首页

> 期刊论文知识库

首页 期刊论文知识库 问题

毕业论文圆周率的计算

发布时间:

毕业论文圆周率的计算

圆可能是自然界中最常见的图形了,人们很早就注意到,圆的周长与直径之比是个常数,这个常数就是圆周率,现在通常记为π,它是最重要的数学常数之一。

关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=,而古埃及人使用π=。中国古籍里记载有“圆径一而周三”,即π=3,这也是《圣经》旧约中所记载的π值。在古印度耆那教的经典中,可以找到π≈的说法。这些早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。由于在当时,圆周长无法准确测量出来,想要通过估算法得到精确的π值当然也不可能。

π 的计算式比较多。下面介绍一个π=4-4/3+4/5-4/7+4/9-4/11+4/13-4/15+… …

我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为和 这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。 以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率为:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的, 比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。现在的圆周率主要运用高精密计算器计算,可以精确到小数点后数亿位,但毫无意义。

π是圆周率,是一个无限不循环小数。圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用代表圆周率去进行近似计算。而用十位小数便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。2021年8月18日,圆周率π计算到小数点后万亿位,创下该常数迄今最精确值记录。

圆周率论文范文文献

大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文 范文 篇一:《数学学科德育 教育 渗透思考》 摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。 关键词:数学学科;渗透;德育教育 我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主 渠道 作用。数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的 方法 和能力。这些数学能力包括:空间想象能力、 逻辑思维 能力、基础运算能力和数学建模能力等。第三,数学课作为职业学校 文化 基础课之一,所用资源少,易开展教学活动。结合数学学科的特点,笔者认为可以从以下几点进行德育教育。 1根据中职学校数学学科的特点和数学课的现状,教师的人格 品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。德育要讲究艺术性,要充分发挥情感的感染作用。作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。教师动之以情,才能激发学子之情,使之乐其所学。学生感受到教师对他们的关心,从心底上认可这个教师,从而真正建立起新型的科学的师生关系。 2结合数学教材内容,向学生进行爱祖国和爱科学的教育 在用到正负数及运算法则时,教师给学生说明或是让学生自己上网查找相关内容,可以知道在世界闻名的数学典籍《九章算术》中,就已经提出了相关概念,使得代数学早于西方于公元前2000年就已经产生了;著名的勾股定理、“杨辉三角”、圆周率的计算以及著名数学家陈景润的“陈氏定理”、华罗庚发起和推广的优选法等,我国科学的成就令世界各地的每个炎黄子孙自豪,可以激发起学生强烈的爱科学、爱国情和民族自豪感,同时激励学生学习的进取向上精神。 3培养正确的学习动机和目的,提高学生学习数学兴趣,增强社会责任感 我们学习数学的最终目的是能用数学,因而不管是教师还是学生都应该知道数学在我们生活中或是我们所学专业课上的应用。例如我们在学习圆柱时,就可以和汽车专业所学的发动机上的气缸联系起来讲解表面积和体积相关知识;我们在学习分段函数时,就可以和与我们生活相关的水费、电费、出租车收费联系起来等。 4结合数学学科的特点,培养学生理智的思考、按客观规律办事的良好的人格特征 数学是一门自然科学,科学的问题来不得半点虚假,数学语言的精确性使得数学中的结论不会模棱两可。伽利略:世界的奥秘是本巨大的书,而这本书是用数学语言写成的。越来越多的人认为数学语言是各种科学的通用语言,可见数学语言的精确性。在数学的观点下,一加一只能等于2不可能是其他结果,但在其他的学科就不一定了。不管是数学语言还是通过数学推理得到的结果都不允许有任何弄虚作假的行为存在。我们在日常教学中,应该结合数学的思考方式与 学习方法 ,培养学生事实求是,有根有据,勇于改正错误的科学态度和自觉按客观规律办事习惯。 5结合数学学科的特点,对学生进行辩证唯物主义世界观的教育 数学本身的发生和发展过程中就充满着唯物辩证法。恩格斯曾把数学作为“辩证的辅助工具和表现方式”。数学从实践中发现了问题,然后分析已知存在的问题,找出它们间的关系,利用数学知识, 总结 出来的规律,然后回到实践中检验和运用,这正是体现了辩证唯物主义中从感性—理性—实践的认识论观点。 6挖掘数学教材中的美育素材,通过美学教育,培养学生高尚情操和思想道德修养 我国著名数学家华罗庚说:“数学本身也有无穷的美妙。”数学中的符号、图形、数字排列等都蕴藏着丰富的美育因素。可以告诉学生,圆就代表我们的班集体或者是我们的国家,每个同学就像圆上一个个离散的点,集体的形象与荣誉与我们每个人都是息息相关的。在学习集合的交、并、补的运算时,除了说明符号的简洁、和谐美的同时也可灌输团体意识。在学习直角坐标系时,就可以给学生灌输我们做人也应该方方正正坚持自己的原则。学习点的时候,每个点都是由一对有序的实数组成的,可以把坐标看成是在社会中影响我们自身发展的先天因素和后天因素,而后天因素主要决定了我们未来的发展,从而鼓励每个学生从现在开始努力学习、认真做人、锻炼各种能力,一定会有美好的将来。在教学过程中引导学生发现美、欣赏美、讨论美,逐步培养学生的审美意识审美情趣,培养学生高尚情操和思想道德修养,有助于学生全面发展。 综上所述,结合数学学科的特点对学生进行德育教育是可行的。在数学学科教学中,虽然不能像语文、政治那样直接、系统地对学生进行德育教育,但只要我们善于挖掘教材中的德育因素,在教学过程中实事求是,联系实际,善于引导,就能行之有效地进行德育渗透,使学生学习知识的同时各方面的素质不断提高。 参考文献: [1]中等数学教学中的德育新论,网络. [2]高等数学教学中的德育渗透[J].吉林省经济管理干部学院学报. 大一数学论文范文篇二:《浅谈数学教学德育教育的渗透》 摘要:德育在学校教育中占有举足轻重的地位,是方向、是灵魂,位居各育之首。数学作为基础教育的一门重要学科,在培养学生德育方面,应发挥重要的作用。因此,教师应在数学教学中努力寻找德育点,有机渗透德育,把教书与育人紧密地结合在一起。 关键词:小学数学;数学教学;德育教育; 一、引言 有句话说“百年教育、德育为先”,可见学校教育将德育教育放在相当重要的位置。如今,随着社会的快速进步和科学技术的迅猛发展,小学数学德育教育如何从传统的教育模式中挣脱出来,注入完善的、科学性的内涵,形成一套行之有效的新教育模式。数学虽作为一门理性学科,却蕴含着丰富德育内容。可以根据这门学科的特点,进行德育渗透的教育,使得小学生不仅学到书本的知识,还懂得做人的道理! 二、将德育教育渗透到数学学科教材中 根据数学这门学科的特点,以及小学生的接受能力,注入德育教育的、形象生动的图画和有说服力的内容。做到有机结合,自然渗透的效果。众所周知,小学阶段是 儿童 、青少年身心发展的关键时期,对于刚刚步入学校的低年级学生来说,是认知社会和接受新鲜事物的萌芽期,所以小学数学德育教育工作从此刻开始,进行渗透德育教育。小学数学德育教育如细雨,润物无声,数学学科是沙土。在数学教学过程中,教师无时无处不渗透着细雨之水。而小学生犹如长在沙土里的嫩草,吸吮着沙土中的水分。因此,小学数学中德育渗透,就是将德育本身的因素与数学学科所具有的因素有机地结合起来,使德育内容在潜移默化中逐步形成学生个体内在的思想品德。而数学教材是教学工作主要使用的教学工具,也是授课的依据,更是小学生获取知识与理解做人的来源,由此,编制科学有效的数学教材为课堂授课提供有益的方式。在人们以往的观念中,德育教育应该只是和语文、思想品德等学科有关,以目前的教育内涵来看,这种观念是落后的,也是十足错误的。教育学家赫尔巴特曾有教育 名言 :“教学如果没有进行道德教育,只是一种没有目的的手段,道德教育如果没有教学,就是一种失去了手段的目的”。由此可见,将德育教育渗透到数学教学课堂中来是最为重要的,也是最具有原则性的教育。 三、将德育教育渗透到数学教学课堂中 教师在课堂上教学时,充分挖掘数学教材中的德育因素与知识,渗透德育教育。诸如小学数学教材中的例题、习题、注释、解析中,融入不少进行德育的、形象生动的图画,以及由说服力的数学数据或知识点。将德育因素融合数学知识进行传授、能力培养和思想品德教育为一体的综合性教学模式。把显性的教学问题和隐性的德育教育有机地结合起来,从而实现数学的育人功能。无论是在备课中,还是在课堂上,教师要善于找准在数学教学中德育渗透的切入点,以提高课堂教学实效。可以结合教学内容进行德育渗透中华民族悠久灿烂的数学史源远流长,博大精深。也可以运用现代信息技术、多媒体教学手段,将要授课的内容加入生动的德育元素。重要的是在小学数学教学中,要充分联系教材,联系小学生生活实际,善于将渗透德育教育延申到课堂内外。 四、课堂内外相结合,通过数学活动进行渗透德育教育 在小学数学教学的过程中,德育渗透不能只局限在课堂上,还应该与课外学习有机结合,教师可以开展一些课外数学活动渗透德育。要增强数学课堂的趣味性与实践性,营造一种轻松愉快的情境,注重数学知识与现实生活的联系,使学生意识到数学并不是枯燥无味的,数学离不开生活,生活中处处有数学,从而让学生乐此不疲地致力于学习内容。引导学生学会学以致用将知识回归生活,做到学以致用是数学学习的本质归宿,学生要有将数学知识运用到生活中的意识。如在学习乘法估算后,让学生回家后调查每个人一天的用水量,回学校后估算全班60人一天的用水量,再估算全校三千多人的用水量。在巩固新知的同时让学生体会到了水资源的宝贵,珍惜水资源、节约水资源的思想就会在小学生们小小的心灵扎根。又如,在学生学过统计后,让学生回家后调查自己家庭每天使用垃圾袋的数量,然后通过计算一个班的家庭,一个星期,一个月,一年使用垃圾袋的数量,结合我校附近的垃圾场影响环境的现象,最终总结出垃圾袋对环境造成的影响,这样让学生既可以掌握有关数学知识,又对他们进行了环保教育。再比如,培养小学生动手动脑的能力时,督促小学生手、口、脑、眼、耳多种感官并用,这样做,不但能扩大小学生的信息源,创设良好的思维情境。也能满足小学生好动、好奇的特性。例如:教学“长方体认识”,可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒等),通过感知实物,学生对什么样的物体是长方体获得了初步的感性认识,从而感受美、享受美。 五、结合数学学科特点,通过德育渗透,培养良好习惯 数学是一门严谨的学科,科学性与逻辑性很强,但可以让小学生在学好数学的同时从中养成严格、认真的好习惯。显而易见,小学生计算粗心,错误率高。而提高计算能力就一定要养成仔细计算的习惯。在平时的教学训练中,教师要时时提醒学生不要抄错数,看清是什么运算,加减时注意进位和退位等等,在这里就不一一举例了。简而言之,只要教师善于挖掘、善于捕捉,时时注意、注重在数学课堂中对学生的德育渗透,数学学科的的德育教育一定会取得很好的成效,最终达到德育、智育的双重教育目的。 参考文献: [1]齐建华.数学教育学[M].郑州大学出版社. [2]管建福.小学数学教学艺术[M]2000 大一数学论文范文篇三:《浅谈大学数学素质拓展课程的教学实践》 0 引言 数学不仅是一种科学的语言和工具,是众多科学与技术必备的基础,而且是一门博大精深的科学,更是一种先进的文化,在人类认识世界和改造世界的过程中一直发挥着重要的作用与影响。建设创新型国家的战略构想,需要大批拔尖创新人才,作为大学中重要基础课的大学数学课程,对此负有重要的责任。数学中许多新概念、新方法的引入和发展,众多数学问题和相关实际问题的解决,十分有利于大学生创新精神、 创新思维 和创新能力的培养[1]。 在大学数学课程学习的过程中,培养学生应用数学的意识和兴趣,逐步提高学生的应用能力是大学数学课程教学改革的重要方向。当前大学数学课的教学,大多仍是以教材为中心,以课堂为中心,实践教学较少,课外科技活动的配合注意不够。这些也都是影响学生数学应用意识和应用能力培养的重要因素,应当有所改革。多年来的教学改革实践表明:开设数学拓展课程与数学选修课程,是激发学生学习数学积极性,培养学生数学应用能力和创新能力的一条行之有效的重要途径。 1 开设数学选修课程的必要性 数学的教学不能仅仅是看出知识的传授,而应该使学生在学习知识、培养能力和提高素质诸方面都得到教益,兼顾数学文化和教学素养方面的要求。 大学非数学专业数学课程分为必修和选修课程,一般工科的本科学生高等数学,线性代数,概率论与数理统计为必修课程。而选修课程则由学生依据自身发展需求和学习时间规划,自主选择。选修型课程以拓展知识结构。数学类选修课的目的是引导学生广泛涉猎不同学科领域[2],拓宽知识面,学习不同学科的思想和方法,进一步打通专业,拓宽知识结构,强化素质,自觉养成主动学习、独立思考的习惯,不断提高自我建构知识、能力和素质的本领,培养探索和创新精神。全面提升素养。促进学生个性的发展和学校办学特色的形成,是一种体现不同基础要求、具有一定开放性的课程。 大学数学教育应以培养学生数学能力和提高学生的数学素养为目标。当前,数学课程教学内容与社会的发展不适应问题主要表现在课程教学内容未能及时反映数学发展的最新成果,依然固守形式演绎体系而忽略了非常重要但非演绎的、非严格的重要内容;局限于于课本,只讲课本中呈现的内容而忽略了课程内容的来源与出处的讲解[3]。在教学上,大学数学教学方式单一,越来越形式化,过于注重概念、定理的推导和证明、计算以及解题的技巧,使得数学远离我们周围的世界,远离我们的日常生活。过分强调数学的逻辑性和严密性,导致学生觉得数学过于抽象无法理解[4]。在教学过程中采用传统陈旧的教育理念:重理论轻计算、重技巧轻思想、重推理轻应用。 在具体教学过程中,多数教师仍局限于传授知识本身,特别是局限于解题方法与技巧的训练,而对于如何在知识载体上培养学生的数学思想、 理性思维 和审美情操,提高他们的数学素养,却重视不够。应积极引导教师运用自己的科研能力去深入钻研教学内容,改进 教学方法 ,在传授数学知识的过程中落实数学在培养学生能力和素质方面的作用。应全面落实“知识传授,能力培养,素质提高”三位一体的教育理念[5]。 数学上的不少概念、方法或理论,有些本身就来自其在现实生产和生活中的原型,并且和人文、管理、工程技术有着密不可分的联系,发现并指出这些的联系,对激发学生学习数学的兴趣,增强他们对数学的理解,是大有益处的。当然这也要求教师广泛的涉猎不同的学科领域,对大学数学教师无疑是一个新的挑战。 2 已开设的拓展课程及模块建设 在上述思想指引下,同时为了适应社会的更高要求和不同层次学生的自身需求,结合我校的实际情况,学校出台相应课程改革 措施 ,主要开展了两个方面的建设工作: 拓展课程的模块建设:在现有的工科数学必修课《高等数学》、《线性代数》、《概率论与数理统计》等课程的基础上,开设了《数学建模》、《工程数学中的理论与方法》、《数学文化》、《投资理财常识》等课程,建立并完善了各门课程的课程简介、教学大纲、教学进度及推荐参考书目等,并结合多媒体的教学手段,搭建并完成了《数学建模》课程的网络教学平台,已对全校师生开放。现正在进行《数学文化》、《工程数学中的理论与方法》两门课程的网络平台建设工作。所开设的《工程数学中的理论与方法》,拟开设的《工程问题中的数学计算-MATLAB》主要针对我校的理、工、农、医专业的学生;《投资理财常识》及拟开设的《运筹学》主要针对我校管经类、质量工程类的学生。 拓展实践的模块建设:以素质拓展作为目标的课程设置,旨在提高学生应用数学知识解决实际问题的动手能力和创新能力,我们主要加强了以下几个方面的工作: ①以项目管理的方式鼓励学生积极参加各类科技活动:提倡学生积极申报项目,如大创项目等,鼓励学生积极参与教师的各类研究项目中,以科研小组或科技小组的形式,发表小论文、小发明、小制作、小专利等; ②以培养学生创新意识为导向的各类学科竞赛活动:为进一步培养学生利用理论知识来解决实际问题的分析能力和应用能力,积极鼓励学生参加各类学科竞赛,如:大学生数学建模比赛、大学生统计建模比赛、大学生创业设计大赛等; ③以学习的态度鼓励学生参加 社会实践 和社会调查活动。社会是一个丰富的大舞台,只有融入社会这个大舞台,才能不断积累社会 经验 ,不断增长社会实践的活动能力,从而提高自身的社会管理和适应能力,将来能更快和更好的为社会服务。 3 取得的成绩和存在的不足 数学建模课程是以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力,提高他们学习数学的兴趣和应用数学的意识与能力。 工程中的数学理论与方法主要在我校特定的环境下,在学习完工程类数学必修课的基础上,针对高年级学生,加深和延拓数学的理论知识和计算方法,为数学知识要求高的专业(如工程力学专业、通信工程专业等)及准备报 考研 究生的同学提供数学帮助。 数学文化课程在探讨数学文化的起源、收集了众多的数学 故事 和数学家的故事基础上,结合数学思想、数学方法的形成和发展,阐述了数学发展和数学教育中的人文成分,揭示了数学与社会、数学与其他文化的关系。通过该门课程的学习,让学生更进一步了解生活中的数学、数学中的美,学会欣赏数学文化及弘扬数学文化,推动数学教学的进程。 投资理财常识主要向学生介绍股票基金,期货彩票等的基础知识和交易技巧,教学中用到一些基础性的数学知识如差分方程,大数定理等,更多的则是经济、管理人文知识的熏陶,通过学习该课程,学生感觉数学的应用领域广泛,从而进一步激发学生学习数学的积极性。 通过对我校教学情况的初步了解,尤其是针对昆明理工大学数学类拓展课程开设情况的深入调查,发现大多数的学生对课程满意或非常满意。学生感觉最大的收获在于拓展了知识层面,开拓了视野,感觉数学比以前教材中的内容要丰富和有趣的多。但在《数学文化》这类知识性比较强的课程上,学生输入的多,输出的少,不利于学生知识水平的提高。另外,学生对所开设的选修课程知识了解甚少。这表明,学生进行学习所依托的课程知识基础薄弱。通过统计《数学建模》课程学生对课程、教师和自己的期望中了解到,大多数的学生期望通过老师的讲授,能够在课堂上全面了解所学课程知识。只有半数学生希望老师给学生提供自己动手的机会,更多的学生还是习惯于在课堂上扮演倾听的角色,缺乏用数学解决实际问题的意识和能力。最后,担任选修课程的大学数学教师自身的课程水平和教学能力也有待进一步提高。开设大学数学选修课程对广大数学教师也是一个很大的挑战。尤其是在开设的初期,教师除了要改变自己的教学理念和教学方法,还要努力扩大自己的知识面,制定教学大纲,完善教材和教学内容。 4 结束语 大学数学教学是高等教育的一个有机的组成部分,大学数学选修课程是以数学知识与应用技能、学习策略和跨学科运用为主要内容。如何建立和完善行之有效的大学数学提高阶段的课程体系,以满足新时期学生对数学学习的需求以及国家和社会对人才培养的需要,成为当今高校大学数学教学管理部门越来越关注的问题。大学数学选修课程的开设,适应了社会的更高需求,同时也满足了更高层次学生的自身需要。但是,要真正实现课程开设的目的,仍需更多的努力,不断的完善。 首先,急需向各高校教学管理部门、教师,尤其是学生传达课程改革的必要性,提供良好的改革环境和条件。 其次,要用科学的教学理念改革数学选修课程教学实践,完善教学内容,改善教学方法,实施科学的课程评估方式。如“投资理财常识”之类的课程,已不是单纯的数学基础课程,除用到一些基础性的数学知识外,更多的则是经济、管理人文知识,能否将这类课程纳入人文类选修课程,使学社学习知识的同时,获得相应的学分,这是教学管理部门需要解决的问题。 第三,时刻以学生为中心,所开设课程要能够满足学生的需要,能够激发学生的学习兴趣。 第四,教师要进一步提高和完善自己,适应学生的个性要求,改善教学方法,开发学生的主动性和创造性,全面提高学生的综合素质。 最后,针对课程教学中出现的问题,和课程教学效果要能够做到及时调查,不断对课程及教学做出相应调整和改善。大学数学选修课程的开设顺应了时代的要求和学生的需要,只要对之进行不断的完善,必然能够为较高层次的学生开拓出一片新的天地,为他们将来更好地适应社会的需求做好储备。 猜你喜欢: 1. 学习大学数学的心得 2. 数学文化论文3000字 3. 数学大学本科生毕业论文 4. 大学数学科技论文范文 5. 大学数学教育论文范文

写下去就行了

分数分别产生于测量及计算过程中。在测量过程中,它是整体或一个单位的一部份;而在计算过程中,当两个数(整数)相除而除不尽的时候,便得到分数。 一般可分为五期: 上古期:(.)对数学有所创见的有伏羲氏、黄帝、隶首、缍等人。其成就归纳如下: 1. 结绳:最古的记数方法,传为伏羲所创。 2. 书器:一种最古的记数工具,传为隶首所创。 3. 河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。 4. 八卦:传为周公所创,是最初的二进制法。 5. 规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。 6. 几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。 7. 九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。 8. 技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。 9. 算学教育:周朝时,把算数列为六艺之一,再小学时就受以珠算。 初等数学在此时期已有相当基础,算数与几何由于人类实际生活的需要已初步形成,但并无形成一定逻辑关联的系统。 中古期:(.由汉至隋)中国数学家对于算学已有可考据的著作。 1. 而对圆周率寄算最有成就者为祖冲之。所得结果比之西方早一千多年。 2. 算经十书的编篡: 算经十书为:周髀,九章算术,孙子算经,张丘健算经,夏侯阳算经,五曹算经,海岛算经,五经算术,辑古算经及缀术,后因缀术亡失,而已数术记遗代之;其中辑古算经在唐朝才完成。此时期的数学成就,可以从这十本算经中之其概略。数学成就可归纳为以下各点: (1)分数论的应用 (2)整数勾股形的计算 (3) 平方零约数:已建立开方的方法有两种 (4)方程论:已有联立一次方程的解法。九章算数方程章为世界最早包含不只一个未知 数的算 式和联立方程组概念,并产生了正负数的概念。 (5)平面立体形的计算:一切直线图的面积和体积公式皆正确;圆面积、球体积为近似公式 (6)级数论上的成就:已有等差、等比问题产生。 (7)数论上的成就:孙子算经上的「物不知数」是一次同余式问题,由此以后所推广的中国剩余定理比西洋早了一千多年。 (8)数学教育制度的建立 近古期:(.由唐到宋元) 分为前后两期,各以唐及宋元为代表。可以说是中国数学史的黄金时代;数学教育制度更臻完善,民间研究数学的风气很盛。数学成就归纳如下: (1) 代数学上的成就:中国古代数学家很早就知道利用代数方法解决实际问题;这时期天元术的产生促使代数学向前发展,使其成为更完整的数学体系。其它数学也获得更进一步的发展。数学家们掌握天元术之后,很快地把它应用到多元高次方程组而产生所谓的四元术;并利用天元术开方。开方数也推广到多乘方,比西洋数学家的发现早约五百年。求数学高次方程的正根方法也已建立起理论根据。 (2) 几何学与三角学的成就:割圆术得到进一步的推广,除了平面割圆术外,球面割圆术也已产生,球面三角由此而初步建立起来。 (3) 数论上的成就:一次同余的理论基础扩大了应用范围,有八次联立一次同余式的问题出现,在整数论上是一个伟大的成就。所用解一次同余式的方法为有名的辗转相除法,即西方数学家所谓欧几里得算法。 (4) 级数论上的成就:级数论在世界数学史上有着悠久的历史,中算家所论述的在此中占有一定位子。由高阶等差级数研究中发明了招差数、垛积数。 (5) 纵横图说的研究:一些有名的纵横图(所谓方阵图)已经产生。 由以上所述,可以看出,有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。 婆罗门、天竺数学输入中国,但中国的数学并没有受到影响;同时中国的数学也输入了百济和日本。 近世纪:(.明初到清初) 为中国算学衰落时期,统治者对数学教育不注重,民间研习数学风气不盛。 回回历法在元末明初输入中国,至明末,应用回回历法已近尾声。自利玛窦至中国之后,西洋历法、西洋数学也随之输入中国。当时还有人研究中算,但由于中算不如西算的简明有系统,故中国古算陷入停顿状态而得不到新的发展。 西洋数学输入的有笔算、筹算、代数学、对数术、几何学、平面及球面三角术、三角函数表、比例对数表、割圆术及圆锥曲线说。 著名的天元术停滞不前,珠算随着实际生活的需要而产生,很多有关珠算实用算数书陆续出版;珠算术的发明是中算的革命、我国的伟大成就。 清初的一些大数学家都致力于西洋数学的研究,编写了数学各科的入门书籍。中国数学输入朝鲜及把元明数学输入日本。 最近世期:(.清干隆三十七到清末) 西算输入告一段落。这时学术潮流偏向古典考证一路发展,数学研究也转到古代数学方面去,对算经十书与宋元算书加以传刻与研讨到达最高峰。当时数学家很多都能兼通中西数学,在高等数学方面获得相当的成就。 对圆周率解析法作深入的探讨,级数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。

圆周率论文参考文献

关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=,而古埃及人使用π=。早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。

到了公元前3世纪,古希腊大数学家阿基米德第一个给出了计算圆周率π的科学方法:圆内接(或外切)正多边形的周长是可以精确计算的,而随着正多边形边数的增加,会越来越接近圆,那么多边形的周长也会越来越接近圆周长。

中国三国时期的数学家刘徽,在对《九章算术》作注时,在公元264年给出了类似的算法,并称其为割圆术。所不同的是,刘徽是通过用圆内接正多边形的面积来逐步逼近圆面积来计算圆周率的。

约公元480年,南北朝时期的大科学家祖冲之就用割圆术算出了 592 6<π< 592 7,这个π值已经准确到7位小数,创造了圆周率计算的世界纪录。

17世纪之前,计算圆周率基本上都是用上述几何方法(割圆术),德国的鲁道夫·范·科伊伦花费大半生时间,计算了正262边形的周长,于1610年将π值计算到小数点后35位。德国人因此将圆周率称为“鲁道夫数”。

关于π值的研究,革命性的变革出现在17世纪发明微积分时,微积分和幂级数展开的结合导致了用无穷级数来计算π值的分析方法,这就抛开了计算繁杂的割圆术。那些微积分的先驱如帕斯卡、牛顿、莱布尼茨等都对π值的计算做出了贡献。

1706年,英国数学家梅钦得出了现今以其名字命名的公式,给出了π值的第一个快速算法。梅钦因此把π值计算到了小数点后100位。

1874年,英国的谢克斯花15年时间将π计算到了小数点后707位,这是人工计算π值的最高纪录,被记录在巴黎发现宫的π大厅。

电子计算机出现后,人们开始利用它来计算圆周率π的数值,从此,π的数值长度以惊人的速度扩展着:1949年算至小数点后2037位,1973年算至100万位,1983年算至1000万位,1987年算至1亿位,2002年算至1万亿位,至2011年,已算至小数点后10万亿位。

“打倒”圆周率π

英国利兹大学数学院教授凯文·休斯敦举例说,如果用π计算圆形周长,那么半圆形周长为半径乘以一个π,四分之一圆形周长为半径乘以二分之一π,“计算四分之三圆形周长要稍微想一下,而不能自然得出结果”。

“如果我们用τ代替π该多么简单!”休斯敦说,“一个圆形周长就是半径乘以一个τ,半圆就是半径乘以半个τ,四分之一圆就是半径乘以四分之一τ,以此类推,不用想。”(τ是周长与半径之比,是π的两倍。)

参考资料:新华网《圆周率是怎样算出来的?》

人民网《圆周率等于?》

《周髀算经》、《周髀(bì)算经》。圆周率即圆的周长与其直径的比,通常用π来表示,圆周率论文参考书目有《周髀算经》、《周髀(bì)算经》,这两篇圆周率论文范文为免费优秀学术论文范文,可用于相关写作参考。

8979323846 2643383279 5028841971 6939937510 : 50位 5820974944 5923078164 0628620899 8628034825 3421170679 : 100位 8214808651 3282306647 0938446095 5058223172 5359408128 : 150位 4811174502 8410270193 8521105559 6446229489 5493038196 : 200位 4428810975 6659334461 2847564823 3786783165 2712019091 : 250位 4564856692 3460348610 4543266482 1339360726 0249141273 : 300位 7245870066 0631558817 4881520920 9628292540 9171536436 : 350位 7892590360 0113305305 4882046652 1384146951 9415116094 : 400位 3305727036 5759591953 0921861173 8193261179 3105118548 : 450位 0744623799 6274956735 1885752724 8912279381 8301194912 : 500位 9833673362 4406566430 8602139494 6395224737 1907021798 : 550位 6094370277 0539217176 2931767523 8467481846 7669405132 : 600位 0005681271 4526356082 7785771342 7577896091 7363717872 : 650位 1468440901 2249534301 4654958537 1050792279 6892589235 : 700位 4201995611 2129021960 8640344181 5981362977 4771309960 : 750位 5187072113 4999999837 2978049951 0597317328 1609631859 : 800位 5024459455 3469083026 4252230825 3344685035 2619311881 : 850位 7101000313 7838752886 5875332083 8142061717 7669147303 : 900位 5982534904 2875546873 1159562863 8823537875 9375195778 : 950位 1857780532 1712268066 1300192787 6611195909 2164201989 : 1000位 3809525720 1065485863 2788659361 5338182796 8230301952 : 1050位 0353018529 6899577362 2599413891 2497217752 8347913151 : 1100位 5574857242 4541506959 5082953311 6861727855 8890750983 : 1150位 8175463746 4939319255 0604009277 0167113900 9848824012 : 1200位 8583616035 6370766010 4710181942 9555961989 4676783744 : 1250位 9448255379 7747268471 0404753464 6208046684 2590694912 : 1300位 9331367702 8989152104 7521620569 6602405803 8150193511 : 1350位 2533824300 3558764024 7496473263 9141992726 0426992279 : 1400位 6782354781 6360093417 2164121992 4586315030 2861829745 : 1450位 5570674983 8505494588 5869269956 9092721079 7509302955 : 1500位 3211653449 8720275596 0236480665 4991198818 3479775356 : 1550位 6369807426 5425278625 5181841757 4672890977 7727938000 : 1600位 8164706001 6145249192 1732172147 7235014144 1973568548 : 1650位 1613611573 5255213347 5741849468 4385233239 0739414333 : 1700位 4547762416 8625189835 6948556209 9219222184 2725502542 : 1750位 5688767179 0494601653 4668049886 2723279178 6085784383 : 1800位 8279679766 8145410095 3883786360 9506800642 2512520511 : 1850位 7392984896 0841284886 2694560424 1965285022 2106611863 : 1900位 0674427862 2039194945 0471237137 8696095636 4371917287 : 1950位 4677646575 7396241389 0865832645 9958133904 7802759009 : 2000位 9465764078 9512694683 9835259570 9825822620 5224894077 : 2050位 2671947826 8482601476 9909026401 3639443745 5305068203 : 2100位 4962524517 4939965143 1429809190 6592509372 2169646151 : 2150位 5709858387 4105978859 5977297549 8930161753 9284681382 : 2200位 6868386894 2774155991 8559252459 5395943104 9972524680 : 2250位 8459872736 4469584865 3836736222 6260991246 0805124388 : 2300位 4390451244 1365497627 8079771569 1435997700 1296160894 : 2350位 4169486855 5848406353 4220722258 2848864815 8456028506 : 2400位 0168427394 5226746767 8895252138 5225499546 6672782398 : 2450位 6456596116 3548862305 7745649803 5593634568 1743241125 : 2500位 1507606947 9451096596 0940252288 7971089314 5669136867 : 2550位 2287489405 6010150330 8617928680 9208747609 1782493858 : 2600位 9009714909 6759852613 6554978189 3129784821 6829989487 : 2650位 2265880485 7564014270 4775551323 7964145152 3746234364 : 2700位 5428584447 9526586782 1051141354 7357395231 1342716610 : 2750位 2135969536 2314429524 8493718711 0145765403 5902799344 : 2800位 0374200731 0578539062 1983874478 0847848968 3321445713 : 2850位 8687519435 0643021845 3191048481 0053706146 8067491927 : 2900位 8191197939 9520614196 6342875444 0643745123 7181921799 : 2950位 9839101591 9561814675 1426912397 4894090718 6494231961 : 3000位 5679452080 9514655022 5231603881 9301420937 6213785595 : 3050位 6638937787 0830390697 9207734672 2182562599 6615014215 : 3100位 0306803844 7734549202 6054146659 2520149744 2850732518 : 3150位 6660021324 3408819071 0486331734 6496514539 0579626856 : 3200位 1005508106 6587969981 6357473638 4052571459 1028970641 : 3250位 4011097120 6280439039 7595156771 5770042033 7869936007 : 3300位 2305587631 7635942187 3125147120 5329281918 2618612586 : 3350位 7321579198 4148488291 6447060957 5270695722 0917567116 : 3400位 7229109816 9091528017 3506712748 5832228718 3520935396 : 3450位 5725121083 5791513698 8209144421 0067510334 6711031412 : 3500位 6711136990 8658516398 3150197016 5151168517 1437657618 : 3550位 3515565088 4909989859 9823873455 2833163550 7647918535 : 3600位 8932261854 8963213293 3089857064 2046752590 7091548141 : 3650位 6549859461 6371802709 8199430992 4488957571 2828905923 : 3700位 2332609729 9712084433 5732654893 8239119325 9746366730 : 3750位 5836041428 1388303203 8249037589 8524374417 0291327656 : 3800位 1809377344 4030707469 2112019130 2033038019 7621101100 : 3850位 4492932151 6084244485 9637669838 9522868478 3123552658 : 3900位 2131449576 8572624334 4189303968 6426243410 7732269780 : 3950位 2807318915 4411010446 8232527162 0105265227 2111660396 : 4000位 6655730925 4711055785 3763466820 6531098965 2691862056 : 4050位 4769312570 5863566201 8558100729 3606598764 8611791045 : 4100位 3348850346 1136576867 5324944166 8039626579 7877185560 : 4150位 8455296541 2665408530 6143444318 5867697514 5661406800 : 4200位 7002378776 5913440171 2749470420 5622305389 9456131407 : 4250位 1127000407 8547332699 3908145466 4645880797 2708266830 : 4300位 6343285878 5698305235 8089330657 5740679545 7163775254 : 4350位 2021149557 6158140025 0126228594 1302164715 5097925923 : 4400位 0990796547 3761255176 5675135751 7829666454 7791745011 : 4450位 2996148903 0463994713 2962107340 4375189573 5961458901 : 4500位 9389713111 7904297828 5647503203 1986915140 2870808599 : 4550位 0480109412 1472213179 4764777262 2414254854 5403321571 : 4600位 8530614228 8137585043 0633217518 2979866223 7172159160 : 4650位 7716692547 4873898665 4949450114 6540628433 6639379003 : 4700位 9769265672 1463853067 3609657120 9180763832 7166416274 : 4750位 8888007869 2560290228 4721040317 2118608204 1900042296 : 4800位这么多够了吧!

圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。实验时期 通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。 早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 。在印度,公元前六世纪,曾取 π= √10 = 。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为,,,比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。几何法时期 凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。 真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。 阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了“圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =,取得了自阿基米德以来的巨大进步。 在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出 π =,通常称为“徽率”,他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。 恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。” 这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率 < π < 其二是,得到 π 的两个近似分数即:约率为22/7;密率为355/113。 他算出的 π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。 这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。这在中国数学发展史上是一件极令人痛惜的事。祖冲之的这一研究成果享有世界声誉:巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山…… 对于祖冲之的关于圆周率的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示 π 这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。 密率与 π 的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近 π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。 可见,密率的提出是一件很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。 让我们先看看国外历史上的工作,希望能够提供出一些信息。 1573年,德国人奥托得出这一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法“合成”的:(377-22) / (120-7) = 355/113。 1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106 < π < 377/120,用两者作为 π 的母近似值,分子、分母各取平均,通过加成法获得结果:3 ((15+17)/(106+120) = 355/113。 两个虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。 在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。 钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了我们前面提到的由何承天首创的“调日法”或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是 (157 + 22×,9) / (50+7×9) = 355/113,一举得到密率。钱先生说:“冲之在承天后,用其术以造密率,亦意中事耳。” 另一种推测是:使用连分数法。 由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650… 最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:“密率的分数是一个连分数渐近数,因此是一个非凡的成就。” 我国再回过头来看一下国外所取得的成果。 1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是: π= 有十七位准确数字。这是国外第一次打破祖冲之的记录。 16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为“鲁道夫数”。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。 17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。分析法时期 这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π 。 1593年,韦达给出这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π 值。 接着有多种表达式出现。如沃利斯1650年给出:1706年,梅钦建立了一个重要的公式,现以他的名字命名:再利用分析中的级数展开,他算到小数后100位。 这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个: 1844年,达塞利用公式:算到200位。 19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π 值。 又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在 π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。 对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。 人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗? 1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。计算机时期 1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。 不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把 π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π 值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值: “十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。” 那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢? 这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,发现它有一点小问题,这问题正是通过运行 π 的计算而找到的。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。 2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把 π 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算 π 近似值的公式。他的见解开通了更有效地计算 π 近似值的思路。现在计算机计算 π 值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白 π 的故事讲述的是人类的胜利,而不是机器的胜利。 3、还有一个关于 π 的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。 4、于是,有人想能否计算时不从头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。 5、作为一个无穷数列,数学家感兴趣的把 π 展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在 π 的十进展开中,10个数字,哪些比较稀,哪些比较密? π 的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。 6、数学家弗格森最早有过这种猜想:在 π 的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算 π 值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却无能为力。后人也想验证它,也是苦于已知的 π 值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;……1000万位以内有999,440个0;……60亿位以内有599,963,005个0,几乎占1/10。 其他数字又如何呢?结果显示,每一个都差不多是1/10,有的多一点,有的少一点。虽然有些偏差,但都在1/10000之内。 7、人们还想知道: π 的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型――如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解: π 的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题: π 的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多 π 的数位的计算才能提供切实的证据。 8、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。 如果继续算下去,看来各种类型的数字列组合可能都会出现。拾零: π 的其它计算方法在1777年出版的《或然性算术实验》一书中,蒲丰提出了用实验方法计算 π 。这个实验方法的操作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 。当实验中投的次数相当多时,就可以得到 π 的更精确的值。 1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得 π 的近似值为,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的L·巴杰就对此提出过有力的质疑。 不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的 π 值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。 在用概率方法计算 π 值中还要提到的是:R·查特在1904年发现,两个随意写出的数中,互素的概率为6/π2。1995年4月英国《自然》杂志刊登文章,介绍英国伯明翰市阿斯顿大学计算机科学与应用数学系的罗伯特·马修斯,如何利用夜空中亮星的分布来计算圆周率。马修斯从100颗最亮的星星中随意选取一对又一对进行分析,计算它们位置之间的角距。他检查了100万对因子,据此求得 π 的值约为。这个值与真值相对误差不超过5%。 通过几何、微积分、概率等广泛的范围和渠道发现 π ,这充分显示了数学方法的奇异美。 π 竟然与这么些表面看来风马牛不相及的试验,沟通在一起,这的确使人惊讶不已。

计算机毕业论文周报

计算机毕业设计毕业论文

自 检 报 告从毕业论文开始以来,我严格按照指导老师的要求,采用一丝不苟的学习态度,从图书馆从因特网详细查找了与消费心理、消费行为以及广告策略相关的文献资料,设计制作了调查问卷并进行实地调查,并以论文任务书和开题报告为立足点,按部就班,已初步完成设计的大部分工作,以下是具体进展情况。1.毕业设计(论文)工作任务的进展情况 (1)提交开题报告,参加开题答辩。(已完成)(2)编写调查问卷,进行调研活动。(已完成)。(3)撰写论文初稿。(已完成)(4)修改论文初稿,完成正稿。(进行中)已经认真写好开题报告,并在规定日期交给张俊老师。已经完成调研活动,主要以调查问卷为主,实印刷50份调查问卷,随机发放给本校学生,实收回48份。经过对数据的整理分析,总结出当代大学生消费特点、消费倾向、消费存在的问题,分析了形成这些现象的主观原因及客观原因。已经完成论文的初稿撰写。研究本题目的意义:大学生的消费行为,与其他消费者一样,也要经历认识过程、情感过程和意志过程。大学生所受教育的经历和所处的特殊的校园环境,使得他们成为社会上一个比较特殊的消费群体,产生了与其他消费者不同的消费需求,具有比较特殊的消费心理,外观为不同的消费行为。如果能够充分认识大学生的消费心理以及由此而进行的消费行为特征,便可以为商家进行针对大学的广告策略提供有力的理论指导和实际数据依据。大学生消费的方面:主要有基本生活消费、学习消费、休闲娱乐消费、人际交往消费等几个方面。大学生消费特征:包换潮汐性、独特性与普遍性共存、符号性、情感指导性。大学生的消费容易出现潮汐现象。即一个新事物、新品牌在大学生市场的渗透会在某一个节点出现突然的高峰。原因可以从多角度解释,但根源在于:大学生高度一致的群体认同感。当代大学生追求个性,希望自己被视为有独特风格的人。于是,他们追求独特、新奇、时髦的产品。但与此同时,特特、新奇带来的往往是流行、普及,从个体消费走向普遍消费,有时过程并不复杂。商品除了使用价值和交换价值以外,还具有另外一种价值属性,那就是符号价值。一件商品,越是能够体现消费者的社会地位和社会声望,越是能够将消费者与其他人区别开来,它的符号价值也就越高。这种“重视商品所传达的社会和个人信息的消费行为,就叫做符号消费”。于是,大学生们选择和消费的产品或品牌成了自我表现、体现个性的工具,成为社会群体文化的符号象征,成了人与人之间相互认同获取分的标记。大学生是一个特殊的消费阶层,其消费行为体现出追求新潮、时尚、情趣的特点,相对其他群体而言则带有更多的情感因素。因为他们不仅希望商品能够在实用性方面满足人的需要,还希望商品能让人在使用和观赏中获得精神的愉悦与心理的满足。大学生消费心理主要包括:求知求存心理、追求时尚心理、好奇心理、模仿心理、发泄心理等。影响大学生消费的主要因素:修改心理的影响,社会环境的影响,家庭的影响,同龄群体的影响,相关教育的薄弱。当代大学生消费心理和消费行为对广告策略的影响:对广告表现策略的影响:立体式全方位包围大学生的生活,以张扬个性、凸显自我为主的传播核心。对广告媒体策略的影响:传统与现代传播渠道并进,使大学生无时无刻不生活在广告的冲击中。对广告推进策略的影响:以折价广告,赠品广告,兑奖广告为主要推进手段,使大学生相信自己在购买中获得了额外收益。对广告实施策略的影响:赋予大学生生必要的特权,利用名人的影响力,保证大学生群体的自我优越感,刺激他们的购买欲。结论:只有充分了解和掌握了当代大学生的生活习惯和消费趋势,才能有效的改善产品自身的不足,满足消费者的心理需要;才能迎合当代大学生的欣赏口味,制定出专属于他们的广告营销策略,才能在这个商品飞速发展的时代里,使企事业立于不败之地。2.工作中所遇到的问题在论文撰写的过程中,对论文的结构与逻辑的控制能力不够强,后期写作时,出现了偏离。没有及时与指导教师进行相关的沟通,导致论文内容与题目不符,需要大篇幅的修改。在撰写时对论文中涉及到的相关概念理论没有及时学习掌握,导致论文写作出现停滞,需要花费时间进行相关学习。3.下一步工作打算在导师的指导下,对初稿进行系统的修正:仔细查找论文中存在的问题,思考每一个字每一句话是否得体;完善论文的逻辑与结构,把握论文整体;删除多余的内容,对内容进行提炼;按要求上交论文成稿,准时参加答辩。另外,我还应该多加强自己的语言表达能力,应该再加强与指导老师的交流和沟通,更深层次的认识论文的写作宗旨。 总之,我相信自己会保持积极的态度,在指导老师的悉心点拨下,能够快速有效展开接下来的论文流程,顺利完成毕业论文的撰写工作。这是我的中期报告,希望能帮上忙。

我可以帮你写 详细要求发给我就行 按照你的要求做 包通过 ↓↓↓↓↓下面可以找到我

计算机系毕业论文周记

实习周记吗???我有这我一篇我乱写的!第一周:这是大三的最后的三个月了,在这个周里,我开始了自己的新学习——实习。来到XXXX服饰有限公司,了解公司的各项业务流程及各项规章制度。熟悉了公司的工作安排、人员分配、经营业务范围等。对市场有充分的了解和分析。互联网不仅仅是网络营销的工具和平台,也是一种新的市场环境。策划书中应对企业所处的网上网下环境进行分析,包括营销的宏观市场环境和微观市场环境,分析市场中的机遇和挑战。第二周:实习第一个礼拜,算是适应期。主要了解一些公司的背景、产品、发展方向等。另外,尝试更同事多沟通,从交谈中也能够学到不少东西。同事们都很热心,很照顾我,经常在我碰到困难的时候便主动伸出援助之手,令我非常感动。为了能够真正的学到知识,我很严格的要求自己去做好每一件事情,即使再简单的事情我都会认真考虑几遍,因此,虽然做得不算快,但能够保证让同事们满意。同事通常也不催促,都把任务安排好,然后便交给我自己去处理,同时还不时提供一些帮助。等慢慢熟悉起来,做起事情也越来越顺手了.我可以简单的总结为几个字,那就是:多看,多问,多观察,多思考!第三周:工作进行的还是比较顺利的,只需要简单的作一些相关的操作即可,当然也有些客户需要更详细的信息,于是我需要对全局都做一番描述,力图让对方更深的了解我们的产品,最重要的是让他们觉得我们的产品是非常出色的。虽然自认为口才并不好,但我能够把事情描述的比较清晰,如此也令客户满意。而每次让客户满意的挂电话的时候,自己心里都会觉得很踏实,虽然已经讲的口干舌燥了,但一想,也许我刚才一番话就搞定了一笔生意,即使再辛苦也是值得的。也可以了解目前市场的行情与竞争者公司.了解服装当时行情以便于公司对产品的生产。同时,选择有利地位与其老板协商加盟兆旺服饰。第四周:同市场人员考察市区及周边地区的其它服装企业,了解其运作方式和将进行的活动,为公司下一步所采取的措施提供信息,同时在互联网上进行网络推广.也为公司下一步的推广工作作好信息收集。第五周:经过一个月的时间,虽然短,但学到的东西可不少,如果快速的适应公司的环境,融入企业的团体,如何更好的跟同事沟通,更好的完成既定的任务。这些都不是信手拈来的。都需要一个逐步的从点到面的认识,今天我学到的所有这些都必将对我将来的就业产生深刻的影响。而对我来说,真正的就业也已经不远了。我庆幸也感谢有这样一个学习的机会,能够在就业前很好的提高自己、锻炼自己。同时也让自己对自己的能力更加自信,相信自己将来能够成为一个对社会有用的一员。第六周:对前两周的工作进行收尾、整理,总结前两周的工作。本周重点是收集毕业综合实践报告的资料。从图书馆和网上查找有关网络营销的资料,列出论文提纲,然后根据收集的资料撰写毕业论文初稿并发给老师修改。第七周:继续前一周的工作,通过对流程和推广业务的实践操作,对网络营销的基本程序和内容有了更深入的了解。只有通过不断的努力,不断的尝试,不断的积累经验,才能够发现自己的不足,然后在弥补不足的时候,我们便实实在在的提高了自己。所以,不管怎样,努力去做吧,告诉自己,只要用心,就能做得更好!第八至九周:平时在寝室晃晃荡荡没事干,觉得日子过得好慢好无聊。而在公司里,就完全不一样了,每天紧张的工作状态,完全没有时间考虑其它事情。于是不知不觉的,就发现原来我短暂的二个月的事情就快要过去了,对XXXX服饰有限公司网站推广也得心应手。更进一步对XXXX服饰有限公司的网站进行整理.收集信息.调研. 回馈客户信息各项营销策略的网络营销策划,编写网络营销策划书等.第十至十一周:充分利用没有新的工作任务的时间在公司指导老师的指导下通过书籍、网路等途径了解学习网上营销相关知识。一方面要发扬自主思考问题的能力,在碰到问题的事情,自觉努力去独立解决,这样对问题便能够有一个更深刻的了解,当解决的时候也会获益良多。第十二周:最后一周的实习工作主要是总结整理自己三个月工作。回顾自己三个月所做的所学的知识;老师们的教导;与同事团结合作,跟公司同事们和睦相处,共同讨论的日子。我觉得这三个月受益匪浅。这将会成为以后我真正走上工作岗位的重要经验,也是我重要的一段回忆。充分实现了开始时制定的综合实践的目标要求。临别的时候,更经理道别,跟同事道别,茫茫人海,也许以后都不再相见,但我会记住这段时间你们对我热心的照顾和无私的帮助,感谢你们,好人一生平安! 至此,我的暑期社会实践圆满结束。其间还有太多种种是不能用言语表达的,但我会一直记得这次经历,并会牢记大家的教诲,在将来很好的鞭策自己,努力学习,努力迈向人生的新台阶

我可以帮你写 详细要求发给我就行 按照你的要求做 包通过 ↓↓↓↓↓下面可以找到我

一个字,编 怎么可能这么容易出错,一般维护就是看看

计算机毕业设计毕业论文

相关百科

热门百科

首页
发表服务