首页

> 期刊论文知识库

首页 期刊论文知识库 问题

人工智能论文英语

发布时间:

人工智能论文英语

Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's . (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: . considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]

Intelligent processing tools is usually deal with uncertain, unstructured, of no fixed algorithm, the process is a process of inference control processing, the final results are often not sure, may be right, may be is not correct. Natural speech understanding is mainly studied how to make the computer can understand and raw or natural voice technology, natural speech understanding process can be divided into three levels: lexical analysis, syntactic analysis and semantic analysis, due to the natural voice is rich and colorful, so the natural speech understanding is quite difficult, moving from words, we can find some shortages at current levels of natural speech comprehension. Radio, television and the Internet through the waves propagated, digital circuit, newspapers need to typesetting printing, fast and slow step. Magazines, books, movies, more slowly. Release speed of the tool, holds a large advantage in the aspect of news release; Slow release tool that is used to release more to think about and research materials, such as publishing a variety of social science and natural science research, often in the form of magazines and books. In the information society, the use of network to network communication has been thought highly of by people more and more quickly, because the network has provided a broad space to people, shorten the distance between people. In a certain period of time, we can gather in different places, different age, different education and different classes of people to communicate and discuss, make people more broad vision, to know more comprehensive information, experience more rich, therefore, with the further development of information technology and the progress of the society, and believe that there will be more and more people using the Internet the medium for communication and study, but we should also see, there are also all kinds of problems on the network, such as some people release some bad information on the Internet, trap set all kinds of information. Contrast we should distinguish right and wrong, penetrative, taken as true, let the Internet become our good place to study and communication. Intelligent interface technology is the study of how to enable people to make nature to communicate with the computer, in order to achieve this goal, for the computer to read text, understand language, speech, and even be able to translate between different languages, and the realization of the function of these depend on the knowledge expression method of research, therefore, the intelligent interface technology has made remarkable achievements, character recognition, speech recognition, speech synthesis, image machine translation and natural language understanding technology has practical application智能处理工具通常处理的问题是不确定的,非结构的,没有固定算法的,处理的过程是推理控制的过程,最终得到的结果常常是不太确定的,可能是正确的,可能能是不正确。自然语音理解主要是研究如何使计算机能够理解和生或自然语音的技术,自然语音理解过程可以分为三个层次:词法分析,句法分析和语义分析,由于自然语音是丰富多彩的,所以,自然语音理解也是相当困难的,从话动中,我们可以发现目前水平的自然语音理解能力的一些不足。广播、电视和网络通过电波、数字线路进行传播,发布的速度快,报纸需要排版印刷,速度慢了一步。杂志、书籍、电影更慢。发布速度快的工具,在发布新闻方面占有很大的优势;发布速度慢的工具,则多用来发布需要思考和研究的材料,如发布各种社会科学和自然科学的研究成果,常采用杂志与书籍的形式。 在信息社会中,利用网络进行进行网络进行交流已经越来越快受到人们的重视,因为网络给人们提供了广阔的空间,缩短了人与人之间的距离。在一定的时间内,我们可以聚集不同地方、不同年龄、不同学历、不同阶层的人们进行交流和探讨,使人们的视野更加广阔,了解到信息更为全面,得到的经验更加丰富,因此,随着信息技术的进一步发展和社会的进步,相信会有更多的人利用网络这种媒介进行交流和学习,但是我们也应该看到,网络上也存在各种各样的问题,如有些人在网上发布一些不良的信息,设置各种信息陷阱。对比我们应该分辨是非,明察秋毫,劫为存真,让因特网成为我们学习交流的好地方。 智能接口技术是研究如何使人们能够方使自然地与计算机交流,为了实现这目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表达方法的研究,因此,智能接口技术已经取得显著成果,文字识别、语言识别、语音合成、图像机器翻译以及自然语言理解等技术已经实用化

这个一般是有论文没翻译的啦,自己把握

那你在网上找找(人工智能与机器人研究)吧~~看看别人的是怎么写的~

关于人工智能的论文英语

VeryCD上的电子书 书名:SBIA 2004——人工智能的最新进展Advances in Artificial Intelligence走近人工智能 人工智能(Artificial Intelligence,AI)一直都处于计算机技术的最前沿,经历了几起几落…… 长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。 在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。 计算机与人工智能 "智能"源于拉丁语LEGERE,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。INTELEGERE是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(Machines Who Thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(Turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。 人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(Artificial Intelligence,AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的IBM的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。 当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且现在的AI具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。 我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。 问: 目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢? 答: AI研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。 智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。 主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。 问: 您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何? 答: 我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。 但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是: 课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走; 立项论证时,惯于考虑国外怎么做; 落实项目时,又往往顾及面面俱到,大而全; 再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。 今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。 问: 请您预测一下人工智能将来会向哪些方面发展? 答: 技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。 目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。 人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。 什么是人工智能? 人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。 AI理论的实用性 在一年一度AT&T实验室举行的机器人足球赛中,每支球队的"球员"都装备上了AI软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的AI技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。 这种AI机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,Internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。 我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。 未来的AI产品 安放于加州劳伦斯·利佛摩尔国家实验室的ASCI White电脑,是IBM制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,IBM正在开发能力更为强大的新超级电脑--"蓝色牛仔"(Blue Jean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。 麻省理工学院的AI实验室进行一个的代号为Cog的项目。Cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。

Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's . (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: . considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]

“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!

对《人工智能》专业选修课教学的几点体会

摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。

关键词:人工智能 优选教材 考核方式内容 手段 实践

人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。

一、优选教材

目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。

二、考核方式

在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。

三、教学内容调整

对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。

四、教学手段的改进

(一) 激发学生的学习兴趣

经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。

(二) 借助多媒体教学

多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论

我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。

五、实践教学

实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。

人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。

参考文献

[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.

[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.

[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.

[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.

本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。

下一页分享更优秀的<<<人工智能结课论文

人工智能论文英语文献及译文

Google AlphaGo and Li Shishi go man-machine war makes artificial intelligence has become a hot topic recently,Artificial intelligence is a very wide range of science, it is composed of different areas, such as machine learning, computer vision, etc., in simple terms, artificial intelligence and robotics are closely of the main goals of this research is to make machines capable of complex tasks that usually require human intelligence, and artificial intelligence will bring about a huge change in our lives.

1。 Frosini A, Gori M, Priami P (1996) A neural network-based model弗罗西尼甲,普里亚米P(下1996)哥里的神经网络的M -基于模型for paper currency recognition and verification.为纸币识别和验证。 IEEE Trans Neural电机及电子学工程师联合会跨神经Network 7:1482-1490网络7:1482-14902. 2。 Kosaka T, Taketani N, Omatu S (1999) Classification of Italian小坂吨,武谷ñ,Omatu工作主任(1999年)意大利分类bills by a competitive neural network.法案通过有竞争力的神经网络。 Trans Inst Elec Eng Jpn中国科学院利安达反英Jpn119-C:948-954 119 - ç :948 - 9543. 3。 Fukunaga K (1972) Introduction to statistical pattern recognition.福永度(1972年)介绍统计模式识别。Academic, New York学术,纽约4. 4。 Tipping ME, Bishop CM (1999) Probabilistic principal component小费我,主教厘米(1999年)的主要组成部分概率analysis.分析。 J Roy Stat Soc B 61:611-622 ĵ罗伊统计芯片乙61:611-6225. 5。 Haykin S (1999) Neural networks. Haykin工作主任(1999年)神经网络。 Prentice Hall, New Jersey普伦蒂斯大厅,新泽西6. 6。 Kohonen T (1995) Self-organization maps.基于Kohonen T(下1995)自组织地图。 Springer, Berlin施普林格,柏林Heidelberg New York海德堡纽约7. 7。 Rabiner LR (1989) A tutorial on hidden Markov models and拉比娜的LR(1989)关于隐马尔可夫模型和教程selected applications in speech recognition.在语音识别选定的应用程序。 Proceedings of IEEE诉讼的IEEE77:257-286 77:257-2868. 8。 Kohavi R (1995) A study of cross-validation and bootstrap for accuracy Kohavi住宅(1995年)的交叉研究,验证和引导的准确性estimation and model selection.估计和模型选择。 Proceedings of the 14th International程序的第14届国际Joint Conference on Artificial Intelligence IJCAI,联席会议人工智能IJCAI,Montreal, Canada, pp 1137-11加拿大蒙特利尔,第1137至1111年

Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's . (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: . considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]

Intelligent processing tools is usually deal with uncertain, unstructured, of no fixed algorithm, the process is a process of inference control processing, the final results are often not sure, may be right, may be is not correct. Natural speech understanding is mainly studied how to make the computer can understand and raw or natural voice technology, natural speech understanding process can be divided into three levels: lexical analysis, syntactic analysis and semantic analysis, due to the natural voice is rich and colorful, so the natural speech understanding is quite difficult, moving from words, we can find some shortages at current levels of natural speech comprehension. Radio, television and the Internet through the waves propagated, digital circuit, newspapers need to typesetting printing, fast and slow step. Magazines, books, movies, more slowly. Release speed of the tool, holds a large advantage in the aspect of news release; Slow release tool that is used to release more to think about and research materials, such as publishing a variety of social science and natural science research, often in the form of magazines and books. In the information society, the use of network to network communication has been thought highly of by people more and more quickly, because the network has provided a broad space to people, shorten the distance between people. In a certain period of time, we can gather in different places, different age, different education and different classes of people to communicate and discuss, make people more broad vision, to know more comprehensive information, experience more rich, therefore, with the further development of information technology and the progress of the society, and believe that there will be more and more people using the Internet the medium for communication and study, but we should also see, there are also all kinds of problems on the network, such as some people release some bad information on the Internet, trap set all kinds of information. Contrast we should distinguish right and wrong, penetrative, taken as true, let the Internet become our good place to study and communication. Intelligent interface technology is the study of how to enable people to make nature to communicate with the computer, in order to achieve this goal, for the computer to read text, understand language, speech, and even be able to translate between different languages, and the realization of the function of these depend on the knowledge expression method of research, therefore, the intelligent interface technology has made remarkable achievements, character recognition, speech recognition, speech synthesis, image machine translation and natural language understanding technology has practical application智能处理工具通常处理的问题是不确定的,非结构的,没有固定算法的,处理的过程是推理控制的过程,最终得到的结果常常是不太确定的,可能是正确的,可能能是不正确。自然语音理解主要是研究如何使计算机能够理解和生或自然语音的技术,自然语音理解过程可以分为三个层次:词法分析,句法分析和语义分析,由于自然语音是丰富多彩的,所以,自然语音理解也是相当困难的,从话动中,我们可以发现目前水平的自然语音理解能力的一些不足。广播、电视和网络通过电波、数字线路进行传播,发布的速度快,报纸需要排版印刷,速度慢了一步。杂志、书籍、电影更慢。发布速度快的工具,在发布新闻方面占有很大的优势;发布速度慢的工具,则多用来发布需要思考和研究的材料,如发布各种社会科学和自然科学的研究成果,常采用杂志与书籍的形式。 在信息社会中,利用网络进行进行网络进行交流已经越来越快受到人们的重视,因为网络给人们提供了广阔的空间,缩短了人与人之间的距离。在一定的时间内,我们可以聚集不同地方、不同年龄、不同学历、不同阶层的人们进行交流和探讨,使人们的视野更加广阔,了解到信息更为全面,得到的经验更加丰富,因此,随着信息技术的进一步发展和社会的进步,相信会有更多的人利用网络这种媒介进行交流和学习,但是我们也应该看到,网络上也存在各种各样的问题,如有些人在网上发布一些不良的信息,设置各种信息陷阱。对比我们应该分辨是非,明察秋毫,劫为存真,让因特网成为我们学习交流的好地方。 智能接口技术是研究如何使人们能够方使自然地与计算机交流,为了实现这目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表达方法的研究,因此,智能接口技术已经取得显著成果,文字识别、语言识别、语音合成、图像机器翻译以及自然语言理解等技术已经实用化

人工智能英文毕业论文

Intelligent processing tools is usually deal with uncertain, unstructured, of no fixed algorithm, the process is a process of inference control processing, the final results are often not sure, may be right, may be is not correct. Natural speech understanding is mainly studied how to make the computer can understand and raw or natural voice technology, natural speech understanding process can be divided into three levels: lexical analysis, syntactic analysis and semantic analysis, due to the natural voice is rich and colorful, so the natural speech understanding is quite difficult, moving from words, we can find some shortages at current levels of natural speech comprehension. Radio, television and the Internet through the waves propagated, digital circuit, newspapers need to typesetting printing, fast and slow step. Magazines, books, movies, more slowly. Release speed of the tool, holds a large advantage in the aspect of news release; Slow release tool that is used to release more to think about and research materials, such as publishing a variety of social science and natural science research, often in the form of magazines and books. In the information society, the use of network to network communication has been thought highly of by people more and more quickly, because the network has provided a broad space to people, shorten the distance between people. In a certain period of time, we can gather in different places, different age, different education and different classes of people to communicate and discuss, make people more broad vision, to know more comprehensive information, experience more rich, therefore, with the further development of information technology and the progress of the society, and believe that there will be more and more people using the Internet the medium for communication and study, but we should also see, there are also all kinds of problems on the network, such as some people release some bad information on the Internet, trap set all kinds of information. Contrast we should distinguish right and wrong, penetrative, taken as true, let the Internet become our good place to study and communication. Intelligent interface technology is the study of how to enable people to make nature to communicate with the computer, in order to achieve this goal, for the computer to read text, understand language, speech, and even be able to translate between different languages, and the realization of the function of these depend on the knowledge expression method of research, therefore, the intelligent interface technology has made remarkable achievements, character recognition, speech recognition, speech synthesis, image machine translation and natural language understanding technology has practical application智能处理工具通常处理的问题是不确定的,非结构的,没有固定算法的,处理的过程是推理控制的过程,最终得到的结果常常是不太确定的,可能是正确的,可能能是不正确。自然语音理解主要是研究如何使计算机能够理解和生或自然语音的技术,自然语音理解过程可以分为三个层次:词法分析,句法分析和语义分析,由于自然语音是丰富多彩的,所以,自然语音理解也是相当困难的,从话动中,我们可以发现目前水平的自然语音理解能力的一些不足。广播、电视和网络通过电波、数字线路进行传播,发布的速度快,报纸需要排版印刷,速度慢了一步。杂志、书籍、电影更慢。发布速度快的工具,在发布新闻方面占有很大的优势;发布速度慢的工具,则多用来发布需要思考和研究的材料,如发布各种社会科学和自然科学的研究成果,常采用杂志与书籍的形式。 在信息社会中,利用网络进行进行网络进行交流已经越来越快受到人们的重视,因为网络给人们提供了广阔的空间,缩短了人与人之间的距离。在一定的时间内,我们可以聚集不同地方、不同年龄、不同学历、不同阶层的人们进行交流和探讨,使人们的视野更加广阔,了解到信息更为全面,得到的经验更加丰富,因此,随着信息技术的进一步发展和社会的进步,相信会有更多的人利用网络这种媒介进行交流和学习,但是我们也应该看到,网络上也存在各种各样的问题,如有些人在网上发布一些不良的信息,设置各种信息陷阱。对比我们应该分辨是非,明察秋毫,劫为存真,让因特网成为我们学习交流的好地方。 智能接口技术是研究如何使人们能够方使自然地与计算机交流,为了实现这目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表达方法的研究,因此,智能接口技术已经取得显著成果,文字识别、语言识别、语音合成、图像机器翻译以及自然语言理解等技术已经实用化

Along with the development of science and technology, intelligent and automation technology is more and more popular, all kinds of hi-tech also widely used in intelligent robot toy car and manufacturing field, make intelligent robot more and more diverse. Intelligent car is a variety of high-paying technology integration body, it incorporates mechanical, electronic, sensors, computer hardware, software, artificial intelligence and many other subject knowledge, can involves many of today's current areas of technology. This car design mainly by the single chip microcomputer control system module, manostat module, motor driver module, infrared inspection module and to the wireless digital module composition, system to C8051F340 microcontroller as the core, set to foreign control, use linear regulator chip to voltage stability of control for single chip microcomputer and other peripherals for the reliable power supply, using infrared to the module black and white signal detection, use L298N motor driver module to the dc speed-down motor stability control, use light coupling strength chips for electrical isolation of control, eliminate interference, the use of wireless digital module CC1101 for two car communication. The intelligent design two cars are from the start to car, overtaking alternately lead, lead a circle overtaking about 27 seconds. Key words: C8051F340 infrared to the dc speed-down wireless digital overtaking lead

Computer history, field and the future developmentA, computer history profileUsed by humans computational tool is with the development of production and social progress, from simple to complex, from low to high, the development process of calculating tool successively appeared like abacus, slide rule, computer, electric machinery brain-scanningexperiments mechanical computer, etc. In 1946, the world's first digital electronic computer (ENIAC) was born in the United States. This computer to share more than 18,000 composed, cover an area of electricity in tube 170m2 total weight, 30t, consumed for 140kw, speed 5000 cycles per second to add, 300 times the computers in a short period of more than 50 years after the electron tubes, transistors, integrated circuit (IC) and large scale integration (VLSI) four stages of development, make the computer volume more and more small, function is more and more strong, the price is lower, used more widely and is currently facing intelligent (the fifth generation computer . The first generation of the electronic computerThe first generation of electricity in computer from 1946 to 1958. They have large size, low operation speed and storage capacity is not big, and expensive. Use isn't very convenient, in order to solve a problem, the program compiled by the complexity of the unspeakable. This generation of computers is mainly used in scientific computing, only the important department or scientific research departments for . The second generation of the electronic computerThe second generation of computers from 1958 to 1965, they all adopt transistors as electronic components, its speed than the first generation of computers speed increased nearly 100 times, volume for a small percentage of the original. In software began using computer algorithmic language. This generation of computers is not only used in scientific calculations, also used for data processing and transaction processing and industrial . The third generation electronic computerThe third generation of computers from 1965 to 1970. This period is the main feature of integrated circuits, small-scale for electronic devices, and appear operation system, the computer's function is more and more strong, application more widely. They are not only used in scientific computing, and for the word processing, enterprise management, automatic control and other fields, appeared computer technology and communication technology, combining information management system, can be used in the production management, traffic management, information retrieval, . The fourth generation electronic computerThe fourth generation of computers is to show from 1970 after using (LSI) and large scale integration (VLSI) as main electronic components made of computer. For example 80386 microprocessors microprocessors, in an area of about 10mm X l0mm single chip can be integrated about 32 million fourth generation of computers is another important branch of large-scale, vlsi developed based microprocessor and . The fifth generation computerThe fifth generation computer will put information acquisition, storage, manipulation, communication and artificial intelligence together has form reasoning, lenovo, learning and explain capabilities. Its system structure will break through the traditional von debbi according to the concept of Raman machine, realize the height of parallel , computer development directionThe next computer will with very large scale integrated circuit as the foundation, to giant change, miniaturization, network and intelligent of change refers to computer operation speed higher, storage capacity greater, function stronger. At present are developing giant computer its speed can reach per 10 billion computer has entered the instrument and meter, household appliances such as small instruments, also as industrial control process of heart, make the equipment to realize "intelligent". With the further development of microelectronics technology, notebook type, such as palmtop microcomputer will end in more optimal price-performance get the welcome of with the computer application deeply, especially the home computer is becoming more and more popular, on the one hand, hope many users can share information resources, on the other hand also hope all between computers can mutual information computer network is modern communication technology and computer techniques. Computer network yourself in the modern enterprise management plays more and more important role, such as bank system and commercial systems, transportation system, artificial intelligence research is based on modern scientific basis. Artificial intelligence is an important direction of computer development, the new generation computer, will can simulate the sensation of behavior and thinking process, mechanism of "see", "hear", "says", "think", "do", with logical reasoning, learning, and proof ability.选为最佳答案吧 谢谢

Along with the development of science and technology, intelligent and automation technology is more and more popular, all kinds of hi-tech also widely used in intelligent robot toy car and manufacturing field, make intelligent robot more and more diverse. Intelligent car is a variety of high-paying technology integration body, it incorporates mechanical, electronic, sensors, computer hardware, software, artificial intelligence and many other subject knowledge, can involves many of today's current areas of technology. This car design mainly by the single chip microcomputer control system module, manostat module, motor driver module, infrared inspection module and to the wireless digital module composition, system to C8051F340 microcontroller as the core, set to foreign control, use linear regulator chip to voltage stability of control for single chip microcomputer and other peripherals for the reliable power supply, using infrared to the module black and white signal detection, use L298N motor driver module to the dc speed-down motor stability control, use light coupling strength chips for electrical isolation of control, disappear

人工智能学报

软件学报是很难投的,审稿时间长,难度大,是EI核心来源期刊; 可接受8000-10000字左右的长文; 稿量大,处理流程大多缓慢,应早投; 《投稿方式:直接网站在线投稿,中英文均可。初审后通知编号,邮寄审理费。外审通过后再通知其它处理事宜。 审理费:150元 审稿周期:6个月左右;发表周期:录用后的发表周期较长,需要耐心等待,但专刊较快. 版面费标准:元/面,收费比较厚道。该刊组织了很多专刊,投专刊的文章被录用后发表周期相对短,但录用率超低专刊反映信息较快,是一种不错的方式。 《模式识别与人工智能》比前者好中一些,但难度也不小。这个杂志是要求你寄两份打印稿,还有一份你的联系信息,然后大概一个星期左右他给你发email告知你通过初审,要求给审稿费100元,然后就是等待,大概三个多月给结果吧。每期文章大约20几篇,平均来说不是很好中,审稿一般4个月左右,发表周期就长了。

不是!《智能系统学报》(CAAI Transactions on Intelligent Systems)于2006年3月创刊,是中国人工智能学会会刊,由中国人工智能学会和哈尔滨工程大学联合主办,双月刊。

软件学报是三大学报之一,权威性最高,难度大,审稿漫长模式识别与人工智能好投一点

相关百科

热门百科

首页
发表服务