首页

> 期刊论文知识库

首页 期刊论文知识库 问题

蓄热供暖相变材料的研究进展论文

发布时间:

蓄热供暖相变材料的研究进展论文

一、大型储热水箱跨季节储热与其他几种储热技术相比,热水蓄热具有单位体积热容量大、流动性好,存取热量较为快捷的特点,因此,水箱储热在很多大规模季节储热示范项目中实现了应用,在跨季节太阳能储热系统中,热水蓄热装置一般为圆柱形,这种结构有助于减小形体系数,以减小热损失,水箱的温度分层和外层保温材料是水箱储热研究的重点。二、地下含水层跨季节储热含水层主要包含地下水的地下沙土、砾石、石灰岩层等,上下两层为不透水层。地下含水层跨季节储热系统造价较低,但对地质条件要求较高,是跨季节储热技术的研究热点之一。在含水层蓄热装置中,需要安装冷水井和热水井各一口。在夏季太阳能充足的时候,将获取的太阳热能储存在热水井中。在冬季,通过抽取热水井中的热水给建筑物供暖和生活热水用热,然后将提取完热量后的水灌入冷水井中。三、地埋管跨季节储热埋管储热一般利用地下土壤储存热量,地埋管蓄热装置是在打入地面以下30-100m的竖井内设置单U形管或双U形管,在蓄热过程中,将太阳热能通过水等介质储存在土壤和岩石中,到冬季供暖时,再通过水等介质将竖井旁边土壤和岩石中的热量交换出来。由于土壤储热密度较低,地埋管储热系统土壤体积约为水箱储热系统的3~5倍。地埋管储热对地质要求较高,岩石和饱和水土壤地质类型较为适宜。四、岩石类跨季节储热岩石类储热的保温与水箱保温类似,需要在储热区域顶部和四周加装保温材料。在岩石类储热中常用的介质有鹅卵石、砾石、砂石、砖石等,岩石床与换热流体(水或空气)交换热量实现热量的储存和释放。由于能量密度低,岩石类储热系统体积约为水箱储热系统的3倍。五、人工含水层跨季节储热砾石-水蓄热也称为人工含水层蓄热,蓄热介质由砾石和水组成。在储存太阳热能时,集热装置中的热量通过预埋在砾石中的热交换管与砾石-水蓄热装置中的水和砾石进行换热。因该蓄热装置不需要建设承重结构,造价相对于热水蓄热装置要低。六、相变材料跨季节储热相变储热利用材料在相变过程中吸收和释放的热量实现热能存储,对于跨季节大规模储热方式,可利用换热流体将太阳能集热系统收集的热量储存于相变储热系统中。在国内外研究中,科研人员已经尝试将跨季节相变储热系统应用于农业温室和热泵系统中。七、热化学跨季节储热热化学储热具有较高的储热密度,并且能够实现在接近环境温度下长期无热损储热,而其中热化学吸附和吸收反应温区与太阳能中低温热利用温区相一致,尤其适用于建筑采暖、结构紧凑的跨季节储热,与相变材料跨季节储热类似,热化学跨季节储热主要处于研究阶段,目前针对吸附/吸收热化学跨季节储热系统,国内外研究学者已经展开了广泛的研究。

如今能源危机成为世界性问题,减少能源消耗,提高能源利用率是人们研究的重点问题。尤其是建筑行业,人们积极寻求新型的建筑材料减少能源消耗,使室内环境更加舒适。相变储能材料能够在特定条件下储存能量,并进行释放,使能源消耗得到减少,减少室内温度的波动,对室内环境进行优化,成为未来建筑行业发展的新型材料。1相变储能材料的特点分析根据蓄热方法不同,储能材料可以划分为三种,即显热储能、化学反应储能以及潜热储能。在操作上,显热储能材料是比较便利的,但是由于材料自身的温度是不断变化的,需要在周围环境的诱导下进行能量的释放,所以无法控制环境的温度,此外显热储能材料有着较低的贮能密度,装置的体积是比较大的,所以在实际应用中并没有太大的价值。对于化学反应储能材料,其储能的密度是比较高的,但是由于工艺技术的复杂性,使得其只能在太阳能领域中应用。潜热储能材料即相变储能材料,通过固-固、固-液、固-气或者液-气相变将材料本身吸热、放热的能力发挥出来,有效的储存和释放能量,这种相变储能材料的蓄能密度是比较大的,效率较高,环境温度的变化不会对吸热、放热产生影响,在很多领域都有应用,如太阳能、智能空调建筑物温度的调节控制、废热回收等。因此其是未来热能应用的一个重要研究方向。随着科学技术的发展进步,将传统建筑材料与相变储能材料相结合,能够很好达到节能的目的,所以在建筑节能发展中,相变储能材料有着极好的应用。2建筑节能中相变储能材料的应用建筑围护结构中应用在常用的建筑材料中加入相变材料,可以制作墙体、底板等建筑围护材料。根据目前的研究与应用,制备建筑围护材料大多采用有机类相变储能材料,如添加脂肪烃或脂肪酸类、多元醇类等。脂肪烃或脂肪酸类是固-液相变材料,需要进行封装。多元醇类是固-固相变材料,通过晶型转换进行储能和释能。把相变储能材料加入石膏、混凝土等基础建材即可制备成相变储热建筑围护材料。首先,相变储能墙体材料,利用相变调温的原理,通过蓄能介质相态变化,使热能得到有效的储存,同时结合环境温度调整室内的温度。若环境温度比规定值低,液态的相变材料会变成固态,释放热量。若环境温度比规定值高,固态的相变材料会变成液态,吸收热量,保证室内温度平衡。与普通墙体材料相比,相变储能材料下的围护结构有很好的蓄热效果,改善室内环境,节约能源。在建筑围护结构中应用相变储能材料,还能够使围护结构的隔热功能得到强化,使能源高效利用。同时降低建筑物室内外之间的热流波动,使作用时间得到延长,保证室内环境的舒适性,使建筑物的空调以及供暖系统设计负荷得到降低,减少能源消耗。其次,相变储能采暖地板,这是相变材料与地板材料的结合,相变材料具有一定的蓄热能力,使地板的热惰性得到提升,减弱室内外的热流波动,延迟作用的时间,有效控制室内的温度,使建筑物具有一定的调节温度能力。在相变采暖地板结构中,相变材料需要满足其温度变化范围,提高相变潜热。供暖系统中的应用首先,有相变蓄热器的空气型系统,这种供暖系统主要涉及以下部分,分别是空气型太阳能集热器、集热器风机、相变蓄热器、负荷风机以及辅助加热器等。空气在太阳能集热器与相变蓄热器之间存在,相变蓄热器与负荷间有循环环路。相变蓄热器有很多矩形断面通道,空气可以在其中流动,并且通道是相互平行的,通道需要利用相变蓄热器相变材料分隔,白天利用相变材料储存太阳能,夜晚加热送风,保证夜间房屋需要的负荷得到满足。其次,太阳能水源热泵供热系统,这种系统冷凝器能够加热空气,保证房间中的供暖效果,蒸发器侧冷媒水系统主要包括相变蓄热器、太阳能集热器、蒸发器以及循环水泵等,相变蓄热装置是壳管式结构的,管侧封装相变材料。通过相变储能材料将太阳能进行吸收,然后利用冷媒水对太阳能进行释放,使其进入到蒸发器中作为制冷剂,实现供暖通风的目的。最后,地板辐射供暖系统,这种系统利用相变储能材料,储存太阳能以及夜间低价的电能,发挥相变材料中电加热丝的作用,使储存的热量能够被传递到地板层以及热阻材料上,实现供热的效果。地板辐射供暖系统需要的热媒温度不高,有很好的热舒适性,温度波动比较稳定,可以充分发挥太阳能等能源,实现节能效果,是一种比较理想的供暖方法。相变材料有很好的储能效果,并且在建筑节能中有了很好的应用,减少能源消耗,使室内环境得到改善。由于相变储能材料的发展应用时间不是很长,因此还需要提高重视程度,积极开发与研究,相信未来相变储能材料有很好的发展前景。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

相变材料的研究进展具体内容是什么,下面中达咨询为大家解答。能源是人类社会生存和发展的血液,在电力供电引起的能源和环境危机越来越被人们关注的情况下,如何开发出新的绿色能源以及提高能源的利用率显得越发重要。现阶段,人们关心比较多的新能源是太阳能,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。相变储能材料可以从环境中吸收能量和向环境释放能量,较好地解决了能量供求在时间和空间上不匹配的矛盾,有效地提高了能量的利用率。同时相变储能材料在相变过程中温度基本上保持恒定,能够用于调控周围环境的温度,并且能重复使用。相变储能材料的这些特性使得其在电力移峰填谷、工业与民用建筑和空调的节能、纺织品以及军事等领域有着广泛的应用前景。1 相变材料的研究进展1-1 相变材料的分类相变材料是可将一定形式的能量在高于其相变温度时储存起来,而在低于其相变温度时释放出来加以利用的储能材料。它主要由主储热剂、相变点调整剂、防过热剂、防相分离剂、相变促进剂等组分组成。相变材料种类很多,从所储能量的特点看,分为储热材料和储冷材料两类。从储能材料储能的方式看,可分为显热储能、潜热储能和化学反应储能3类。其中,潜热储能是利用相变材料的相变潜热来储热,储能密度大,储热装置简单、体积小,而且储热过程中储热材料近似恒温,可以较容易地实现室温的定温控制,特别适用于建筑保温节能领域。从蓄热的温度范围看,可分为高温、中温和低温3类。高温相变材料主要是一些熔融盐、金属合金;中温相变材料主要是一些水合盐、有机物和高分子材料;低温相变材料主要是冰和水凝胶。从材料的化学组成看,可分为无机相变材料、有机相变材料和混合相变材料三类。无机相变材料主要包括结晶水合盐、熔融盐、金属合金等无机物;有机相变材料主要包括石蜡、羧酸、酯、多元醇等有机物;混合相变材料主要是有机和无机共融相变材料的混合物。从蓄热过程中材料相态看,可分为固液相变材料、固固相变材料、固气相变材料和液气相变材料。由于后两种相变方式在相变过程中伴随有大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变焓,但在工程应用中很少被使用。固液相变材料主要包括水合盐和石蜡等。固固相变材料相变时不发生相态的转变,而是相变材料的晶型发生了变化,在晶型变化过程中有热量的吸收和放出。固固相变材料主要包括高密度聚乙烯、多元醇和具有层状钙钛矿晶体结构的金属有机化合物。1-2 相变材料的筛选和改进上个世纪80年代美国Dow化学公司对近2万种相变材料进行了测试,结果表明只有1%的相变材料有使用价值,它们是有合适熔点的水合盐以及一些有机相变材料。由于民用建筑对材料的性质与经济因素有严格的限制,适用于储能建材的相变材料就更少了。用于低能耗建筑的理想相变材料应满足以下几项要求:(1)相变材料的室内设计温度或者供暖、空调系统要求的温度范围内;(2)具有足够大的相变潜热;(3)相变时膨胀或者收缩要小;(4)相变的可逆性要好;(5)无毒性、无腐蚀性;(6)制作原料廉价易得。但是实际上,能够满足以上各种条件的理想相变材料是不存在的。所以,需要对相变材料进行改进。对相变材料的改进主要有以下两种方法:(1)将几种有机物配合成二元或者多元相变材料,也可以将有机物与无机物复合,从而制得合适相变温度以及相变潜热的相变材料。(2)制备一直保持固体形状的固液相变材料。这类相变材料的主要组成成分有两种:工作物质和载体基质。前者用来储能,主要是固液相变材料;后者可以保持材料的不流动性和可加工性,载体基质的相变温度一般都较高,载体基质不仅要有结构材料的一般特性,还要与相变材料相容、无腐蚀、无化学反应及成本低等。1-3 相变材料的制备方法目前制备相变材料的方法主要有以下3种:(1)基体材料封装相变材料法基体材料封装相变材料法就是把基体材料按照一定的成形工艺制备成微胶囊、多孔或三维网状结构,再把相变材料灌注于其中或把载体基质浸入熔融的相变材料中。其中微胶囊化技术包括界面聚合法和原位聚合法:(1)界面聚合法是将两种反应单体分别存在于乳液互不相溶的分散相和连续相中,而聚合反应是在相界面上发生的。这种制备微胶囊的工艺优点为可以在常温下操作,而且方便简单、效果好。缺点是对壁材要求较高,被包覆的单体要有较高的反应活性;制备出的微胶囊夹杂有少量未反应的单体;界面聚合形成的壁膜的可透性一般较高,不适于包覆要求严格密封的芯材等。(2)原位聚合法的技术特点是:单体和引发剂全部置于囊心的外部且要求单体可溶,而生成的聚合物不溶,聚合物沉积在囊心表面并包覆形成微胶囊。(2)基体和相变材料熔融共混法本方法是利用相变物质和基体的相容性,熔融后混合在一起制成组分均匀的储能材料。此种方法比较适合制备工业和建筑用低温的定形相变材料。(3)混合烧结法本方法首先将制备好的微米级基体材料和相变材料均匀混合,然后添加一定量的外加剂球磨混匀并压制成形后烧结,从而得到储能材料。1-4 相变材料的表征相变材料的表征目前没有统一的标准,李栋[1]等人给出了4种较为全面的表征方法,包括差示扫描量热法(DSC)和热分析法(TA)、TG分析法、时间-温度曲线法以及扫描电镜法(SEM)。扫描量热法(DSC)和热分析法(TA)主要用来表征相变材料的储能温度范围和储能密度。TG分析法主要是用来研究相变材料的稳定性和储热能力。时间-温度曲线法主要是用来测量相变材料完全相变的时间,从而计算其导热系数。扫描电镜法(SEM)主要是用来观测相变材料的断面,以确定其结构的均匀性和稳定性。2 相变储能材料在建筑领域的应用2-1 相变储能材料在建筑中的应用历史与现状相变材料应用于建筑的研究开始于1982年,由美国能源部太阳能公司发起。1988年起由美国能量储存分配办公室推动此项研究。Lane在其著作《太阳能储存———潜热材料》一书中对20世纪80年代初以前相变材料和容器的发展作了总结。20世纪90年代以相变材料处理石膏板、墙板与混凝土构件等建筑材料的技术发展起来了,随后,相变材料在石膏板、墙板与混凝土构件的研究和应用得到了发展,主要目的是增强轻质结构的热容。美国Neeper估计相变墙板能转移居民空调负荷中90%的显热负荷到用电低谷期,可降低30%的设备容量。Oakbridge国家实验室在1990年得出结论:在太阳房中,相变墙板能明显降低附加能量的消耗,回报期大约是5年。日本的Kanagawa大学和TokyoDenki大学的研究人员对相变墙板的储热性能进行了研究。他们得出了相变墙板的使用使得热负荷更加平缓,辐射域更加舒适,用电量下降,有消减峰负荷的可能的结论。国内对相变建筑材料的研究起步较晚,张寅平研究了无水乙酸钠和尿素的共混物,其相变温度在28~31℃。同济大学则主要以工业级的硬脂酸丁酯为相变材料进行建筑节能混凝土材料的研究。2-2 建筑用相变储能材料的封装技术相变材料与基材的结合方式主要有直接加入、浸泡和封装3种。直接加入法便于控制加入量,浸泡法则可对成品建筑材料进行处理。但是,采用这两种方法制备的相变储能建材耐久性差,主要表现为相变工质的泄露和对基材的腐蚀。封装方法有效地解决了上述问题。封装包括大体积封装和微体积封装。大体积封装是将相变材料装入管件、袋子、板状容器或者其他容器中,这种容器化相变材料已经被市场应用到太阳能领域,但是由于其在相变时与环境接触的面积太小,使得能量传递不是很有效。因此,微体积封装越来越吸引人们的眼球。微观封装,是指把载体基质做成微胶囊、多孔泡沫塑料或者采用易成膜物质。现阶段将相变材料微胶囊化研究的较多。微胶囊相变材料可与传统建筑材料直接复合,工艺简单,化学性能稳定,储热量高,导热率高。2-3 相变储能材料的相变机理。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

储热。相变储热材料储热密度高,可以直接转换到供暖终端,提高热转换效率,因为能源在消费使用终端75%,还是通过热能来实现的。人们普能只重视电池等储电技术的使用,却忽视了储热才是低成本、高效率的储能方式。用相变基蓄热材料储热取热,并可通过多档开关控制电发热管加热快速过热板取热。

陶瓷材料的研究进展论文

品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

李霞.顾幸勇.刘琪 查看详情 [期刊论文] -中国陶瓷2004(03) 高朋召 三维碳纤维预制体/陶瓷基复合材料的制备及性能研究 2004 廖树帜.张邦维 查看详情 [期刊论文] -稀有金属材料与工程1998(05) 郑燕青.施尔畏.李汶军 查看详情 [期刊论文] -中国科学2001(04) 葛荣德.刘志宏 查看详情 1995 Voleeanov E 查看详情 2007(2-3) Blumm J 查看详情 2005(09) 更多...相似文献(10条)期刊论文 Sol-gel法制备ZrO2/钙铝硅系微晶玻璃复合材料的研究 - 中国陶瓷2005,41(1) 期刊论文 Sol-Gel法制备Al2O3-SiO2-TiO2-ZrO2复合陶瓷膜的研究 - 中国陶瓷2003,39(6) 外文期刊 Synthesis of ZrO2-SiO2 mesocomposite with high ZrO2 content via a novel sol-gel method 2005,84(1/3) 外文期刊 Optical properties of sol-gel derived ZrO2-TiO2 composite films 2007,515(20/21) 期刊论文 溶胶-凝胶法制备定向排列的纳米结构二氧化锆薄膜 - 清华大学学报(自然科学版)2001,41(4_5) 外文期刊 Influence of La2O3 and ZrO2 as promoters on surface and catalytic properties of CuO/MgO system prepared by sol-gel method 2006,299(0) 外文期刊 Photocatalytic degradation of 2,4-dichlorophenoxiacetic acid and 2,4,6-trichlorophenol with ZrO2 and Mn/ZrO2 sol-gel materials 2006,37(3) 期刊论文 Sol-Gel法制备ZrO2粉的析晶机制 - 稀有金属材料与工程2005,34(z1) 外文会议 Preparation of ZrO2/nano-TiO2 composite powder by sol-gel method 2007 外文期刊 Phase evolution of sol-gel CaO-ZrO2 using sulfuric acid as hydrolysis catalyst 2006,37(3

找到以下这么多,有用的话留邮箱。1 泡沫陶瓷材料的研究进展 ,靳洪允,陶瓷科学与艺术, 2005 查看全文 2 泡沫陶瓷的研究进展 ,焦方方、朱广燕,陶瓷, 2007 查看全文 3 泡沫陶瓷材料制备方法及应用的研究进展 ,董毅峰、王雪瑶、李志宏、刘石、刘长春,陶瓷, 2007 查看全文 4 有机泡沫浸渍法制备SiC泡沫陶瓷的研究进展 ,赵东亮、张玉军、张兰,陶瓷, 2006 查看全文 5 泡沫陶瓷的研究进展 ,靳洪允,佛山陶瓷, 2005 查看全文 6 泡沫陶瓷材料的研究进展 ,靳洪允,现代技术陶瓷, 2005 查看全文

陶瓷材料研究进展论文

找到以下这么多,有用的话留邮箱。1 泡沫陶瓷材料的研究进展 ,靳洪允,陶瓷科学与艺术, 2005 查看全文 2 泡沫陶瓷的研究进展 ,焦方方、朱广燕,陶瓷, 2007 查看全文 3 泡沫陶瓷材料制备方法及应用的研究进展 ,董毅峰、王雪瑶、李志宏、刘石、刘长春,陶瓷, 2007 查看全文 4 有机泡沫浸渍法制备SiC泡沫陶瓷的研究进展 ,赵东亮、张玉军、张兰,陶瓷, 2006 查看全文 5 泡沫陶瓷的研究进展 ,靳洪允,佛山陶瓷, 2005 查看全文 6 泡沫陶瓷材料的研究进展 ,靳洪允,现代技术陶瓷, 2005 查看全文

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T医学研究等 磁体科学和技术 强磁场的价值在于对物理学知识有重要贡献。八十年代的一个概念上的重要进展是量子霍尔效应和分数量子霍耳效应的发现。这是在强磁场下研究二维电子气的输运现象时发现的(获85年诺贝尔奖)。量子霍尔效应和分数量子霍尔效应的发现激起物理学家探索其起源的热情,并在建立电阻的自然基准,精确测定基本物理常数e,h和精细结构常数(=e2/h(0c等应用方面,已显示巨大意义。高温超导电性机理的最终揭示在很大程度上也将依赖于人们在强磁场下对高温超导体性能的探索。 熟悉物理学史的人都清楚,由固体物理学演化为凝聚态物理学,其重要标志就在于其研究对象的日益扩大,从周期结构延伸到非周期结构,从三维晶体拓宽到低维和高维,乃至分数维体系。这些新对象展示了大量新的特性和物理现象,物理机理与传统的也大不相同。这些新对象的产生以及对新效应、新现象的解释使得凝聚态物理学得以不断的丰富和发展。在此过程中,极端条件一直起着至关重要的作用,因为极端条件往往使得某些因素突出出来而同时抑制其它因素,从而使原本很复杂的过程变得较为简单,有利于直接了解物理本质。 相对于其它极端条件,强磁场有其自身的特色。强磁场的作用是改变一个系统的物理状态,即改变角动量(自旋)和带电粒子的轨道运动,因此,也就改变了物理系统的状态。正是在这点上,强磁场不同于物理学的其他一些比较昂贵的手段,如中子源和同步加速器,它们没有改变所研究系统的物理状态。磁场可以产生新的物理环境,并导致新的特性,而这种新的物理环境和新的物理特性在没有磁场时是不存在的。低温也能导致新的物理状态,如超导电性和相变,但强磁场极不同于低温,它比低温更有效,这是因为磁场使带电的和磁性粒子的远动和能量量子化,并破坏时间反演对称性,使它们具有更独特的性质。 强磁场可以在保持晶体结构不变的情况下改变动量空间的对称性,这对固体的能带结构以及元激发及其互作用等研究是非常重要的。固体复杂的费米面结构正是利用强磁场使得电子和空穴在特定方向上的自由运动从而导致磁化和磁阻的振荡这一原理而得以证实的。固体中的费米面结构及特征研究一直是凝聚态物理学领域中的前沿课题。当今凝聚态物理基础研究的许多重大热点都离不开强磁场这一极端条件,甚至很多是以强磁场下的研究作为基础。如波色凝聚只发生在动量空间,要在实空间中观察到此现象必需在非均匀的强磁场中才得以可能。又如高温超导的机理问题、量子霍尔效应研究、纳米材料和介观物体中的物理问题、巨磁阻效应的物理起因、有机铁磁性的结构和来源、有机(包括富勒烯〕超导体的机理和磁性、低维磁性材料的相变和磁相互作用、固体中的能带结构和费米面特征以及元激发及其互作用研究等等,强磁场下的研究工作将有助于对这些问题的正确认识和揭示,从而促进凝聚态物理学的进一步发展和完善。 带电粒子象电子、离子等以及某些极性分子的运动在磁场特别是在强磁场中会产生根本性变化。因此,研究强磁场对化学反应过程、表面催化过程、材料特别是磁性材料的生成过程、生物效应以及液晶的生成过程等的影响,有可能取得新的发现,产生交叉学科的新课题。强磁场应用于材料科学为新的功能材料的开发另辟新径,这方面的工作在国外备受重视,在国内也开始有所要求。高温超导体也正是因为在未来的强电领域中蕴藏着不可估量的应用前景才引起科技界乃至各国政府的高度重视。因此,强磁场下的物理、化学等研究,无论是从基础研究的角度还是从应用角度考虑都具有非常重要的科学和技术上的意义,通过这一研究,不仅有助于将当代的基础性研究向更深层次开拓,而且还会对国民经济的发展起着重要的推动作用。

探究水处理陶瓷膜制备与应用技术研究进展论文

膜技术被认为是21 世纪最优前景的水处理技术之一,膜材料技术、膜分离技术在近十几年得到很大发展,在水处理领域得到了广泛应用。水处理陶瓷膜的过滤、分离性能与膜孔径大小及其分布、孔隙率、表面形貌等有密切关系。陶瓷膜的活性分离层是颗粒以任意堆积方式形成的,孔隙率通常为30 ~ 35%,且曲折因子调控较为困难,陶瓷膜的水处理效能受到局限。研究陶瓷膜制备、修饰、工艺优化新技术以提高其过滤、分离、抗污染效能是水处理陶瓷膜领域的研究重点。

1. 水处理陶瓷膜制备技术

致孔剂制备技术

致孔剂是提高水处理陶瓷孔隙率简单又经济的方法,致孔剂可分为无机物和有机物两类。无机致孔剂有碳酸铵、碳酸氢铵和氯化铵等高温易分解的盐类或无机碳如石墨、煤粉等;有机致孔剂主要包括天然纤维、高分子聚合物,如锯末、淀粉、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)等。Yang 等 以Al2O3 为膜基体,以膨润土为烧结助剂,以玉米淀粉作为造孔剂通过挤出、交联、干燥、烧结等过程制备陶瓷膜。研究发现随着淀粉含量的增加,Al2O3 支撑体的最大孔径和平均孔径均有所增大,陶瓷膜的孔隙率可有24% 提高至38%。

模板剂制备技术

模板剂可有效控制所合成材料的形貌、结构和大小,并制备出孔结构有序、孔径均一、孔隙率大的微孔、介孔和大孔材料。模板剂法具有丰富的选材和灵活的调节手段,采用模板剂法制备水处理陶瓷膜极具前景。Xia 等 以有机聚苯乙烯微球为模板剂,采用UV 聚合的方法制备出孔径为100nm 的三维有序聚氨酯大孔材料。Sadakane 等 以PMMA 为模板剂制备出具有三维有序大孔的金属氧化物材料,其孔隙率范围为66 ~ 81%。表面活性剂在溶液中可以形成胶束、微乳、液晶、囊泡等自组装体,也常被用作自组装技术中的有机物模板剂。利用表面活性剂十六烷基三甲基溴化铵为模板剂可制备出有序的介孔分子筛MCM41,具有多种对称性能的孔道,孔径在2 ~ 50nm 的.范围内。Choi 等以Tween80 为模板剂制备了具有梯度孔径结构的TiO2-Al2O3 陶瓷膜,陶瓷膜的渗透性能大大提高。

纤维层积制备技术

陶瓷纤维材料在成膜过程中可以迅速在支撑体表面沉积搭桥,明显减少了膜层的内渗,并且容易得到较高的孔隙率和比表面积,对膜材料渗透性能的提高具有显著作用。Ke 等 以TiO2 纤维为原料,通过旋涂法制备出平均孔径在50nm 的陶瓷纤维膜,对球形粒子截留率超过95%,膜通量在900Lm-2h-1 以上。

溶胶- 凝胶制备技术

溶胶- 凝胶技术主要是通过调整材料尺寸控制陶瓷膜分离层的分离精度。溶胶- 凝胶法可形成纳米级别的溶胶,得到的陶瓷膜层孔径小、孔径分布窄,适用于高渗透选择性的超滤膜和纳滤膜的制备。Tsuru 等 利用聚合溶胶路线制备出平均孔径 ~ 的TiO2 纳滤膜,对PEG 的截留分子量为500 ~ 000Da,对Mg2+ 的截留率为88%。

2. 水处理陶瓷膜修饰技术

化学气相沉积修饰技术

采用化学气相沉积法(CVD)在陶瓷膜表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及过滤性能,是一项非常有效的手段。Lin 等 采用CVD 技术对平均孔径为4nm 的Al2O3 陶瓷膜进行修饰,制备出孔径范围为 ~ 的SiO2 陶瓷膜。CVD 的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性。

原子层沉积修饰技术

原子层沉积技术(ALD)可将物质以单原子膜形式层层沉积在陶瓷膜表面,从而构建陶瓷膜表面微纳结构。Li 等 在平均孔径50nm 的陶瓷膜表面上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,改性后陶瓷膜对BSA的截留率由 升至。

表面接枝修饰技术

表面接枝技术常被用来调控膜材料的表面性质,接枝过程将改变膜的孔结构,达到减小孔径的目的。陶瓷膜表面一般会吸附水形成大量羟基,通过接枝有机硅烷的方法在介孔膜表面可以修饰一层有机分子层。通过调控接枝分子的链长与官能团等特性可以实现调控孔径大小的目的,且能获得特殊的表面性质。Singh 等 发现接枝硅烷偶联剂可以使多孔陶瓷膜孔径进一步变小。Cohen 等 将亲水性PVP 接枝在陶瓷超滤膜表面上,改性后的膜孔径减小,截留性能提高,抗污染性能得以改善,可用于油水分离。

3. 水处理陶瓷膜制备与修饰工艺优化

陶瓷膜材料、添加剂选取

水处理陶瓷膜的制备主要集中于原材料及烧结工艺,通过添加烧结助剂以降低烧结温度、采用低成本易烧结原料以降低原料成本,以及利用先进的烧结工艺以达到低成本控制是陶瓷膜的研究重点。陶瓷膜制备过程中常在基膜材料中加入一些液相型或者固相型烧结助剂。高岭土、钾长石等天然硅酸盐黏土矿物在较低温度下便能熔融形成液相,在颗粒间毛细管力的作用下润湿并包裹膜材料基体颗粒,并将颗粒黏结起来,辅以多孔陶瓷膜良好的机械强度。氧化钛、氧化锆等金属氧化物能与陶瓷膜基体形成多元氧化物固熔物而使烧结温度下降,有利于陶瓷膜制备。

陶瓷膜烧制过程优化

多孔陶瓷膜必须经过多次烧结,存在烧结工艺周期长、能耗高的问题。除采用烧结助剂或采用易烧结材料以降低烧结温度外,减少烧结时间或缩短制备周期也能达到降低烧结工艺成本的目的。在减少烧结时间方面,微波烧结技术是一种非接触技术,热通过电磁波的形式传递,可直达材料内部,最大限度地减少了烧结的不均匀性,可在缩短烧结时间的同时,降低烧结温度。微波技术大多用于制备几近致密的陶瓷复合物,同时由于其可改善材料组织、提高材料性能,亦可用于多孔陶瓷复合物的制备。在缩短烧结周期方面,一些研究者借鉴低温共烧陶瓷技术在多层结构陶瓷元器件封装领域的成功应用,提出采用共烧结技术来减少烧结次数,从而降低烧结成本。

4. 结论

水处理陶瓷膜制备技术以提高陶瓷膜整体性能为目的,通过调控陶瓷膜微结构可实现陶瓷膜制备技术的突破。目前,致孔剂制备技术、模板剂制备技术、纤维层积制备技术、溶胶- 凝胶技术、固态粒子烧结技术等陶瓷膜制备技术已日益得到关注。水处理陶瓷膜制备技术研究将引领和推动陶瓷膜技术及产业的发展,缓解水厂升级改造、提升水质品质的瓶颈压力。

钢铁材料研究进展论文

国家计委和科技部日前共同发布了《当前优先发展的高技术产业化重点领域指南(2001年度)》,确定了当前应优先发展的十个产业的141个高技术产业化重点领域新型金属材料产业优先发展的领域如下:1、稀土材料及其应用稀土是信息产业、绿色能源和环境保护等产业的重要支撑材料我国稀土储量、产量和出口量均占世界首位 已形成较齐全的工业体系近期产业化的重点是:高性能稀土永磁材料及制品、稀土催化材料、稀土贮氢材料、稀土发光材料、超大磁致伸缩材料、高温超导材料、稀土硫化物涂料及颜料的规模生产;加快发展高纯稀土氧化物和高纯稀土单质分离提取工业化生产技术和装备;加快稀土在钢铁冶金、有色金属、玻璃、特种陶瓷、石油化工及农业等方面的应用2、复合金属材料制备工艺及其成套设备由于异质金属复合材料的性能功能化和较低的成本及应用范围广泛,提高了传统金属材料的发展潜力近期产业化的重点是:建设铝-不锈钢、铝-钢、钛-钢、铜-钢带液-固相复合工艺生产线 表面复合精饰技术制备薄覆层()金属复合板带生产线;开发颗粒增强铝基复合材料规模化生产技术、半固态成形技术、连续包敷复合高速钢材料及制品,并实现产业化3、高性能密封材料及制品密封件是保证机械装备高效、长期、安全和稳定运行的重要基础件 其技术水平、质量及性能直接影响配套主机产品质量和运行可靠性我国密封材料及制品经过十多年的发展和技术引进,形成了一定的生产能力和规模 一般产品能满足各类主机的配套要求,但高压、高速、精密、耐高温低温和耐腐蚀的密封件与国际水平有较大差距近期产业化的重点是:轿车及中高档轻型车动力传动、减振、制动系统用密封材料及制品规模化生产示范基地建设;重大成套设备中高压、液压、气动系统用密封件;电力设备中高温、高压机械密封;石化工业中高速透平压缩机非接触气膜密封;金属磁流体动密封4、纳米材料和特种粉末及其制品纳米材料因其纳米效应而具有特殊的性能和广泛的用途 是目前科技发展重要热点之一近年来 我国在纳米材料的研究开发和应用方面取得了很大进展 形成了一批拥有自主知识产权的技术并开始产业化近期产业化的重点是:以纳米粉体材料、纳米膜材料、纳米催化材料和纳米晶金属材料为重点 实现低成本、环境友好以及质量稳定的规模化生产;加快纳米材料规模化应用于信息、通信、医疗和环保等新兴产业以及能源、交通、化工、建材、纺织和轻工等基础产业,改进性能,提高效率 促进技术进步;加快发展粉末冶金摩擦材料、高温合金粉末以及高纯超细陶瓷粉体材料链接: 二十一世纪将是材料-电子一体化的世纪作为新型功能材料家庭中的重要成员,形状记忆合金在工程机械和日常生活中得到了广泛的应用由形状记忆合金构成的结构简单、控制灵活、功率密度大的各类记忆合金驱动器,在轻型机器人及小型化系统中具有独特的技术优势本文详细阐明了形状记忆合金的晶体学、热力学特性,概述了该材料的几种典型应用实例在此基础上,综述了这一功能材料的应用优势

焊接是一种连接金属或热塑性塑料的制造或雕塑过程。这是我为大家整理的材料焊接技术论文,仅供参考!

高强材料的焊接浅析

摘要:在现代工业中,高强材料越来越占有重要的地位,但其焊接时的焊接裂纹、脆化、软化等现象,给安全生产与产品的使用效率带来了隐患。为此,笔者根据自身学习与实践经历,就高强材料尤其是高强钢的焊接特性进行分析阐述。

关键词:高强材料;焊接;特性

一、高强材料概况

在当前的管道、容器中,高强材料越来越占有重要的地位。当中最重要的,是将钢里除碳意外添加一类或多类合金成分(合金成分的比例低于百分之五),用来加强钢的强度,将钢的强度提高到275MPa或更高,并产生更优的综合质量,此种钢被称为高强钢,它的基本优点为强度高、塑性与韧性也优于普通钢。根据钢的屈服强度的程度和热处理时的特性,高强钢总体上有两种。

热轧、正火钢,其屈服强度处于294Mpa~490MPa间,而利用状态是热轧、正火与控轧,在类别上是非热处理强化钢,该种钢的现实中使用的最为常见。

调质钢,其屈服强度处于490Mpa~980Mpa间,通常在调质状态中应用,在类别上是热处理强化钢。该种刚的特性是不烦强度高,而且塑性与韧性比较好,能够直接于调质时进行焊接。所以,这中调质钢在使用中越来越普及。

现在常使用的高强钢,钢板牌号包含以下几种:16MnR、15MnVR、13MnNiMoNbR、18MnMoNbR;锻件牌号包含以下几种:16Mn、15MnV、20MnMo、20MnMoNb。

二、高强钢的焊接特性

高强钢中碳含量通常不高于,合金成分的总量通常不高于5%。因为高强钢包含一些的合金成分,使它的焊接性和别的材料有一些不同,具体焊接特性有以下几点:

1、焊接时的焊接裂纹

(1).高强钢因为使用了让钢强度增加的碳、锰等元素成分,当焊接的时候往往产生淬硬,而产生的硬化部分往往很敏感,所以,当刚性过强与拘束应力较强的状态下,如果焊接方式有问题,就会造成冷裂纹。加上这中裂纹存在较长的延迟,容易造成较大的危害。

(2).再热裂纹为在焊作业完成后,慢慢去掉应力热的过程中,或较长时间在高温状态下于临近熔合线粗晶部位造成的沿晶开裂。通常认为,此类裂纹造成的原因,是因为焊接高温导致HAZ旁边的V、Nb、Cr、Mo等元素固溶在了奥氏体内,焊接完成后进行,但没有完全析出,而是在PWHT的时候呈弥散状态析出,所以强化了晶内,将应力在松弛的时候产生的蠕变变形汇聚在了晶界。

高强钢在焊接的时候,通常不会造成再热裂纹,例如16MnR、15MnVR之类。然而对Mn-Mo-Nb与Mn-Mo-V等类别的高强钢,因为Nb、V、Mo等成分比较敏感,是造成再热裂纹的常见因素,所以这些高强钢与焊接完成后实施热处理时,需要特别回避容易造成再热裂纹的温度范围,以免造成再热裂纹。

2、焊接部位的脆化与软化

(1).应变时效脆化。焊接部位于焊接前要进行各种冷处理(如钢板的剪切、管道筒罐的卷圆),材料会导致有所变形,要是变形的部位再收到200至450℃的热作用,可能造成应变时效,继而产生脆化,往往导致材料的塑性减弱,因此造成钢材的脆断。

PWHT能够减弱焊接时产生应变时效,将韧性一定程度上恢复。1998年制定的《钢制压力容器》中明确规定,筒状钢材的厚度要达到下列标准:碳素钢达到的的厚度不能低于圆筒内部直径的百分之三;别的钢的达到的厚度不能低于内部直径的百分之二点五。而且,那些冷成形与中温成形中制作的受压产品,要在成形之后实施热处理。

(2).焊缝与热影响区产生的脆化。对材料进行焊接时,加热与冷却往往不会十分均匀,便会产生不均匀的结构。焊缝与热影响区具有一定的脆性,这是是焊接接头里最薄弱的地方。焊接线的能量强度会对高强钢WM与HAZ性能产生较大影响,高强钢容易淬硬,线能量如果不高,HAZ会产生马氏体造成裂纹;线能量如果过高,WM与HAZ产生粗糙的晶粒,会造成焊接部位的脆化。线能量如果过高,调质钢而造成的HAZ脆化现象尤其明显。因而焊接作业时,要把线能量控制于合适的度量。

(3).焊接部位的热影响区产生的软化。因为焊接时的热作用,会造成部分地区强度降低,形成了一定的软化带。HAZ区的结构软化会因为焊接线热度的提升与预热温度的提升而恶化,不过通常的软化区的性能还是能够达到规定标准值的最低标准,因而这些钢材地热影响部位产生的软化现象,如果做到工艺合适,就不会降低焊接部位的正常使用。

三、当代新式高强材料的焊接特性

1、高强管线钢

高强管线钢指X70以上的钢级,至尽为止,X80是已建管线钢中使用的强度最高的管线钢。加拿大Ipsco钢铁公司在1998年年报中明确指出,该公司已成功进行了X90和X100SSAW钢管试生产,最终目标是生产各种规格的X100钢管。日本NKK、住友金属、新日铁、川崎制铁及欧洲钢管公司也相继研制成功X90和X100UOE钢管,正在研制X120钢管。

为保障管线的安全可靠性,在提高强度的同时,必须相应提高韧性。特别是高压输气用钢管,必须有很高的CVN。超贝氏体和超马氏体被誉为21世纪的管线钢,其钢级为X80~X100(贝氏体)、X100~X120(马氏体)。在成分设计上,大体上都是(超)的Mn-Nb-Ti系或Mn-Nb-V(Ti)系,有的还加入Mo、Ni、Cu等元素,因此,热影响区的韧性不会比较低强度的管线钢差,冷裂纹敏感性不大。对于强度高于600MPa的钢,焊接时要特别关注WM冷裂纹问题,尤其是现场对接环焊缝必须采用超低氢焊接材料。

2、超细晶粒钢

上世纪90年代,世界主要产钢国相继开展了新一代钢铁材料的研究,其中,尤以日本的“超级钢“计划、中国的“新一代钢铁材料重大基础研究”和韩国的“21世纪高性能结构钢”引起世界钢铁界的瞩目和热情参与。

在新一代钢铁材料的研究中,最引人注目的是超细晶粒的研究,通过超细晶粒(最小1mm)实现强度翻番的目标。超细晶粒钢焊接的最大问题就是HAZ的晶粒长大倾向,为解决这一问题,须采用激光焊、超窄间隙MAG焊、脉冲MAG焊等低热输入焊接方法。

参考文献

[1]王建利.高强钢的焊接工艺评定[J].云南水力发电,2007,(02).

[2]李明.高强钢的焊接[J].现代焊接,2005,(03).

[3]栗卓新,刘秀龙,李虹,李国栋.高强钢焊材及焊接性的国内外研究进展[J].新技术新工艺,2007,(05).

试论焊接技术

摘 要:焊接是一种连接金属或热塑性塑料的制造或雕塑过程。焊接过程中,工件和焊料熔化形成熔融区域,熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。今天,随着焊接机器人在工业应用中的广泛应用,研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,以进一步提高焊接质量。

关键词:焊接;金属;能量;技术

1、焊接技术概论

焊接过程的物理本质

焊接是两种或两种以上同种或异种材料通过原子或分子之间的结合和扩散连接成一体的工艺过程.促使原子和分子之间产生结合和扩散的方法是加热或加压,或同时加热又加压。

焊接的分类

金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类。

熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。

压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。

钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。

焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。

现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。

搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。

未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。

2、焊接-工业艺术

焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。本文对这一技术的出现与运用进行了分析。

艺术创造与工艺方法永远是密不可分的。作为一种工业技术,焊接的出现迎合了金属艺术发展对新的工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。金属焊接艺术可以作为一种相对独立的艺术形式以分支的方式从传统的金属艺术中分离出来,这是因为焊接具有艺术性。

焊接可以产生丰富的艺术创作的表现语言。

焊接通常是在高温下进行的,而金属在高温下会产生许多美妙丰富的变化。金属母材会发生颜色变化和热变形(即焊接热影响区) ;焊丝熔化后会形成一些漂亮的肌理;而焊接缺陷在焊接艺术中更是经常被应用。焊接缺陷是指焊接过程中,在焊接接头产生的不符合设计或工艺要求的缺陷。其表现形式主要有焊接裂纹、气孔、咬边、未焊透、未熔合、夹渣、焊瘤、塌陷、凹坑、烧穿、夹杂等。这是个十分有趣的现象 :焊接的艺术性通常体现在一些工业焊接的失败操作之中,或者说蕴藏于一些工业焊接极力避免的焊接缺陷之中。其次,焊接艺术语言是独特的。选用不同的金属材料,使用不同的焊接工艺,焊接的艺术性可以在不同的金属艺术形式中发挥得淋漓尽致。

在焊接雕塑作品中,焊缝和割痕不是作为一种技术加工的痕迹被动地存在,而是以一种精彩的、不可或缺的表现语言着力地加以体现的。一件焊接雕塑,粗的焊缝裸露在雕塑表面,各种不规则的切割痕迹也变成了艺术家优美的艺术语言在很多情况下,由于焊接雕塑所追求的粗糙质朴的风格,金属的锈蚀、瑕疵也大多根据作品的需要特意保留,因此,在焊接雕塑中常常可以感觉到一种非雕琢的、原始的美。雕塑下部的钢板拼接处的焊缝很粗大,从焊接工艺的牢固性来看,这显然不仅仅是出于对雕塑结实程度的考虑,在这件雕塑中,下部几条扭曲的焊缝已经作为雕塑整体审美的一个重要因素而成为其不可缺少的一部分。从雕塑整体来看,不论是上半部分的文字造型,还是下半部分的肌理处理,到处有扭曲的焊接痕迹的出现,整个作品达到了整体视觉语言的统一。 手工等离子切割的方法,利用切割时电流的热量,使切割边缘产生热影响区,这样就给亮白色的不锈钢“染”上了一圈略带渐变的色彩。同时,通过对焊接规范的调节,割枪喷出的强烈气流会在切割钢板熔化的瞬间在切割边缘“吹”起一圈随机形成的肌理,在切割完成金属冷却后,固化为一道美丽的割痕,与中间平坦光亮的不锈钢板材形成了质感的对比。这种随机效果的形成过程带有一定的偶然性,但又是在一定的焊接规范下必然产生的现象。从尺寸的角度考虑,尺寸较大的焊接艺术壁饰可采用半自动CO2气体保护焊,较小的可采用手工钨极氩弧焊。

如果把一幅壁饰作品看成一幅画的话,画面中的点、线、面、黑、白、灰甚至颜色的处理都可以通过焊接的方法来实现。各种型号、各种材质的金属丝,应用不同的焊接工艺会在画面上以不同的形式出现。不同金属的颜色不同,不锈钢的亮银色、铝材的亚银色、碳钢的乌亮色,钛钢、青铜、紫铜、黄铜而且就钢材来说,不同的钢材在高温受热时会出现不同的颜色变化,即焊接热影响区不同。另外,切割也是焊接艺术壁饰创作的方法之一,既可以与焊接结合使用,也可以单独使用,这完全取决于创作者的创作意图和对工艺与效果的掌握程度。以上所述的这些方法综合起来,变化的丰富可想而知。

3、焊接作业中发生火灾、爆炸事故的原因

焊接切割作业时,尤其是气体切割时,由于使用压缩空气或氧气流的喷射,使火星、熔珠和铁渣四处飞溅(较大的熔珠和铁渣能飞溅到距操作点5m以外的地方),当作业环境中存在易燃、易爆物品或气体时,就可能会发生火灾和爆炸事故。

在高空焊接切割作业时,对火星所及的范围内的易燃易爆物品未清理干净,作业人员在工作过程中乱扔焊条头,作业结束后未认真检查是否留有火种。

气焊、气割的工作过程中未按规定的要求放置乙炔发生器,工作前未按要求检查焊(割)炬、橡胶管路和乙炔发生器的安全装置。

4、焊接作业中发生火灾、爆炸事故的防范措施

焊接切割作业时,将作业环境lOm范围内所有易燃易爆物品清理干净,应注意作业环境的地沟、下水道内有无可燃液体和可燃气体,以及是否有可能泄漏到地沟和下水道内可燃易爆物质,以免由于焊渣、金属火星引起灾害事故。

高空焊接切割时,禁止乱扔焊条头,对焊接切割作业下方应进行隔离,作业完毕应做到认真细致的检查,确认无火灾隐患后方可离开现场。

应使用符合国家有关标准、规程要求的气瓶,在气瓶的贮存、运输、使用等环节应严格遵守安全操作规程。

对输送可燃气体和助燃气体的管道应按规定安装、使用和管理,对操作人员和检查人员应进行专门的安全技术培训。

焊补燃料容器和管道时,应结合实际情况确定焊补方法。实施置换法时,置换应彻底,工作中应严格控制可燃物质的含影实施带压不置换法时,应按要求保持一定的电压。工作中应严格控制其含氧量。要加强检测,注意监护,要有安全组织措施。

作为一种工业技术,焊接的出现迎合了金属艺术发展对新工艺手段的需要。而在另一方面,金属在焊接热量作用下所产生的独特美妙的变化也满足了金属艺术对新的艺术表现语言的需求。在今天的金属艺术创作中,焊接可以而且正在被作为一种独特的艺术表现语言而着力加以表现。

上述种种焊接缺陷的表现形式以及焊接热影响区,是通过一定规范下的焊接操作形成的,也只有通过焊接的方式才会产生这些艺术语言。焊接艺术作品的表面效果是其它金属加工工艺无法或者很难实现的,因而说焊接艺术具有独特的艺术性。

中国钢铁企业管理变革之道 文:仁达方略 来源:中国国企改革网 时间:2005-7-20 22:46:43 点击:227【文章级别0】 从老、大、粗、笨到精益生产的转化中国钢铁企业与国外钢铁制造企业一样,许多都具有百年以上的历史,在几乎相同的发展历程中,中国的钢铁制造企业却面临着与众不同管理问题。上个世纪八十年代之前,钢铁企业执行的是全面的计划经济政策,管理与企业作为都直接为国家服务。但到了八十年以后,市场经济不断完善,其间也造就了不少企业的辉煌,这 一切都是中国钢铁企业的历史特征,也代表了中国钢铁企业的过去。上个世纪九十年代是中国钢铁企业管理变革的分水岭,新的管理思想、观念在这阶段涌现,“关注成本管理、技术改造、质量管理 、产品创新”等等,都成为各企业的管理主题与潮流。但是,中国市场经济在这一阶段纳入世界经济步伐也是最快的时间,经济的全球化高潮极大地削弱了中国钢铁企业进行自主管理创新的成绩,作为国民经济的支柱产业,钢铁企业在这一时期面临更严峻的挑战。全球很多钢铁企业都是巨人般地庞大,中国钢铁企业也不例外。但中国钢铁随着新中国的建立,也走了近四十年的计划经济的路子。在此期间,企业的设备、管理、工艺流程一直都在沿用三、四十年代的体系,在计划主宰一切的时期,忽略了管理的创新、工艺、设备的引进等,从而为九十年代中后期的激烈市场竞争留下了隐患。老、大、粗、重、笨极为形象地描述了过去的钢铁企业,在一部分企业中,目前还有上个世纪初期的设备及生产工艺流程,技术改造与创新较为缓慢。作为国有企业的支柱,在过去的发展中,绝大多数企业都在承担着社会的任务,企业办医院、学校、社区等等比比皆是,这样使得每一个国有企业都显得庞大而具有气势。而将主要精力用在技术创新与工艺流程的改造方面,却是很少。当企业真正进入市场,参与市场竞争的时候,就成了“企业的巨人,行动侏儒”,庞大的企、事业机构无一能在此时为其服务,由此就有了九十年代后期全国性的钢铁行业问题。钢铁企业管理创新是现在的热门话题,邯郸钢铁的成本管理、宝钢的客户关系管理、武钢的技术创新、首钢的资本运作及业务转移等等,都各有成效,并成为各自主题。在这样大型企业的管理创新活动中,许多行为都在围绕一个共同的话题:对过去庞大体系的梳理、对企业办社会的思考。成本管理在更多地关注生产链活动,在关注冗员的分流;宝钢的客户关系管理在关注产品的市场链行为:快速交货、产品创新、电子交易平台等等;武钢将资本重组、新技术创新与引进、资本运作等管理创新活动纳入到管理年度中,优化企业资产,提高资产与资本间的转换价值。这一系列的管理创新活动在业内被称为瘦身行为,在不失为行业巨人的前提下,提高了竞争能力。从过去的老、大、粗、重、笨,到今天的轻装前进,中国钢铁企业用了近十五年的时间。在本世纪初期,产品质量管理(品质管理)日益盛行,宝钢集团首先引进全面质量管理体系进行镀锌薄板及彩板生产,在追求精益生产管理的同时将客户交货期压缩到十五天,极大地提高了与国际同类产品的竞争能力。“发展=优势的转化和再造”是宝钢集团在第十三次管理论坛上提出的命题。在前期进行“大瘦身”(裁减冗员、剥离负资产、分解企业办社会的部分)运动之后,进行了大幅度的产品技术及生产工艺创新举动,使自己成为灵活的巨人。钢铁企业精益化生产策略是当今市场发展的必然结果,宝钢集团在应对汽车、家电制造的终端客户的需求时,必须对自身的生产工艺及设备进行较大的技术改造。在这些市场竞争激烈的产品中,成本与价格、生产工艺及交货时间、客户管理与供应链管理,始终都在围绕产品的质量体系,精益化生产管理体系不仅仅保证终端产品的质量,更关注整个生产环节的完好率、成本控制、生产工艺的不断改造与创新等等。因此,在一系列的创新年中,钢铁企业正在逐步地摆脱困境,完善自身。国有企业机制与全面市场化的融合中国国有企业机制为钢铁企业打下了夯实的基础,同时也创建了极其殷实的物质条件,这对钢铁企业现在所参与的市场竞争并获得极大成绩立下了汗马功劳。因此,对国有企业的长期积累不能给以任何方式的否定,而应该以不同的角度进行理解。“一时、一事、一人”是最能解释国有企业在为国家经济做出的贡献,一时、一事、一人就是把人和事放在同一个时期进行比较,这样才能客观公正地对钢铁企业进行评价。传统的国有企业管理机制正在受到挑战,对于上海宝钢集团这样处于市场风顶浪尖的企业,已经不能用老套的管死不放权来经营,而是随着国家对企业管理经营的逐步退出而放开。国有资产正在逐步地退出,国有资本的管理结构已经逐渐地转向资本投资管理与经营管理分离,对过去全部控股也已经在逐渐地退出。这一切举动正是国家在对大型企业逐步地放权,以便使企业更轻松地应对市场。首钢集团在九十年代初期开始大刀阔斧地进行企业改革,在九十年代末期,副营业务首次与主营业务盈利持平,并预期在2005年副营业务超过主营业务。将过去传统制造行业迅速转换为当今一流的高科技企业,这在国内乃至世界同行业中成为领先者。上海宝钢集团在近几年的管理变革过程中,对主、副业务进行了较大的梳理,同时在进行大幅度地技术改造过程;对冗员精简与分流,以提高供货能力与增加产品链效益为主要的创新目标;建立高品质的管理论坛,交流管理经验,并提供决策服务;较完整地建立了电子商务平台及信息化管理体系,并充分利用信息系统进行客户管理,产品交货速度在全球同行业中暂居领先地位。由于国内钢铁行业产品结构的重复性较大,高端产品的市场占有率较小。对此,国家目前依然采用宏观调控机制,指导行业的技术改造与升级。这样,作为国有资产的控制与保值就有了一定的保障,同时,这也是国有企业机制发挥的效用之一。国有企业管理机构通过对资产的控制,极大地放宽了企业管理经营的权利,但绝对不是无度地放宽。武汉钢铁集团通过多年的经营成为一个极大的债权人。在前几年进行三角债清理过程中,房地产企业所欠债务最多,通过近几年的债务置换工作,武钢集团置换回三千多套商品房,并成立房产管理公司进行商品房的开发工作,同时,还开发了武汉市青山区的万套商品房工程,实现了资本的增值。由此可以看出,国有机制下的企业在近几年应对市场经济的时候,已经逐渐成熟。在国有资产进行资本控制与管理经营的剥离过程中,开始尝试将国有资本直接纳入到市场管理体系当中,在保障宏观调控的前提下,中国钢铁企业抗风险的能力越来越强,越来越具有实力参与全球化竞争。发展 → 建立一个全新的钢铁文化五十亿规模的企业关注管理,百亿元规模的企业关注文化,这是国际大型企业管理的基本定式。也就是说一家在五十至白以规模的时候,主要依靠管理来要效益,而企业在超过百亿元规模的时候,依靠的时企业的文化来获得长期持续的发展。因此,中国钢铁企业目前阶段管理的主题应该处在依靠文化获得发展的时期,并且应以钢铁文化的管理创新作为主题,参与市场竞争。中国钢铁企业文化有着深厚的积淀,过去曾经传述这许多创业者与以厂为家者的动人轶事,更有当今改革创新者的业绩。这一切都在表述者悠久的行业历史,但是也有市场竞争与管理创新所做出的牺牲:有许多过去的国家劳动模范、五一奖章获得者、技术能手在改革中被作为冗员下岗、分流,或离开自己熟悉的工作岗位。市场竞争的无情在今天钢铁企业中,在这些老的员工中表现得尤为无情,或称之为悲壮。但由此却给钢铁企业建立自身的企业文化带来了新的命题:怎样建立一个竞争型新的企业文化,参与全球化竞争。上海宝钢集团公司,以“办世界一流企业、创世界一流水平”为目标,走新型工业化道路,培育优秀的公司素质和公司形象,建立和提升包括与之相适应的管理体制与制度的企业核心竞争力。这是宝钢新时期的企业文化建设主题,并将文化建设与企业发展战略目标相结合,以企业文化服务于公司未来的发展战略。“追求、比较,苛求、创新”的企业文化和行为实现公司战略与提高综合竞争能力奠定了企业发展基础。“宝钢的阶段性战略目标是:到2005年,钢铁主业保持在中国钢铁业中的领先地位,建成中国最大、最具竞争力的钢铁精品基地和钢铁工业新技术、新工艺、新材料研发基地;集团公司实现销售收入1200亿元,成为世界500强。到2010年,宝钢钢铁主业综合竞争力进入世界前三名;集团公司实现销售收入1500亿元,成为具有自主知识产权和国际竞争力的大型跨国集团”。为实现这一战略目标,宝钢集团建立了自身管理学习创新论坛,在进行的十余期论坛上,“追求、比较,苛求、创新”始终作为主要课题,将竞争能力、核心优势、制度创新等等与企业密切相关的话题进行分析,从而引导出“用户满意(CS)战略,实行全方位满意管理(TSM)”等管理方案。文化即一种行为的习惯。当一个企业把创新作为一种习惯的时候,创新就成为企业发展动力之源。首钢目前成为全球钢铁行业创新的典范,主要得益于对自身文化的清晰定位。基于首钢雄厚丰富的资源,成功地从一家传统的制造企业转变为高科技企业,其创新的根源在对市场的发展形态的充分认识。在继续保持原有产业优势的前提下,对产品进行细分和定位,将优势产品变为强势,将盈利模式由单一化转变为多元化,高科技投资、金融服务等项目将会逐渐超过传统项目的盈利能力。这些转变无疑都在改变着首钢人的价值观与工作习惯,并形成新时期的首钢文化。大型钢铁企业的核心竞争优势绝不仅仅来源新技术的应用与工艺流程的创新,从近几年来中国钢铁企业的管理创新活动中分析得出,建立一个新的管理机制与企业思考习惯,将巨轮灵活掉头也是企业的综合竞争能力的具体表现。对此,通过钢铁企业自身改革的经验,建立一套适应管理创新的文化适应体系就成为下一个发展百年的生存大计。中国钢铁企业管理的未来之路更加具有参与市场竞争的能力,全面地融入全球化经济浪潮中是未来国有钢铁企业的必然发展方向。传统的钢铁企业生产链在极大程度上重复着老套的管理体系,中国钢铁制造的产品同质化、差异化较小,加大了企业产品参与市场竞争的难度,而目前国内钢铁产品的消费市场、生产的饱和度都已经达到平衡状态,市场上新材料的应用也在极大地冲击着钢产品的消费,因此,钢铁企业进行生产链的重组、产品的创新、新材料的研发工作已经势在必行。生产链关系的重组在极大程度上是对生产管理关系的优化工作。上海宝钢集团通过多年的生产链调整,将主要的企业资源直接为生产服务,从矿山管理、运输、生产等一系列程序中进行精简,以专业化路子实现做大、做强。同时,也加快了新产品的研发,投资新材料项目,实现了纵深一体化战略目标。进行生产链重组工作需要付出一定的代价。宝钢集团在近几年的管理实践中,分流人员七万多人,剥离了多个事业机构。同时对与主业关联性不强的企业进行了较大的整合,做到主、辅分离责任明晰,把好钢真正用在了刀刃上。在同样生产2000多万吨产品的情况下,利润率增加了近二成,上缴税收增加近一倍,一线员工的收入也有了较大幅度的增长,这些好处都来自于宝钢集团公司的生产链关系的重组。关注战略管理将是钢铁企业未来管理的重大主题,任何一个管理决策的失当都将导致企业不可挽回的损失,因此,成功的战略管理决策对大型钢铁尤为重要。在行业中,首都钢铁集团成功的战略转型成为行业典范,但并不一定所有的钢铁企业都应该效仿。首钢多元化战略的实施成功是多方面因素构成的,为此,需要通过长期的论证。但在现在市场竞争激烈的情况下,决策程序越来越简化,决策时间也越来越短,处理复杂的市场管理问题成为目前钢铁管理者的日常工作。把握稍纵即逝的市场契机是大企业进行快速反应的一种表现,对企业的战略问题,每时每刻都在刺激着管理者的神经。面对这种管理的两难,管理这绝不仅仅承担着企业的增值与保值义务,而如何使企业顺利地进入到下一个百年才是最根本的问题。保持基业对大型钢铁企业是一件比较容易的事情,但如何常青却是长期战略问题。基业常青的基本原则是建立一套行之有效的管理体系与机制,确定战略管理的执行规则,这是中国钢铁企业管理的未来任务。国有钢铁企业在近五年的创新实践活动中,关注成本管理、文化建设、产品链、客户管理等等的创新较多,这些解决问题临时结的活动在很大程度上帮助企业度过了一些难关,并使企业获得相应的喘息机会。但是,在对目前钢铁企业的多次管理调研活动中发现,解决管理中临时问题方式并不能一劳永逸地实现企业持续发展的目的。邯郸钢铁在前几年引进武汉大学余杭教授进行成本管理时,就没有考虑到行业中管理变革的发展速度,而使其成为昙花一现。在期生产的同类产品中,全国近万家企业的竞争是的成本管理成绩被极大地侵蚀。今天,行业中不再谈起学习邯钢,这就是在中国进行管理创新的弊端,其症结就在于“临时管理”。中国钢铁企业的管理问题决不是一朝一夕产生的结果,而是过去几十年来重计划轻管理的结果。因此,对当前钢铁企业的管理解决之道就是按照市场化企业运作机制,建立企业全面管理体系,建立系统的企业管理观念,只有这样才不会出现管理上因市场因素而产生的较大波动,实现管理的平衡发展,只有这样才能使企业在进入下一个百年时仍然保持“常青”。

储氢材料的研究与进展论文

储氢材料 储氢材料 hydrogen storage material 一类能可逆地吸收和释放氢气的材料。最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。20世纪70年代以后,由于对氢能源的研究和开发日趋重要,首先要解决氢气的安全贮存和运输问题,储氢材料范围日益扩展至过渡金属的合金。如镧镍金属间化合物就具有可逆吸收和释放氢气的性质: 每克镧镍合金能贮存升氢气,略为加热,就可以使氢气重新释放出来。LaNi5是镍基合金,铁基合金可用作储氢材料的有TiFe,每克TiFe能吸收贮存升氢气。其他还有镁基合金,如Mg2Cu、Mg2Ni等,都较便宜。 一,绪言 氢-二十一世纪 的绿色能源 能源危机与环境问题 化石能源的有限性与人类需求的无限性-石油,煤炭等主要能源将在未来数十年至数百年内枯竭!!!(科技日报,2004年2月25日,第二版) 化石能源的使用正在给地球造成巨大的生态灾难-温室效应,酸雨等严重威胁地球动植物的生存!!! 人类的出路何在 -新能源研究势在必行!!! 氢能开发,大势所趋 氢是自然界中最普遍的元素,资源无穷无尽-不存在枯竭问题 氢的热值高,燃烧产物是水-零排放,无污染 ,可循环利用 氢能的利用途径多-燃烧放热或电化学发电 氢的储运方式多-气体,液体,固体或化合物 实现氢能经济的关键技术 廉价而又高效的制氢技术 安全高效的储氢技术-开发新型高效的储氢材料和安全的储氢技术是当务之急 车用氢气存储系统目标: IEA: 质量储氢容量>5%; 体积容量>50kg(H2)/m3 DOE : >, > 62kg(H2)/m3 二,不同储氢方式的比较 气态储氢: 能量密度低 不太安全 液化储氢: 能耗高 对储罐绝热性能要求高 二,不同储氢方式的比较 固态储氢的优势: 体积储氢容量高 无需高压及隔热容器 安全性好,无爆炸危险 可得到高纯氢,提高氢的附加值 体积比较 氢含量比较 三,储氢材料技术现状 金属氢化物 配位氢化物 纳米材料 金属氢化物储氢特点 反应可逆 氢以原子形式储存,固态储氢,安全可靠 较高的储氢体积密度 Abs. Des. M + x/2H2 MHx + H Position for H occupied at HSM Hydrogen on Tetrahedral Sites Hydrogen on Octahedral Sites 金属氢化物储氢 目前研制成功的: 稀土镧镍系 钛铁系 镁系 钛/锆系 稀土镧镍系储氢合金 典型代表:LaNi5 ,荷兰Philips实验室首先研制 特点: 活化容易 平衡压力适中且平坦,吸放氢平衡压差小 抗杂质气体中毒性能好 适合室温操作 经元素部分取代后的(Mm混合稀土,主要成分La,Ce,Pr,Nd)广泛用于镍/氢电池 PCT curves of LaNi5 alloy 钛铁系 典型代表:TiFe,美Brookhaven国家实验室首先发明 价格低 室温下可逆储放氢 易被氧化 活化困难 抗杂质气体中毒能力差 实际使用时需对合金进行表面改性处理 PCT curves of TiFe alloy TiFe(40 ℃) TiFe alloy Characteristics: two hydride phases; phase () & phase ( ) + 1/2H2 → + 1/2H2 → 镁系 典型代表:Mg2Ni,美Brookhaven国家实验室首先报道 储氢容量高 资源丰富 价格低廉 放氢温度高(250-300℃ ) 放氢动力学性能较差 改进方法:机械合金化-加TiFe和CaCu5球磨,或复合 钛/锆系 具有Laves相结构的金属间化合物 原子间隙由四面体构成,间隙多,有利于氢原子的吸附 日本松下() 活性好 用于:氢汽车储氢,电池负极Ovinic 配位氢化物储氢 碱金属(Li,Na,K)或碱土金属(Mg,Ca)与第三主族元素(B,Al)形成 储氢容量高 再氢化难(LiAlH4在TiCl3, TiCl4等催化下180℃ ,8MPa氢压下获得5%的可逆储放氢容量) 金属配位氢化物的的主要性能 ℃ 碳纳米管(CNTs) 1991年日本NEC公司Iijima教授发现CNTs 纳米碳管储氢-美学者Dillon1997首开先河 单壁纳米碳管束TEM照片 多壁纳米碳管TEM照片 纳米碳管吸附储氢: Hydrogen storage capacities of CNTs and LaNi5 for comparison (data deternined by IMR,RT,10MPa) 纳米碳管电化学储氢 开口多壁MoS2纳米管及其循环伏安分析 循环伏安曲线 纳米碳管电化学储氢 ____________________________________________________ 多壁纳米碳管电极循环充放电曲线,经过100充放电后_ 保持最大容量的70% 单壁纳米碳管循环充放电曲线,经过100充放电后 保持最大容量的80% 碳纳米管电化学储氢小结 __ _ 纯化处理后多壁纳米碳管最大放电容量为 1157mAh/g,相当于重量储氢容量.经过100充放电后,其仍保持最大容量的70%. 单壁纳米碳管最大放电容量为503mAh/g,相当于重量储氢容量.经过100充放电后,其仍保持最大容量的80%. ____ ____ 纳米材料储氢存在的问题: 世界范围内所测储氢量相差太大:(wt ) %-67 (wt ) %,如何准确测定 储氢机理如何 四,结束语-氢能离我们还有多远 氢能作为最清洁的可再生能源,近10多年来发达国家高度重视,中国近年来也投入巨资进行相关技术开发研究 氢能汽车在发达国家已示范运行,中国也正在筹划引进 氢能汽车商业化的障碍是成本高,高在氢气的储存 液氢和高压气氢不是商业化氢能汽车-安全性和成本 大多数储氢合金自重大,寿命也是个问题;自重低的镁基合金很难常温储放氢,位氢化物的可逆储放氢等需进一步开发研究,

没有原理.这从头到尾就是一条错误的路年3月,〔Nature〕magazine发表题为“单壁碳纳米管中的储氢 (Storage of hydrogen in single-walled carbon nanotubes)” 当时正值克林顿总统启动美国氢能源计划(1996年)不久,人们认识到氢在汽车上的储存携带是一个大难题,高效储氢成为热点,由于对储氢的机理认识尚不深入,人们对新材料寄予很大期望。此文根据前人关于毛细管凝聚的理论提出了一个假设,单壁碳纳米管由于壁很薄,管很细,可能在管中凝聚氢,从而形成高效储氢材料。为了吸引读者,作者给出了氢的程序升温脱附数据,但似乎有意混淆了物理吸附-毛细管凝聚与化学吸附的概念,给出的脱附曲线实际上是化学吸附部分,这当然延伸到了常温区,从曲线上也不能解读出有很大吸附量。两年多以后的99年7月[Science] magazine 发表的一篇题目为“碱掺杂的碳纳米管在常压常温下的高吸氢量”的文章则给出了引人注目的实验数据。这使人耳目一新,大吃一惊,碳纳米管加上碱金属氧化物可以使吸氢的量达到重量比百分之五到百分之二十,而且在接近常温常压下能够完成吸附脱附循环。当时美国能源部认为储氢材料若能够储存氢达到重量比百分之六,同时采用当时的质子交换膜燃料电池,则燃料电池汽车的能效和一次充气的行车里程就可以有商业价值,和汽油车竞争。同年11月,还是这个杂志,发表了另外一篇论文,题目是“室温下在单壁碳纳米管上的储氢”,同样给出了十分引人注目的实验数据。这后两篇工作的发表,又是在有名的 [Science] 杂志,似乎假设变成了现实,引导了大量有基础的和感兴趣的一拥而上,形成了碳纳米管储氢研究的热潮。美国能源部、中国国家科技部、基金委等资助机构一时间都把这一课题列入重点资助领域。随后的几年不仅有大量的论文发表,也耗用了大笔纳税人的金钱。敏感而严肃的资深吸附现象研究者 Ralph T. Yang 教授在99年10月即投稿Carbon(2000年第四期发表)说明[Science]发表的第一篇实验结果是基于错误的实验条件,指出在这一实验条件下氢气中的水蒸气会吸附和凝聚,所以观察到的增重不是因为氢的吸附。杨做了严谨的对比试验,当用含有极微量水分的氢气做原料时重复了Chen等在[Science]发表的实验现象。2001年3月杨教授再次投稿Carbon(2002年第三期发表),采用Ab initio molecular orbital方法,从理论上论证了碳上氢的化学吸附遵循化学吸附的一致原理,也解释了单壁碳纳米管不可能作为储氢材料的目标物质。天大资深吸附专家周理教授,自2003年开始发表论文,澄清吸附的概念,并花时间系统演绎吸附的理论基础,证明氢在碳纳米管上的大量吸附只有在接近其临界温度时才是可能的。周教授在此之前的国内学术会议和项目论证会议上,即多次论证,常温下吸附储氢,是良好的愿望,而大自然不作美支持。感觉辛酸的是,记得08年在瑞士Villars Sur Ollon组织能源科学讨论会,周教授仍在花时间认真论证氢的吸附原理。这一伪科学假说耗费了一个优秀科学家的多年时光。

典型代表:LaNi5,荷兰Philips实验室首先研制特点:活化容易平衡压力适中且平坦,吸放氢平衡压差小抗杂质气体中毒性能好适合室温操作经元素部分取代后的(Mm混合稀土,主要成分La,Ce,Pr,Nd)广泛用于镍/氢电池PCT curves of LaNi5 alloy 典型代表:TiFe,美Brookhaven国家实验室首先发明价格低室温下可逆储放氢易被氧化活化困难抗杂质气体中毒能力差实际使用时需对合金进行表面改性处理PCT curves of TiFe alloyTiFe(40 ℃)TiFe alloyCharacteristics:two hydride phases;phase () & phase ( ) + 1/2H2 → + 1/2H2 → 典型代表:Mg2Ni,美Brookhaven国家实验室首先报道储氢容量高资源丰富价格低廉放氢温度高(250-300℃ )放氢动力学性能较差改进方法:机械合金化-加TiFe和CaCu5球磨,或复合 具有Laves相结构的金属间化合物原子间隙由四面体构成,间隙多,有利于氢原子的吸附 日本松下()活性好用于:氢汽车储氢,电池负极Ovinic 碱金属(Li,Na,K)或碱土金属(Mg,Ca)与第三主族元素(B,Al)形成储氢容量高再氢化难(LiAlH4在TiCl3,TiCl4等催化下180℃,8MPa氢压下获得5%的可逆储放氢容量) 1991年日本NEC公司Iijima教授发现CNTs纳米碳管储氢-美学者Dillon1997首开先河单壁纳米碳管束TEM照片多壁纳米碳管TEM照片纳米碳管吸附储氢:Hydrogen storage capacities of CNTs and LaNi5 for comparison (data deternined by IMR,RT,10MPa)纳米碳管电化学储氢开口多壁MoS2纳米管及其循环伏安分析循环伏安曲线纳米碳管电化学储氢____________________________________________________多壁纳米碳管电极循环充放电曲线,经过100充放电后_ 保持最大容量的70%单壁纳米碳管循环充放电曲线,经过100充放电后 保持最大容量的80%碳纳米管电化学储氢小结___纯化处理后多壁纳米碳管最大放电容量为 1157mAh/g,相当于重量储氢容量.经过100充放电后,其仍保持最大容量的70%.单壁纳米碳管最大放电容量为503mAh/g,相当于重量储氢容量.经过100充放电后,其仍保持最大容量的80%.________

储氢材料(hydrogen storage material)一类能可逆地吸收和释放氢气的材料。最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。

相关百科

热门百科

首页
发表服务