,担心被我们所发明的物质所毁灭。正如人类发明了原子能,用于取代正在逐渐消逝的矿物能源,然而当原子能用于军事领域的时候,他产生的力量也足以毁灭人类文明。科技本身并不是问题,人类如何运用自己掌握的技术,才是问题的关键。我们最大的敌人不是我们发明的技术,而是我们自己本身。

【参考文献】

1.李建国人工智能与认知心理学[J]. 西南师范大学学报 1986年4月第二期 142-146页

2.郑南宁认知过程的信息处理和新型人工智能系统[J]. 中国基础科学.科学前沿2008年 9-18页

3.蔡自兴,徐光�人工智能及其应用(第三版)[M].北京.清华大学出版社 2004年

4.(美)Sternberg,.认知心理学[M] .北京.中国轻工业出版社 2006年

5.(美)Nils 人工智能[M].北京. 机械工业出版社 2004年

下一页分享更优秀的<<<人工智能的期末论文

[摘要] 本文认为,计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。至少在21世纪早期,逻辑学将重点关注下列论题:(1)如何在逻辑中处理常识推理的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的可错的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 [关键词] 人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑 现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。 本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。 实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题: ·效率和资源有限的推理; ·感知; ·做计划和计划再认; ·关于他人的知识和信念的推理; ·各认知主体之间相互的知识; ·自然语言理解; ·知识表示; ·常识的精确处理; ·对不确定性的处理,容错推理; ·关于时间和因果性的推理; ·解释或说明;21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性. 我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

相关百科

热门百科

首页
发表服务