首页

> 期刊论文知识库

首页 期刊论文知识库 问题

链霉菌分子操作研究进展论文

发布时间:

链霉菌分子操作研究进展论文

研究链霉素分离纯化是有重大意义的,它的意义是更好的为医学所用,来根制生病的人群,

在链霉素发明之前肺结核被称为不治之症。俄裔美国微生物学家瓦克斯曼1943年从土壤中发现了链霉素,使肺结核病得到了控制。 瓦克斯曼是研究土壤微生物的专家,他一直注意杀菌物的研究。由于瓦克斯曼从前的学生杜柏斯从土壤中分离短杆菌素的成功,使他从研究农业微生物转为对抗生素的研究。1939年,瓦克斯曼从土壤中发现了一种链丝菌,经过实验研究,他发现链丝菌对于结核杆菌具有强有力的抑制和杀伤作用。1942年瓦克斯曼的助手们在上百个微生物中分离出两种放线菌,一种是在仓库空地堆积废物土壤中发现的,另一种是在鸡的喉头发现的。从这两种菌分离得到的物质称为链霉素,能够抵御革兰阴性病菌,更令人兴奋的是对结核杆菌有很强的杀灭作用。要知道,结核杆菌是引起肺结核等疾病的病菌,而当时已投入临床使用的青霉素对结核杆菌不起作用。这样链霉素变成了治疗结核的有效抗生素,瓦克斯曼也因此获得1952年诺贝尔生理学和医学奖。 由于青霉素的成功。而促使大家热心的研究链霉素,所以在几个月内就取得了决定性的突破。此后仅两年,美国药厂就生产了近20吨链霉素,1948年弄清了链霉素的化学结构。在链霉素的分子中有一个糖很像葡萄糖,只是所有的羟基都在相反的方向,这个糖就像是葡萄糖的一个镜像。链霉素的肌醇环的羟基排列也和在机体中天然存在的肌醇环不同。有人认为链霉素的抑菌作用可能就是由于链霉素分子中的这些相似性而对细菌产生竞争性抑制的可能机制。但是一个能干扰细菌细胞的抗生素也能干扰人的细胞,许多抗生素就是这个缘故而无法使用,像青霉素这样对人体细胞基本无毒的抗生素是很少的。链霉素就有相当大的毒性,长期使用能损害人的第八对脑神经而影响听力,故链霉素不能长期的连续使用,需要和别的药物交替使用,以确保用药安全。

链霉素药物的研究进展2021年10月29日虽然链霉素有一定的药理毒性,但对结核杆菌类疾病的治疗有重要意义,随着科学的发展和科链霉素是一种从灰链霉菌的培养液中提取的抗菌素。属于氨基糖甙碱性化合物,它与结核杆菌菌体核糖核酸蛋白体蛋白质结合,起到了干扰结核杆菌蛋白质合成的作用,从而杀灭或者抑制结核杆菌生长的作用。硫酸链霉素生产过程为先将发酵液过滤、再通过树脂提取、提纯,然后用活性炭脱色,吸附色素和细菌内毒素,经减压蒸发,在45℃下浓缩,链霉素含量由10%左右浓缩到45%。但是蒸发过程是溶剂汽化过程,由于溶剂汽化潜热很大,所以蒸发浓缩非常耗能,而且链霉素的蒸发浓缩只是起到单纯的浓缩作用,其中料液中含有的微量杂质并没有得到纯化,但是使用纳滤膜分离技术既能节约生产耗能,又能把料液中的小分子杂质经过膜扩散到水(或缓冲液)中,将小分子与生物大分子分开,达到进一步纯化链霉素的目的。纳滤膜分离技术是在压力差推动力作用下,盐和小分子物质透过纳滤膜,

猪链球菌病的研究进展论文

仔猪链球菌的特点:猪链球菌是具有荚膜的一种革兰氏阳性球菌。 败血症 型和 脑膜炎 型多见于仔猪,猪链球菌在自然界中分布广泛,可引起人、猪、牛、马、羊和禽等多种动物感染。 猪链球菌病 主要表现为猪的败血性,局灶性, 淋巴结 化脓性,病症。 潜伏期1~3天或稍长,各种年龄的猪均可发病,哺乳 仔猪 发病率和 病死率 较高。 链球菌属 的细菌种类繁多。但是链球菌抵抗力不强,对干燥、湿热均较敏感,常用消毒药都可将其杀死。 仔猪败血症链球菌的传播途径:主要是通过伤口感染,病猪、临床康复猪和健康猪均可带菌,当健康猪群引入带菌猪后,由于互相接触,病菌可通过口、鼻、皮肤伤口而传染。该病一年四季均可发生,但以5~11月发病较多,多发于养猪密集地区,呈地方性流行。有皮肤损伤、蹄底磨损、去势、 脐带感染 等外伤病史的猪,易发生该病。 第一点:仔猪急性败血症的症状:急性败血型常表现鼻、气管、 肺充血 呈 肺炎 变化;全身 淋巴结肿大 、出血; 心包积液 , 心内膜 出血;肾肿大、出血;胃肠粘膜充血、出血; 关节囊 内有胶样液体或纤维素脓性物。传播快,多表现为急性败血型。病猪突然发病,体温升高至41℃~43℃,精神沉郁、嗜睡、食欲废绝,流鼻水,咳嗽,眼结膜 潮红 、流眼泪,呼吸加快。多数病猪往往头晚未见任何症状,次晨已死亡。少数病猪在病的后期,于耳尖、四肢下端、背部和腹下皮肤出现广泛性充血、潮红。 第二点:仔猪急性败血症的治疗方案:发现该病猪,先进行对该病猪的猪圈进行清洗消毒,把该病猪进行隔离,对症治疗,首先测试该链球菌对那个药物敏感,选择最有效的抗敏药物,如未进行药敏实验,可以选择 青霉素 、 阿莫西林 、 氨苄西林 ,等,对猪链球菌革兰阳性菌敏感的药物用药。按不同病型进行对症治疗, 淋巴结 脓肿大,待脓肿成熟后,及时切开,排除脓汁,用3%双氧水或0.1%高锰酸钾液冲洗后,涂以 碘酊 ,进行治疗。 第一点:仔猪 脑膜炎 型的症状: 脑膜炎 型表现脑膜充血、出血,脑脊髓白质和灰质有小 出血点 , 脑脊液 增加;心包、胸腔、腹腔有 纤维性 炎。 脑膜炎 型多见于70之90日龄的小猪,病初体温40℃~℃,不食,便秘,继而出现神经症状,如 磨牙 、转圈、前肢爬行、四肢游泳状或昏睡等,有的后期出现呼吸困难,如治疗不及时往往死亡率很高。 第二点:仔猪 脑膜炎 型的治疗方案:磺胺间甲,首次加倍。 在生猪养殖过程中,饲养人员要多注意个人防护,有外伤时应尽量避免接触病猪,有外伤时不小心感染了,立即处理伤口,经清洗消毒后,使用抗菌素预防治疗,注意不食用病死猪,购买的猪肉在分割时,应使用生熟分开案板,并充分煮熟后食用,发现病猪要及时通知兽医诊疗。 另外,如果你的猪场经常新生仔猪黄白痢,仔猪伪狂犬,以及传染性胃肠炎,流行性腹泻的病毒性腹泻,仔猪存活率低的情况,建议母猪使用都易抗1公斤,护母宝1公斤,拌料2000斤,每个月饲喂10-15天,给母猪做日常净化,提升新生仔猪免疫力和成活率,只有母猪养好了,小猪才健康!如果还有其更好的方案,欢迎多多评论!

基本上是空白的领域

“猪白细胞干扰素”对猪无名高热综合症有特效最近,国内部分省市先后发生“猪无名高热综合症”,即人们常称的“猪无名高热”。此病传染快,死亡率高,常规治疗方法疗效不明显,使许多猪场猪只死亡,损失惨重。近几个月,笔者亲自带领一批兽医技术人员深入到现场,反复进行各种治疗方法的对比试验,摸索出一套使用猪白细胞干扰素治疗“猪无名高热”综合症的有效治疗方法,现推荐给大家。流行病情况各年龄段猪群都有发生,但以体重10kg~50kg的保育猪和架子猪多发,特别是饲养密度大的猪群发病率最高,流行较快。治疗方法不对常引起猪群的大批死亡。主要临床症状普遍体温升高达41℃~42℃,食欲减退,精神不振,初期便秘,后有的拉稀,有呼吸症状,背部毛孔有出血点,股内侧毛少皮薄的地方有蓝紫色斑点;淋巴结肿大,有的鼻孔内流出粘液样分泌物;中后期少数病猪耳尖,四肢末端、腹下呈红紫色,行走不稳,卧地不起,有些病猪两耳向后竖起,继而出现神经症状。诊断1.尸体剖解见一般性的病理变化,没有特异性的可供初步判定的传染病的特征性的病理变化。2.采取脾、淋巴结、心血等,涂片镜检可见猪少量链球菌。3.根据剖解和临床特征,初步判定为猪链球菌病,继发猪伪狂犬病、非典型猪瘟、蓝耳病、园环病毒病、传染性胃肠炎等传染性疾病。防治使用“猪白细胞干扰素”治愈率非常高,具体方法是:1.对发病猪首先使用四川世红生物技术有限公司生产的猪白细胞干扰素(冻干型)兽用。病重猪注射干扰素后1个小时,接着辅用阿莫西林、头孢霉素等抗菌素,根据实际情况选用一种抗菌素或者交替使用两种,每天一次,疗效非常显著。而用常规治疗方法,单用抗菌素治疗疗效都很差。2.对同群未发病猪用干扰素普遍进行预防注射1次~2次,可基本控制猪只的感染。发现病猪应尽快隔离治疗,猪舍及时消毒。

猪链球菌病的研究进展论文怎么写

青岛祥苑干燥剂为您服务!2002年杜洛克的育种记录。测定猪总数为2963头,其中公猪1776头,母猪1187头;测定期75天左右,体重从30千克到100千克;公猪为单栏测定,母猪为小群测定,达100千克时进行活体测膘,测膘仪为PIGLOG105。 数据处理和统计分析模型采用Visual 和PEST 对数据进行整理。利用PEST对数据进行预备处理,生成能利用的系谱文件和数据文件。应用计算各性状的表型值。采用个体动物模型(Individual Animal Model,IAM),测定的场、年、季和性别作为固定效应,个体号作为计算动物效应,窝号作为非相关随机效应使用。性状主要包括WT0(初生重)、AGE30(达30千克日龄)、AGE100(达100千克日龄)、ADG100(30-100千克日增重)和FAT100(达100千克背膘),表型数据均进行校正处理。估计模型为:y=Xb+Zu+Sl+e,其中y是观察值向量,b是固定效应向量,u是随机动物效应向量,l为个体出生所在窝的窝环境效应向量,e为随机残差效应向量。X、Z和S分别是对应于固定效应、动物效应和窝环境效应的设计矩阵。2.主要结果与讨论WT0、AGE30、AGE100、ADG100和FAT100的加性方差估计值分别是、、、和;窝效应方差分别为、、、和;遗传力估计值分别是、、、和。FAT100/ADG100、FAT100/AGE100、ADG100/ AGE100、ADG100/WT0、ADG100/AGE30、WT0/ AGE30、AGE30/AGE100的遗传相关分别为、、、、、和;表型相关分别为、、、、、和。WT0、AGE30、AGE100、ADG100、FAT100的窝效应c2估计结果分别为、、、、;它们的遗传方差、窝效应方差和残差占表型方差的百分比分别为、、,、、57%,、、,、、,、6%、。应用是目前估计遗传参数准确而快速的方法之一。程序考虑了包含在选择过程中的所有信息包括选择、淘汰的效应,程序必须同时分析所有的生长性状及其个体之间的所有关系。各生长性状均存在较明显的窝效应,其中残差方差占总方差的比例最大。本文估计的生长性状的遗传力估计值变化范围为,它们有中等的遗传力,表明在个体选育中会取得较好的选择进展;估计值与王青来(2000)、Hofer,A.(1998)、WANG,(1998)估计的相近。遗传相关估计的差异受许多因素的影响,有关ADG和BF相关性的报道有很大的不同,从中等有利相关()变化到中等不利相关()都有。本文为这些参数的制定提供了依据。在估计遗传参数和育种值时需要考虑在模型中正确区分固定效应和随机效应的问题。朴和春等 [1 ] 认为 ,将猪的繁殖性状中的胎次性状归结到固定效应和将其归结到其他效应时所得出的方差组分有很大的差别 ,并对所估计的遗传参数和育种值的结果有很大的影响。目前 ,在估计遗传参数 This study was dealt with the influences of sex on the estimation of genetic parameters for the major economic traits of average daily, age at 30 kg, age at 90 kg, backfat thickness and body height in Duroc on the basis of the data from 3,443 heads in the Landrace breed tested at S Swine Breeding Farm in Icheon, Kyunggy Do, Korea, according to the animal model using MTDFREML. The least squares means of the major economic traits for Duroc were statistically significant(P<) in sex. From the model, additive genetic heritabilities estimated including the maternal effect were all lower than it excluding the maternal effect. If sex was considered as fixed effect the genetic correlations of all traits studied were higher than in males while were lower than in females.【Keyword】:duroc;sex;economic traits;animal model;genetic parameters1 白杜洛克猪的品种特性及其在现代养猪生产中的战略地位 2 如何选择与饲养良种猪 3 影响母猪排卵数的因素 4 大约克、杜洛克和长白猪肌肉品质比较 5 后备母猪选育流程 6 长白猪甘露聚糖结合凝集素A基因的克隆与原核表达 7 猪ADAMTS-1基因对繁殖性状的遗传效应分析 8 介绍三个国外引进的瘦肉型良种猪 9 瑞系长白猪生长肥育性能及胴体肉品质研究 10 应用荧光定量PCR方法研究RPL29基因在通城猪和长白猪不同时期胚胎骨骼肌中的表达 11 长白猪皮下脂肪细胞大小的发育性变化 12 长白猪甘露聚糖结合凝集素的分离纯化 13 妊娠母猪钙缺乏的诊治一例 14 蓝塘猪和长白猪肝脏和肌肉中IGF-Ⅰ、IGF-ⅠR和IGFBP3基因表达的发育性变化 15 长白猪皮下脂肪细胞大小的发育性变化 16 百日出栏养猪要点 17 八眉猪、长白猪及长×八杂交猪肌肉组织中FoxO1基因的表达 18 不同日龄久仰香猪、剑白香猪与长白猪空肠粘膜组织学观察 19 新丰板岭原种猪场简介 20 家野杂交猪科研进展 21 新生仔猪先天性震颤症病例报告 22 长白猪典范选择指数的构建与通径分析化研究 23 嘉兴长白猪氟烷基因频率检测初报 24 鲁烟白猪生产性能测定报告 25 桑梓湖长白原种猪 26 优良种猪饲养中存在的问题及对策 27 长白猪生长肥育期生长规律的研究 28 民猪、长白猪及其杂种猪肢蹄性状的比较分析 29 不同来源长白猪生长肥育期生长规律的研究 30 瑞典长白猪繁殖性能的研究 31 瑞典长白泌乳母猪粗蛋白质与赖氨酸的适宜水平 32 长白猪 33 四招养猪好致富 34 断奶仔猪皮肤出现疹块疾病的防治 35 雌激素受体基因和长白猪繁殖性能相关研究 36 丹麦长白猪的引种及杂交试验 37 瑞典长白猪泌乳母猪粗蛋白质与赖氨酸适宜水平的研究 38 胎次、配种季节对丹系长白母猪繁殖性能的影响 39 长白猪 40 新美系长白猪饲养管理技术 41 与配母猪产仔数与公猪睾丸大小的关系 42 如何提高猪的瘦肉生产率 43 猪传染萎缩性鼻炎及猪痘诊疗报告 44 高效养猪窍门13则 45 吉林地区长白猪生长发育测定试验报告 46 吉林省长白猪的生长发育测定 47 畜牧学 48 种公猪的饲养管理 49 民猪、长白猪及其杂种母猪催乳素受体(PRLR)基因的NaeⅠ多态性与繁殖性状的相关分析 50 胎次、月份和妊娠期对长白、大约克和杜洛克母猪产仔数的影响 51 PAF对长白猪精子活率及顶体反应率的影响 52 《长白猪饲养与选育》 53 猪窝产活仔数与初生窝重及断奶窝重的相关分析 54 八眉猪与长白猪杂交试验 55 优质瘦肉型猪种——三江白猪 56 丹系长白母猪繁殖性状通径分析及最优回归方程的建立 57 桑梓湖种猪屠宰性能测定初报 58 辽宁省种猪生产性能测量的问题及对策 59 益生素对促进保育仔猪生长性能的影响 60 福建中国长白猪优选优育良种猪工程批准立项 61 早期断奶仔猪的营养 62 早期断奶仔猪的营养 63 怎样使猪多长瘦肉 65 达三猪 66 MTNR1A基因对大白猪和长白猪产仔数的影响 67 中药添加剂对猪增重的效果试验 68 长白猪典范选择指数的构建与通径分析化研究 69 哺乳仔猪链球菌病的诊治 71 福建省建阳市种公猪肢蹄病的调查 72 金枫猪 73 野公猪与鄂西黑母猪杂交一代猪与2种家猪生长性能比较 74 大汉梅母本系母猪杂交性能研究 75 新美系长白猪的引进选育研究与推广 76 民猪、长白猪及其杂种母猪ESR和FSHβ基因的多态性与繁殖性能的关系分析 77 野猪与长白猪对日粮养分消化率的比较 78 太湖猪内四元杂交组合与外三元杜长大组合比较试验 79 畜禽品种及产品价格 80 不同稀释液配方对不同公猪精液常温的保存效果 81 益生素对保育仔猪生长性能的影响研究 82 长白猪λ-干扰素基因的原核表达与分析 83 纯种长白猪的选育与利用研究 84 来自饲料厂和养殖场生产第一线的若干问答(二十三) 86 催乳素受体基因对大白、长白猪产仔数的影响 87 MTDFREML法估算长白猪繁殖与生长发育性状的遗传力 88 DⅡ母市系猪在内蒙古性能的初测 89 丹系长白猪哺乳期生长发育规律的研究 90 猪的品种与杂交利用(二)我国引入的优良猪种 91 速效催情针对诱导长白猪同期发情及提高受胎率试验 92 执行主编风采 93 坚持抓好场内测定 不断提高种猪质量 94 新丹系长白猪生产性能的初步观察 95 种猪生产技术讲座(一) 96 野猪与长白猪对日粮养分消化率的比较研究 97 贵州剑河久仰香猪繁殖性状研究 98 长白猪γ-干扰素基因的克隆与序列分析 99 剑河香猪与长白猪血液常规指标的比较 100 利用地方品种的可持续肉猪繁育体系 101 精子载体转基因家猪中供体种公猪的选择 102 PAF对长白猪精子活率及运动速度影响的研究 103 长白猪和哈白猪超数排卵的研究 104 大观山长白猪的选育近况 105 引进不同品系长白猪繁殖性能的比较 106 长白猪有关繁殖性状对60d窝重影响的分析 107 长白猪选育现状与展望 108 长白猪IL-6基因的克隆及其序列分析 109 杜洛克、长白猪、大白猪的杂交效果分析 110 Isolation, Identification of Differentially Expressed Sequence Tags in the Backfat Tissue from Meishan, Large White and Meishan x Large White Cross Pigs 111 新丹系长白猪在海南适应性的观察 112 玉山黑猪肉质评价与利用研究 113 农业部“十五”重点推广的瘦肉型猪良种 114 种猪相册 115 初夏季节二花脸与长白及约克夏公猪的行为性体温调节反应 116 市场欢迎瘦肉型猪 117 几种瘦肉型猪的杂交类型 118 QTL Detection on Chromosome 6 in Landrace×Lantang Pig Resource Population 119 江苏地方优良猪种集锦(一)——长白猪 120 四川通江县生猪品种改良出新招 121 久仰香猪染色体C-带多态性研究 122 长白猪和哈白猪超数排卵的研究 123 氟烷基因PCR-RFLP检测技术在杜洛克猪和长白猪中的应用 124 应用VCE4.0估计长白猪生长性状的遗传参数 125 大约克夏、长白、汉普夏和杜洛克4个品种的公猪中年龄对粪臭素和吲哚分布水平的影响 126 引入青海的长白猪繁殖性状相关及通径分析 127 无公害猪肉生产专题(八):猪品种介绍 128 新丹系长白、大白猪选育研究进展 129 关系长白猪生长性状选育趋势 130 四川省种畜禽管理委员会公告 131 长白猪选育现状与展望 132 温氏长白猪生长性状的选育进展 133 猪GH基因全序列PCR-RFLPs研究 134 丹麦系长白猪选育工作的做法和体会 135 美系长白猪生长发育试验规律研究 136 新丹系长白 大白 杜洛克种猪选育初报 137 新丹系长白和大白种猪的生产性能测定和适应性观察 138 瘦肉型良种父系猪的引进和适应性观察 140 美系长白猪、大白猪、杜洛克猪新品系的选育研究 141 二花脸猪和双肌臂大约克、新丹系长白猪的选育与杂交利用研究 142 电场参数对长白猪精子电穿孔效率影响的研究 143 速效催情针对诱导长白猪同期发信及提高受胎率试验 144 猪的外貌评定技术 145 长白猪血浆酶活性与胴体性状的相关研究 146 几种瘦肉型猪的杂交类型 147 长白猪 148 长白猪 149 湖北省首次拍卖种猪最高猪价十五点五万元 150 长白猪肥育、胴体及肉质性状的遗传参数估测 151 长白猪SⅣ系生长发育性状的遗传参数估计 152 用动物模型估计猪的主要经济性状遗传参数 153 美系、英系、新丹系长白猪繁殖性能的比较 154 桑梓湖长白猪新品系选育与推广研究报告 155 长白猪精原细胞的分离和纯化 156 良种猪的品种介绍 157 长白猪生长和繁殖性状的遗传趋势分析 158 长白、大白及其正反交F1与沂蒙黑猪杂交后代肉用性能试验 159 性别对长白猪的主要经济性状的遗传参数估计的影响 160 美系长白猪的选育研究 161 杂交猪肥育效果的研究 162 Crossbreeding parameters for fertility traits in a rotational crossbreeding between Landrace and Pi6train pigs 163 杜长梅与杜长大杂交组合生产性能与胴体品质的研究 164 长白猪繁殖性状的遗传参数估测 165 长白猪生长发育性状的遗传参数估测 166 英、美、新丹系长白猪的屠宰性能比较 167 丹麦系长白猪三年选育结果初报 168 长白种猪生产性能的观测 169 两种猪种对含全脂大豆抗营养因子饲粮的消化率反应 170 加系长白和大约克种猪哺乳期饲粮适宜营养水平的研究 171 长白母猪主要繁殖性状综合选择指数 172 丹系长白猪恶性高温综合性(pMHS)基因的检测分析 173 长白猪的生长曲线分析 174 丹系长白猪繁殖性状表型参数与选择指数的研究 175 两个品系长白猪生产性能比较 176 江西省2001年农业主推(示范)品种介绍(三) 177 综合性应激致发经采长白猪精子死亡的研究报告 178 英系长白猪性能的观察 179 荣昌猪与加系长白猪杂交肥育试验研究 180 长白猪体长遗传力的估测 181 太湖猪与外种猪杂交的后代杂种优势分析 182 近交对长白猪种繁殖性能的影响分析 183 新温州白猪的选育研究 184 丹麦系长白种猪三年选育工作报告 185 加系长白猪引种饲养的效果观察 186 天津长白猪简化综合育种值的研究 187 提高长白猪,约克夏猪断奶仔猪成活率的探讨 188 长白猪胴体组成与瘦肉率的关系 189 长白猪主要选育性状间的典型相关分析 190 天津长白猪育种目标的研究——性状经济权重的计算 191 试用丹麦长白替代迪卡C系改造迪卡母系的试验 192 长白猪,约克夏猪纯繁高产系的选育研究报告 193 长白猪,约克夏猪纯繁高产系选育的研究 194 白长猪选育 195 海风藤酮对PAF影响长白猪精子活率及运动能力的拮抗作用 196 引进加拿大长白和大约克种猪的适应性研究和生产性能测定 198 美、英、新丹系长白猪生长性状比较试验 199 杜洛克大约克和长白猪不同杂交组合对生产性能的影响 200 长白猪繁殖性状遗传参数估测 201 选种指数在长白猪,约克夏猪高产系选育中的应用 202 长白猪综合选择指数及其通径分析化研究 203 我国引进的四大优良猪种 204 新丹系长白猪屠宰及胴体品质测定初报 205 德阳市种畜种长白猪选育群的氟烷基因分析 206 SZH长白猪0—2世代选育进展 207 加拿大长白和大约克夏种猪与本地猪经济杂交利用的研究 208 引进加拿大长白和大约克夏种猪的适应性研究和生产性能测定 209 长白猪,约克夏猪纯繁高产系的选育方法及效果 210 血小板活化因子对长白猪精子顶体反应率的影响及海风藤酮对其的 … 211 杜洛克,大白,长白猪的生长和肉用性状杂交效果研究 212 瘦肉型猪的饲养与管理(一) 213 四川美系长白猪的氟烷基因分析 214 加系长白猪选育的研究 215 长白猪氟烷基因型与生长性状的相关研究 216 长白青年猪的繁殖规律初探 217 长白猪生产性能和肉质关系初探 218 二花脸猪与长白猪不同杂交繁育方式的繁殖性能 219 东安猪与大约克夏,长白猪杂交育肥试验 220 杜洛克与大约克,长白猪杂交配套的初步研究 221 长白猪定县猪芦台白猪肌肉组织学特性与肉质关系 222 应用BLUP法进行长白猪主选性状的遗传趋势分析 223 丹系长白原种猪繁殖性能初步观测 224 不同生长期长白猪体脂代谢的特点与cAMP的调控作用 225 丹麦长白猪在江汉平原饲养观察 226 天津丹麦长白猪选育报告 227 长白猪典范选择性状的综合优化研究 228 法国皮特兰,比利时长白猪适应性及应用研究 229 美系和丹系长白猪性能对比观察 230 长白,大长和杜洛克仔猪高床网上栏饲养效果的观察 231 长太杂交一代母猪繁殖性观察 232 美系长白猪性能的观察 233 提高约克夏猪,长白猪仔猪育活率的技术措施 234 三个引进纯种猪血液生化指标的研究 235 长白母猪发情行为特征系统观察 236 皮特兰,比利时长白猪纯种肥育试验报告 237 国内饲养的瘦肉型猪良种 238 金华猪,皖浙花猪和长白猪氟烷基因检测(简报) 239 长白猪肌纤维特性研究 240 民猪,北京黑猪及长白猪背最长肌还原糖含量测定 241 长白猪新品系选育 242 长白猪性行为初步观察 243 五指山小型猪在GH位点和小卫星位点上与长白猪和枫泾猪的差异 244 通过猪毛检测丹麦长白猪氟烷基因的变异 245 长白猪,北京黑猪及东北民猪脂肪酸及氨基酸组成 246 长白猪北京黑猪及民猪肌肉组织学特性研究 247 长白猪繁殖性能统计与初步分析 248 选育中的长白猪O—Ⅲ世代后备猪整体生长发育的研究 249 长白猪血清酶活性与胴体性状关系的研究 250 长白猪胴体品质选择的研究 251 长白猪“老三系”与“丹系”肥育性能研究 252 二花脸纯繁与杂交猪繁殖性能的比较 253 肉质性状的品种及性别效应 254 枫泾猪,香猪和长白猪的DNA指纹图分析 255 关中黑猪与长白猪脂肪形成的细胞学和组织化学比较研究 256 “皮特兰”,‘比利时长白猪“与”上海白猪“杂交利用的研究 257 杂交对猪肉蛋白质品质的影响 258 用微型猪测定氨基酸消化率的生物学试验研究 259 长白仔猪采食行为的观察 260 季节和高温对集约化饲养长白猪繁殖性状的影响 261 长白猪选育研究报告 262 法国皮特兰猪,比利时长白猪的应用与推广 263 英系长白和大约克夏猪生产的性能测定 264 长白猪若干繁殖性状的通径分析 265 长白猪不同饲料配方饲料试验报告 266 杜X长大三品种杂交配套的研究 267 比利时长白猪,皮特兰猪的肌纤维超微结构和肌肉组织化学特性研究 268 皮特兰,比利时长白猪氟烷敏感检测试验 269 梨树县种猪场长白猪繁殖性能分析(I) 270 东北民猪长白猪及杂种猪肌肉氨基酸组成的研究 271 长白猪两品系及其不同杂种屠宰性能分析 273 丹系长白猪综合选择指数的研究 274 长白猪与大约克夏 杜洛克猪的杂交效果 275 埋植Anabolic对长白猪脂组织脂肪酸组成的影响 276 法国皮特兰及比利时长白猪的杂交利用四报 277 东北民猪,长白猪和杂种生长肥育猪肉质特点 278 长白猪乳头数的遗传 279 法国皮特兰和比利时长白猪引进情况 280 长白猪暴发弓形体病的报告 281 大约克夏猪和长白猪肢蹄结实度的遗传分析 282 法国皮特兰及比利时长白猪杂交利用三报 283 怎样治疗渗出性皮炎 284 东北民猪与哈白,长白猪繁殖力比较及其杂交效果分析 285 梅山猪与长白猪染色体核型分析 286 长白猪等生长肥育猪不同营养水平肥育对比试验:Ⅰ肥育及胴体性状 287 丹麦长白猪生产性能观察测定 288 法国皮特兰,比利时长白猪杂交利用研究二报 289 皮特兰、比时时长白猪与上海白猪杂交利用研究初报 290 丹麦长白猪泌乳特性及营养利用的研究 291 东北民猪,长白猪和杂种猎生长肥育的研究:III.胴体化学组成 292 东北民猪,长白猪和杂种猪生长肥育的研究:II,肌肉生长的特点

链球菌病是由多种链球菌感染所引起的疾病,包括猪败血性链球菌病和猪淋巴结脓肿。本病急性常发生出血性败血症和脑膜炎;慢性以关节炎、心内膜炎、化脓性淋巴结炎及组织化脓等为特征。防治措施①加强饲养管理,搞好环境卫生和消毒。不要在猪舍内积肥,要经常清扫猪圈;要保持舍内清洁干燥,防止圈内漏雨;要经常把垫草置于太阳下暴晒,并保持垫草柔软。另外,还要保证猪圈的通风换气,使猪舍内保持清新的空气。②给予全价饲料,防止饲喂发霉变质的饲料。③发现病猪立即隔离并封锁,对病死猪做无害化处理以防病原扩散,对被病猪污染的圈舍、场地、用具等进行严格消毒。④对猪群采用猪链球菌多价灭活疫苗进行免疫,能很好地预防本病。

分子生物研究进展论文

我给你一篇,邮箱联系啊

科学领域中任何一门学科的形成和发展,一般很难准确地说明它是何时、何人创始的。分子生物学的产生和发展,同其它学科一样,经历了漫长而艰辛的过程,逐步走向成熟而迅速发展的道路。 1871年,Lankester就提出,生物不同种属间的化学和分子差异的发现和分析,对确定系统发生的关系,要比总体形态学的比较研究更为重要。后来,随着德国、美国生理化学实验室的建立和生物化学杂志的创办,促进了生物化学的发展。当生物化学深入到研究生物大分子时, 1938年Weaver在写给洛克菲勒基金会的报告中,首次使用了分子生物学(molecular biology)一词。他写道:“在基金会给予支持的研究中,有一系列属于比较新的领域,可称之为分子生物学……”。一年以后,研究蛋白质结构的Astbury使用了这个名词,以后它变得越来越普遍。特别是在1953年,Watson和Crick发表了著名论文“脱氧核糖核酸的结构”以后,DNA双螺旋结构的发现,促进了遗传学、生物化学和生物物理学的结合,推动了分子生物学的形成和迅速发展,使生命科学全面地进入分子水平研究的时代,这是生物科学发展史上的重大里程碑。1956年剑桥医学研究委员会率先建立了分子生物学实验室,1959年创刊了《分子生物学》杂志,1963年成立了欧洲分子生物学国际组织,分子生物学从而成为崭新的独立学科,带动着生命科学迅猛发展,成为现代自然科学研究中的重要领域。 在分子生物学的形成和发展过程中,有许多重大的发现和事件,具体情况如下: 1864年:Hoope-Seyler结晶并命名了血红蛋白。 1869年:Mieseher第一次分离了DNA。 1871年:Lankester首先提出生物不同种属间的化学和分子差异的发现与分析,对确定系统发生的关系,要比总体形态学的比较研究更为重要。 1926年:Sumaer从刀豆的提取物中得到脲酶结晶,并证明此蛋白质结晶有催化活性。同年,Svedberg创建了第一台分析用超高速离心机,并用其测定了血红蛋白的相对分子质量约为。 1931年:Pauling发表了他的第一篇关于“化学键特性”的论文,详细说明了共价键联结的规律。后来,又建立了处理生物分子的量子力学理论。 1934年:Bernal和Crowfoot发表了第一张胃蛋白酶晶体的详尽的X-射线衍射图谱。 1941年:Astbury获得了第一张DNA的X-射线衍射图谱。 1944年:Avery提供了在细菌的转化中,携带遗传信息的是DNA,而不是蛋白质的证据。实验证明,使无毒的R型肺炎双球菌转变成致病的S型,DNA是转化的基本要素。8年后,1952年,Hershey和Chase又用同位素示踪技术证明T2噬菌体感染大肠杆菌,主要是核酸进入细菌内,而病毒外壳蛋白留在细胞外。烟草花叶病毒的重建实验证明,病毒蛋白质的特性由RNA决定,即遗传物质是核酸而不是蛋白质。至此,DNA作为遗传物质才被普遍地接受。 1950年:Chargaff以不同来源DNA碱基组成的精确数据推翻了四核苷酸论,提出了Chargaff规则,即DNA的碱基组成有一个共同的规律,胸腺嘧啶的摩尔含量总是等于腺嘌呤的摩尔含量,胞嘧啶的摩尔含量总是等于鸟嘌呤的摩尔含量,即[A]=[T]和[G]=[C]。 1951年:Pauling和Corey应用X-射线衍射晶体学理论研究了氨基酸和多肽的精细空间结构,提出了两种有周期规律性的多肽结构学说,即alpha螺旋和B-折叠理论。 1953年:这是开创生命科学新时代的第一年,具有里程碑意义的是Watson和Crick发表了“脱氧核糖核酸的结构”的著名论文,他们在Franklin和Wilkins X-射线衍射研究结果的基础上,推导出DNA双螺旋结构模式,开创了生物科学的新纪元。同年,Sanger历经8年的研究,完成了第一个蛋白质一胰岛素的氨基酸全序列分析。 随后,1954年Gamnow从理论上研究了遗传密码的编码规律;1956年Volkin和Astrachan发现了mRNA(当时尚未用此名);1958年,Hoagland等发现了tRNA在蛋白质合成中的作用;Meselson和Stahl应用同位素和超离心法证明DNA的半保留复制;Crick提出遗传信息传递的中心法则。 1960年:Marmur和Dory发现了DNA的复性作用,确定了核酸杂交反应的专一性和可靠性;Rich证明DNA-RNA杂交分子与核酸间的信息传递有关,开创了核酸实际应用的先河。与此同时,在蛋白质结构研究方面,Kendrew等得到了肌红蛋白分辨率的结构,Perutz等得到了血红蛋白分辨率的结构。 1961年:这是分子生物学发展不平凡的一年。Jacob和Monod提出操纵子学说,发表了蛋白质合成中遗传调节机理的论文,此论文被誉为是分子生物学中文笔优美的经典论文之一。同年,Brenner等获得mRNA的证据;Hall和Spiegelman证明T2 DNA和T2专一性RNA的序列互补;Crick等证明了遗传密码的通用性。 1962年:Arber提出第一个证据,证明限制性核酸内切酶的存在,导致以后对该类酶的纯化,并由Nathans和Smith应用于DNA图谱和序列分析。 1965年:Holley等采用重叠法首先测定了酵母丙氨酰-tRNA的一级结构,为广泛、深入地研究tRNA的高级结构奠定了基础。 1967年:Gellert发现了DNA连接酶,该酶将具有相同粘末端或者平末端的DNA片段连接在一起。同年,Philips及其同事确定了溶菌酶分辨率的三维结构。 1970年:Temin和Baltimore几乎同时发现了反转录酶,证实了Temin 1964年提出的“前病毒假说”。在劳氏肉瘤病毒(RSV)感染以后,首先产生的是含有RNA病毒基因组全部遗传信息的DNA前病毒,子代病毒的RNA是以前病毒的DNA为模板进行合成的。反转录酶已成为目前分子生物学研究中的一个重要工具。 1972年~1973年:重组DNA时代到来。Berg、Boyer和Cohen等创建了DNA克隆化技术,在体外构建成具有生物学功能的细菌质粒,开创了基因工程新纪元。与此同时,Singer和Nicolson提出生物膜结构的液态镶嵌模型。 1975年:Southern发明了凝胶电泳分离DNA片段的印迹法;Gruustein和Hogness建立了克隆特定基因的新方法;O'Farrell发明了双向电泳分析蛋白质的方法,为分子生物学的深入发展创造了重要的技术条件;Blobel等报导了信号肽。 1976年:Bishop和Varmus发现动物肿瘤病毒的癌基因来源于细胞基因(即原癌基因)。 1977年:Berget等发现了“断裂”基因;Sanger、Maxam和Gilbert创立了“酶法”“化学法”测定DNA序列的方法,标志着分子生物学研究新时代的到来。 1979年:Solomon和Bodmer最先提出至少200个限制性片段长度多态性(RFLP)可作为连接人整个基因组图谱之基础。 1980年:Wigler等通过与某个选择性标志物共感染,从而把非选择性基因导入哺乳动物细胞;Cohen和Boyer获得一项克隆技术的美国专利。 1981年:Cech等发现四膜虫26S rRNA前体的自我剪接作用,随后又证明前体中的居间序列(intervening sequence,IVS)有五种酶的活力。几乎在同时,Altman从纯化的RNase P中,证明催化tRNA前体成熟的催化剂是RNase P中的RNA。具有催化作用RNA(ribozyme)的发现,促进了RNA研究的飞速发展。 1982年:Prusiner等在感染搔痒病的仓鼠脑中发现了朊病毒(prion)。 1983年:Herrera-Estrella等用Ti质粒作为转基因载体转化植物细胞获得成功。 1984年:McGinnis等发现果蝇、非洲爪蟾等同源异形基因中的同源异形盒(homeobox)的核苷酸序列;Schwartz和Cantor发明了脉冲梯度凝胶电泳法;Simons和Kleckner等发现了反义RNA。 1985年:Saiki等发明了聚合酶链式反应(PCR);Sinsheimer首先提出人类基因组图谱制作计划的设想;Smith等报导了DNA测序中应用荧光标记取代同位素标记的方法;Miller等发现DNA结合蛋白的锌指结构。 1986年:Dryja等发现成视网膜细胞瘤(Rb)基因是一种抑癌基因;Robin等采用X-光晶相学,证实了DNA结合蛋白的螺旋-转角-螺旋结构。 1987年:Mirkin等在酸性溶液的质粒中发现三链DNA;Burke等用酵母人工染色体(YAC)作载体克隆了大片段DNA;Hoffman等确定了Dnchenne肌肉萎缩病灶的蛋白产物是萎缩素(dystrophin);Hooper等和Kuehn等分别用胚基细胞进行哺乳动物胚的转基因操作,取得重大进展。 1988年:Landsehalz等在对CyC3(细胞色素C基因调节蛋白)、癌基因产物(MyC、V-jun、V-fos)和CBP(CCAAT盒结合蛋白)的研究过程中,发现了结合区亮氨酸序列的周期性,提出DNA结合蛋白的亮氨酸拉链结构模型;同年,Whyfe等证明癌的发生是癌基因的激活和抑癌基因失活的结果。 1989年:Greider等首先在纤毛原生动物中发现了端粒酶(telomerase)是以内源性RNA为模板的反转录酶;Hiatt等首次报导了在植物中亦可产生单克隆抗体。 1990年:人类基因组计划(HGP)全面正式启动;Simpson等发现了对mRNA前体编辑起指导作用的小分子RNA(guide RNA);Sinclair等在人类Y染色体上发现了新的性别决定基因-SRY基因。 1991年:由欧洲共同体(EC)组织17个国家35个实验室的147位科学家,以手工测序为主要手段,首先完成了第一条完整染色体(酵母3号染色体)的315kb的测序工作;Hake等首次报导在植物中发现含有同源异形盒基因;Blackburn等提出调节聚合序列[通式为(T/A)mGn,m=124,n=1~8]的单链DNA可形成分子内或分子间的四螺旋结构,起着稳定染色体的作用。 1993年:Jurnak等在研究果胶酸裂解酶时,发现一种新的蛋白质结构-平行B螺旋(parallel B helix);Yuan等在哺乳类细胞内发现一种参与调节细胞凋亡并具有剪切作用的蛋白质-IL-1B转换酶(interlukin-1B-convertingenzyme,ICE)。 1994年:日本科学家在((Nature Genetics》上发表了水稻基因组遗传图;Wilson等用3年时间完成了线虫(Celegans)3号染色体连续的的测定,预示着百万碱基规模的DNA序列测定时代的到来。 1995年:Cuenoud等发现了具有酶活性的DNA;Tu等在中发现了具有转运与信使双功能的RNA-10 Sa RNA。 1996年:Lee等首次报导了酵母转录因子GCN4中的氨基酸片段能自动催化合成自我复制的肽;洪国藩等采用“指纹-锚标”战略构建了高分辨率的水稻基因组物理图谱,DNA片段的长度为120kb;Goffeau等完成了酵母基因组DNA全序列( 7bp)的测定。 1997年:Wilmut等首次不经过受精,用成年母羊体细胞的遗传物质,成功地获得克隆羊-多莉(Dolly);Willard等首次构建了人染色体(HACs);Salishury等发现DNA一种新的结构形式-四显性组合,这可能是基因交换期间DNA联结的一种方式。 1998年:Renard等用体细胞操作获得克隆牛-Marguerife,再次证明从体细胞可克隆出遗传上完全相同的哺乳动物;GeneBank公布了最新人的“基因图谱98'’,代表了30181条基因定位的信息;Venter对人类基因组计划提出新的战略-全基因组随机测序,毛细管电泳测序仪启动。 从以上所述分子生物学的发展中,可以看出20世纪是以核酸的研究为核心,带动着分子生物学向纵深发展。50年代的双螺旋结构,60年代的操纵子学说,70年代的DNA重组,80年代的PCR技术,90年代的DNA测序都具有里程碑的意义,将生命科学带向一个由宏观到微观再到宏观,由分析到综合的时代。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

青霉素的发酵研究进展论文

青霉素 (Benzylpenicillin / Penicillin)【简介】 青霉素是指分子中含有青霉烷,能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素。 青霉素又被称为青霉素G、peillin G、 盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。 青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显.是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 使用本品必须先做皮内试验。青霉素过敏试验包括皮肤试验方法(简称青霉素皮试)及体外试验方法,其中以皮内注射较准确。皮试本身也有一定的危险性,约有25%的过敏性休克死亡的病人死于皮试。所以皮试或注射给药时都应作好充分的抢救准备。在换用不同批号青霉素时,也需重作皮试。注射液、皮试液均不稳定,以新鲜配制为佳。而且对于自肾排泄,肾功能不良者,剂量应适当调整。此外,局部应用致敏机会多,且细菌易产生抗药性,故不提倡。【英文简述】 Penicillin (sometimes abbreviated PCN) refers to a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. The name “penicillin” can also be used in reference to a specific member of the penicillin group Penam Skeleton, which has the molecular formula R-C9H11N2O4S, where R is a variable side chain. 【分类】 按其特点可分为 : 青霉素G类:如青霉素G钾、青霉素G钠、长效西林等。 耐酶青霉素:如苯唑青霉素(新青Ⅱ号)、氯唑青霉素等。 广谱青霉素:如氨苄青霉素、羟氨苄青霉素等。 抗绿脓杆菌的广谱青霉素:如羧苄青霉素、氧哌嗪青霉素、呋苄青霉素等。 氮咪青霉素:如美西林及其酯匹美西林等,其特点为较耐酶,对某些阴性杆菌(如大肠、克雷伯氏和沙门氏菌)有效,但对绿脓杆菌效差。 【特点】 青霉素类抗生素是β-内酰胺类中一大类抗生素的总称,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡。 青霉素类抗生素的毒性很小,是化疗指数最大的抗生素。但其青霉素类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5%~10% ,为皮肤反应 ,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、发绀、血压下降、昏迷、肢体强直,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高。过敏反应的发生与药物剂量大小无关。对本品高度过敏者,虽极微量亦能引起休克。注入体内可致癫痫样发作。大剂量长时间注射对中枢神经系统有毒性(如引起抽搐、昏迷等),停药或降低剂量可以恢复。 【历史发展】 亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。有一次他外出度假时,把实验室里在培养皿中正生长着细菌这件事给忘了。3周后当他回实验室时,注意到在一个培养皿中长了一个霉菌斑。并且霉菌斑周围的细菌都死了。 霉菌渗出了什么强有力的物质?弗莱明称为青霉素,并发现了它可以杀死许多致命性细菌。然而,因为青霉素在试管内和血清混合后很快失活,弗莱明认为它不会在人和动物身上发生作用。 10多年后,弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。“这真像一个奇迹!”弗洛里说道。 到了1943年,制药公司已经发现了批量生产青霉素的方法。英国和美国当时正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。到了1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。 青霉素是一种高效、低毒、临床应用广泛的重要抗生素。它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。 20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。 在1928年夏季的一天,英国微生物学家弗莱明发现,一个与空气意外接触过的金黄色葡萄球菌培养皿中长出了一团青绿色霉菌。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里和生物化学家钱恩。 通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。1941年开始的临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。这些青霉素在世界反法西斯战争中挽救了大量美英盟军的伤病员。1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。 青霉素的出现开创了用抗生素治疗疾病的新纪元。通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。但与此同时,部分病菌的抗药性也在逐渐增强。为了解决这一问题,科研人员目前正在开发药效更强的抗生素,探索如何阻止病菌获得抵抗基因,并以植物为原料开发抗菌类药物。【药理学】 内服易被胃酸和消化酶破坏。肌注或皮下注射后吸收较快,15~30min达血药峰浓度。青霉素在体内半衰期较短,主要以原形从尿中排出。 氯霉素是具广谱抗菌作用,对革兰阴性菌的作用较革兰阳性菌强,对伤寒杆菌、流感杆菌和百日咳杆菌的作用比其他抗生素强,对立克次体感染(如斑疹伤寒)以及病毒感染(如沙眼)均有较好作用。对布氏杆菌、大肠杆菌、产气杆菌、肺炎杆菌、痢疾杆菌、霍乱弧菌、脑膜炎双球菌、淋球菌等也有较强抗菌作用。本品属抑菌剂,其作用机理主要抑制细菌蛋白质的合成,系作用于核糖核蛋白体的50S亚基上,抑制肽基转移酶的作用,阻止了肽链的增长。临床上主要用于伤寒、副伤寒和其他沙门氏菌感染,疗效好,目前仍是治疗这些疾病的首选药物。【作用】 青霉素对溶血性链球菌等链球菌属,肺炎链球菌和不产青霉素酶的葡萄球菌具有良好抗菌作用。对肠球菌有中等度抗菌作用,淋病奈瑟菌、脑膜炎奈瑟菌、白喉棒状杆菌、炭疽芽孢杆菌、牛型放线菌、念珠状链杆菌、李斯特菌、钩端螺旋体和梅毒螺旋体对本品敏感。本品对流感嗜血杆菌和百日咳鲍特氏菌亦具一定抗菌活性,其他革兰阴性需氧或兼性厌氧菌对本品敏感性差.本品对梭状芽孢杆菌属、消化链球菌厌氧菌以及产黑色素拟杆菌等具良好抗菌作用,对脆弱拟杆菌的抗菌作用差。青霉素通过抑制细菌细胞壁四肽则链和五肽交连桥的结合而阻碍细胞壁合成而发挥杀菌作用。对革兰阳性菌有效,由于革兰阴性菌缺乏五肽交连桥而青霉素对其作用不大。 其中青霉素为以下感染的首选药物: 1.溶血性链球菌感染,如咽炎、扁桃体炎、猩红热、丹毒、蜂窝织炎和产褥热等 2.肺炎链球菌感染如肺炎、中耳炎、脑膜炎和菌血症等 3.不产青霉素酶葡萄球菌感染 4.炭疽 5.破伤风、气性坏疽等梭状芽孢杆菌感染 6.梅毒(包括先天性梅毒) 7.钩端螺旋体病 8.回归热 9.白喉 10.青霉素与氨基糖苷类药物联合用于治疗草绿色链球菌心内膜炎 青霉素亦可用于治疗: 1.流行性脑脊髓膜炎 2.放线菌病 3.淋病 4.奋森咽峡炎 5.莱姆病 6.多杀巴斯德菌感染 7.鼠咬热 8.李斯特菌感染 9.除脆弱拟杆菌以外的许多厌氧菌感染 风湿性心脏病或先天性心脏病患者进行口腔、牙科、胃肠道或泌尿生殖道手术和操作前,可用青霉素预防感染性心内膜炎发生【生产方法】 天然青霉素与半合成青霉素生产方法完全不同。 天然青霉素 青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入~的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。 半合成青霉素 以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。 6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。【剂型用法和用量】 片剂:每片克。胶囊剂:每粒克。注射剂:每支2毫升,含药克。滴眼剂:8毫克:克。口服,每天成人1~2克;儿童每日按千克体重服用50~100毫克,分2~4次。肌注,成人每次~1克,每天2次;儿童每日按千克体重服用25~50毫克,分2次。静脉滴注,剂量同肌注,因注射剂系以丙二醇为溶剂,用时以等渗葡萄糖注射液或生理盐水稀释至毫克:毫升供用,即2毫克(克)以100毫升输液稀释,并应以干燥空针抽取,以免析出结晶,稀释完后应仔细检查无结晶析出,方可使用。【不良反应】 1.主要毒性反应是抑制骨髓造血机能,引起粒细胞及血小板减少症,用药期间如发现轻度白细胞或血小板减少,应立即停药,一般可恢复。氯霉素所致的再生障碍性贫血虽少见,但难逆转,常可致死,多发生于儿童长期反复用氯霉素者,偶有用量很少而发病者。 2.过敏反应较少见,但也可引起皮疹,药物热。少数可引起黄疸,原有肝脏疾病者甚至可引起急性肝坏死。 3.可引起精神症状如幻觉、谵妄,大多发生于用药后3~5日,停药后两日内可消失。 4.口服后可发生胃肠道反应,如恶心、呕吐、腹泻、食欲不振等。【副作用】1 青霉素类的毒性很低,但较易发生变态反应,发生率约为5%�10%。多见的为皮疹、哮喘、药物热、严重的可致过敏性休克而引起死亡。 2 大剂量应用青霉素抗感染时,可出现神经精神症状,如反射亢进、知觉障碍、抽搐、昏睡等,停药或减少剂量可恢复。 3 使用青霉素前必须作皮肤过敏试验。如果发生过敏性休克,应立即皮下或肌内注射肾上腺素~1ml,同时给氧并使用抗组胺药物及肾上腺皮质激素等。 4 肌注钾盐时局部疼痛较明显,用苯甲醇溶液作为稀释剂溶解,则可消除疼痛。 【细菌对青霉素类产生耐药性】细菌对青霉素类产生耐药性主要有三种机制:1.细菌产生β内酰胺酶,使青霉素类水解灭活;2.细菌体内青霉素作用靶位——青霉素结合蛋白发生改变;3.细胞壁对青霉素类的渗透性减低。其中以第一种机制最为常见,也最重要。青霉素类抗生素水溶性好,血消除半衰期大多不超过2小时,主要经肾排出,多数品种可经血液透析清除。按我国卫生部规定,使用青霉素类抗生素前均需做青霉素皮肤试验,阳性反应者禁用。【注意事项】 1.口服或注射给药时忌与碱性药物配伍,以免分解失效。 2.本品不宜与盐酸四环素、卡那霉素、多粘菌素E、磺胺嘧啶钠、三磷酸腺苷、辅酶A等混合静滴,以免发生沉淀或降效。 3.氯霉素与青霉素一般不要联用,因氯霉素为抑菌剂,而青霉素为繁殖期杀菌剂,联用可影响青霉素的抗菌活性而降效。但这一问题尚有争论,意见不一,因两者联用对革兰阳性菌、阴性菌混合感染及颅内感染临床效果好。解决的办法,如需联用,宜先用青霉素2~3小时后再用氯霉素。 4.由于本品可抑制某些肝脏酶的活性,因此可干扰甲苯磺丁脲、苯妥英钠和双香豆素在人体内的生物转化,可增强甲苯磺西脲、苯妥英钠的作用,对双香豆素和华法林的抗凝作用均可增强。 5.婴儿、肝、肾功能减退者慎用,妊娠末期产妇慎用,哺乳期妇女忌用。应用青霉素前除做皮试外,还要注意以下几点: 1、要到有抢救设备的正规医疗单位注射青霉素,万一发生过敏反应,可以得到及时有效的抢救治疗。在注射过程中任何时候出现头晕心慌、出汗、呼吸困难等不适,都要立即告诉医生护士。 2、注射完青霉素,至少在医院观察20分钟,无不适感才可离开。 3、不要在极度饥饿时应用青霉素,以防空腹时机体对药物耐受性降低,诱发晕针等不良反应。 4、两次注射时间不要相隔太近,以4—6小时为好。静脉点滴青霉素时,开始速度不要太快,每分钟以不超过40滴为宜,观察10—20分钟无不良反应再调整输液速度。 5、如果当天有注射青霉素史,在家中出现头晕心慌、出汗、呼吸困难等不适,应及时送医院诊治。青霉素配伍应用中的相互作用: 近年来,临床中出现滥用药物的问题,造成一些不良反应,尤其是青霉素与其他药物的配伍应用,所产生的相互作用和不良反应是不可忽视的。 1 青霉素不可与同类抗生素联用 由于它们的抗菌谱和抗菌机制大部分相似,联用效果并不相加。相反,合并用药加重肾损害,还可以引起呼吸困难或呼吸停止。它们之间有交叉抗药性,不主张两种β-内酰胺类抗生素联合应用。 2 青霉素不可与磺胺和四环素联合用药 青霉素属繁殖期“杀菌剂”,阻碍细菌细胞壁的合成,四环素属“抑菌剂”,影响菌体蛋白质的合成,二者联合作用属拮抗作用,一般情况下不应联合用药。临床资料表明单用青霉素抗菌效力为90%,单用磺胺类药效力为81%,两者联合用药抗菌效力为75%,若非特殊情况不可联合使用。 3 青霉素不可与氨基苷类联合用药 两者混合同于输液器给病人输液,因青霉素的β-内酰胺可使庆大霉素产生灭活作用,其机制为两者之间发生化学相互作用,故严禁混合应用,应采用青霉素静脉滴注,庆大霉素肌肉注射。 综上所述,青霉素联用不当,由于药物的相互作用,而导致药物不良反应是不可低估的。青霉素是治疗各种感染性疾病的最常用抗生素,严格掌握用药的适应证,合理联用,措施得力,减少不必要的不良反应。【青霉素家族】 青霉素用于临床是40年代初,人们对青霉素进行大量研究后又发现一些青霉素,当人们又对青霉素进行化学改造,得到了一些有效的半合成青霉素,70年代又从微生物代谢物中发现了一些母核与青霉素相似也含有β-内酰胺环,而不具有四氢噻唑环结构的青霉素类,可分为三代:第一代青霉素指天然青霉素,如青霉素G(苄青霉素);第二代青霉素是指以青霉素母核-6-氨基青霉烷酸(6-APA),改变侧链而得到半合成青霉素,如甲氧苯青霉素、羧苄青霉素、氨苄青霉素;第三代青霉素是母核结构带有与青霉素相同的β-内酰胺环,但不具有四氢噻唑环,如硫霉素、奴卡霉素。【青霉素浓缩法】 利用青霉素特异性地杀死野生型细胞、保留营养缺陷型细胞的方法。青霉素能抑制细菌细胞壁的合成,所以只能杀死生长繁殖中的细菌,而不能杀死停止分裂的细菌。在只能使野生型生长而不能使突变型生长的选择性液体培养基中,野生型被青霉素杀死,而突变型则不被杀死,从而淘汰野生型,使突变型得以浓缩。可适用于细菌和放线菌,是营养缺陷型突变体筛选的常用方法之一。 【岛青霉素】 稻谷在收获后如未及时脱粒干燥就堆放很容易引起发霉。发霉谷物脱粒后即形成"黄变米"或"沤黄米",这主要是由于岛青霉()污染所致。黄变米在我国南方、日本和其他热带和亚热带地区比较普遍。小鼠每天口服200g受岛青霉污染的黄变米,大约一周可死于肝肥大;如果每天饲喂黄变米,持续两年可诱发肝癌。流行病学调查发现,肝癌发病率和居民过多食用霉变的大米有关。吃黄变米的人会引起中毒(肝坏死和肝昏迷)和肝硬化。岛青霉除产生岛青霉素(Silanditoxin)外,还可产生环氯素(Cyclochlorotin),黄天精(Luteoskyrin)和红天精(Erythroskyrin)等多种霉菌毒素。 岛青霉素和黄天精均有较强的致癌活性,其中黄天精的结构和黄曲霉素相似,毒性和致癌活性也与黄曲霉素相当。小鼠日服7mg/kg体重的黄天精数周可导致其肝坏死,长期低剂量摄入可导致肝癌。环氯素为含氯环结构的肽类,对小鼠经口LD50为体重,有很强的急性毒性。环氯素摄入后短时间内可引起小鼠肝的坏死性病变,小剂量长时间摄入可引起癌变。

青霉素是人类历史上发现的第一种抗生素,且应用非常广泛。早在唐朝时,长安城的裁缝会把长有绿毛的糨糊涂在被剪刀划破的手指上来帮助伤口愈合,就是因为绿毛产生的物质(青霉素素菌)有杀菌的作用,也就是人们最早使用青霉素。20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。近代,1928年英国细菌学家弗莱明首先发现了世界上第一种抗生素—青霉素,亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。1928年,英国科学家Fleming在实验研究中最早发现了青霉素,但由于当时技术不够先进,认识不够深刻,Fleming并没有把青霉素单独分离出来。1929年,弗莱明发表了他的研究成果,遗憾的是,这篇论文发表后一直没有受到科学界的重视。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里(Howard Walter Florey)和生物化学家钱恩。1938年,德国化学家恩斯特钱恩在旧书堆里看到了弗莱明的那篇论文,于是开始做提纯实验。弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。此后一系列临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。1940年冬,钱恩提炼出了一点点青霉素,这虽然是一个重大突破,但离临床应用还差得很远。1941年,青霉素提纯的接力棒传到了澳大利亚病理学家瓦尔特弗洛里的手中。在美国军方的协助下,弗洛里在飞行员外出执行任务时从各国机场带回来的泥土中分离出菌种,使青霉素的产量从每立方厘米2单位提高到了40单位。1941年前后英国牛津大学病理学家霍华德·弗洛里与生物化学家钱恩实现对青霉素的分离与纯化,并发现其对传染病的疗效,但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。所用的抗生素大多数是从微生物培养液中提取的,有些抗生素已能人工合成。由于不同种类的抗生素的化学成分不一,因此它们对微生物的作用机理也很不相同,有些抑制蛋白质的合成,有些抑制核酸的合成,有些则抑制细胞壁的合成。通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。到了1943年,制药公司已经发现了批量生产青霉素的方法。当时英国和美国正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。1943年10月,弗洛里和美国军方签订了首批青霉素生产合同。青霉素在二战末期横空出世,迅速扭转了盟国的战局。战后,青霉素更得到了广泛应用,拯救了数以千万人的生命。到1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。因这项伟大发明,1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。1944年9月5日,中国第一批国产青霉素诞生,揭开了中国生产抗生素的历史。截至2001年年底,中国的青霉素年产量已占世界青霉素年总产量的60%,居世界首位。2002年,Birol等人提出了基于过程机理的模型,该过程综合考虑了发酵中微生物的各种生理变化,发现这是个十分复杂的过程。为了更加方便地对青霉素过程进行研究,Birol对Bajpai和Reuss提出的非结构式模型进行了扩展,对模型进一步简化,方便研究。

英国细菌学家亚历山大·弗莱明 对 培养皿上霉花的周围出现了一圈清澈的环状带 产生了好奇而发现了青霉素

相关百科

热门百科

首页
发表服务