首页

> 期刊论文知识库

首页 期刊论文知识库 问题

氧化亚铜大颗粒结晶研究论文

发布时间:

氧化亚铜大颗粒结晶研究论文

高中化学拾遗补缺——说说氧化亚铜Cu2O,试题当中信息归纳Cu2O由于制备方法和条件的不同,Cu2O晶粒大小各异,而呈现多种颜色,如黄、桔黄、鲜红或深棕。Cu2O溶于稀硫酸,立即发生歧化反应:Cu2O + H2SO4 == Cu2SO4+H2OCu2SO4 == CuSO4+CuCu2O对热十分稳定,在1058K时熔化而不分解,要加热到更高的温度时才分解。Cu2O不溶于水,具有半导体性质,常用它和铜装成亚铜整流器。在制造玻璃和搪瓷时,用作红色颜料。Cu2O溶于氨水和氢卤酸中,分别形成稳定的无色配合物[Cu(NH3)2]+和[CuX2]-,[Cu(NH3)2]+很快被空气中的氧氧化成蓝色的[Cu(NH3)4]2+,利用这种性质可以除去气体中的氧:Cu2O + 4NH3·H2O==2[Cu(NH3)2]++ 2OH-+ 3H2O2[Cu(NH3)2]++4NH3·H2O+1/2O2 == 2[Cu(NH3)4]2++2OH-+3H2O合成氨工业中常用醋酸二氨合铜(Ⅰ)[Cu(NH3)2]Ac溶液吸收对氨合成催化剂有毒的CO气体:这是一个放热和体积减少的反应,降温、加压有利于吸收CO。吸收CO以后的醋酸铜氨液,经减压和加热,又能将气体放出而再生,继续循环使用:

再谈古玉沁色------一篇不错的文章古代不少好玉之士,对沁色的研究确有不少精辟之处,但也有相当多的以讹传讹的说法流传下来。现代人面对这些说法,企图通过认真的科学态度加以认识。但,一些想当然的所谓专家,不借助专科知识,总以一知半解的方法,给沁色做出武断的角释。比如“寿衣沁”便是一例。陕西省扶风县召陈村出土的西周双龙纹玉环,上面有古玉书中形容的微发紫色的“寿衣沁”。古人认为是“寿衣”的色沁入玉里;而现代不少专家都认为,所谓“寿衣沁”是含有高锰酸钾的锰矿物沁入玉体使然。其实自然界的天然锰矿,只以二氧化锰的形式存在,俗称软锰矿。它要经过高温还原才能作为着色剂呈现紫色。古代没有高锰酸钾这种化合物,所以直接的锰矿物沁入玉体呈现紫色的说法是欠缺道理的。古人为什么要说是“寿衣沁”?大概与古人因地制宜把自然界中的二氧化锰矿粉作为织物印染着色剂还原后使用有关。这些印染后的衣物带有锰元素,入葬后与人体骨骼肌和肝脏内含有的大量锰元素一起作用,在尸体氧化腐败后,沁入玉体使然的。再如“铜绿沁”,古今人都说是铜锈的沁入,其实不然。我们知道铜锈的产生是个电解氧化的过程,铜锈大致有三种状态,一是氧化铜,锈色为黑色至棕黑色,无定形结晶性粉末。一是氧化亚铜,锈色为红色粉末状固体。另一种是碱式碳酸铜,呈孔雀绿颜色,为细小颗粒的无定形结晶性粉末。古玉中绿沁的形成,如果和铜沁有关的话,也就是只有在碱式碳酸铜的电解条件下,才能出现绿色。我们看南越王墓出土的杯,可以发现金属与玉器接触的地方,留有沁色。玉材中有金属阳离子成分,和铜金属氧化后的阳离子长期接触后,在氧化的气氛下,发生了电解过程,从而产生了沁色现象。南越王墓出土的玉盖杯,在四组钻孔镶嵌属件的地方,电解沁色后的变化,使玉盖上都有了沁色。而其他部位因没有镶嵌金属件,同样的墓葬环境下,结果没有任何沁色产生。一般沁色的形成是一种由外向里的浸润过程。而铜绿沁则是在氧化条件下,通过电解阳离子交换的过程,而产生的铜沁。只不过,也被人们习惯地称为沁入。我们裸眼能看到的玉器土蚀沁斑,它是个比周围玉质泛黄的、受到一定土蚀后失透的块状沁斑。如果用偏光镜观察时,泛黄土蚀沁斑的四周,会有好玉质一样的折光现象。江苏徐州狮子山出土的玉剑珌。我们知道如果是人工沁斑,因为做伪沁都是采取化学的方法处理,沁斑的四周因强酸强碱的作用,必然使一些晶体结构产生破坏,留下空隙。空隙会改变光的折射效果,所以在偏光的折射下,人工沁斑是无法出现正常玉质的折光现象。认识了这个道理,我们对一些土蚀沁斑就有了理性的认识,而再不被以往的诸如“色黄如土”等等形而上的描述所困惑了。一件老玉器不管怎么新,都有一定的老气存在。所谓老气沁色开门就是沁色有沁门、而且还有玉质光泽沉着不浮、沁染有讲究的意思。比如一件真品既有饭糁也有沁色的时候,一定是互不染杂。而人工染色沁,这两者则是不可能同时出现在一起的。图5是南阳桐柏县月河Ml出土的春秋晚期玉牌饰,局部黑漆古与饭糁共存。真品玉器有饭糁时,一定是局部玉质内部结构发生了松散变化。如果是人工染色,那么染色首先容易发生在松散变化的局部玉质上。其实所谓饭糁就是玉器内部存在的杂质,产生了不完全性解理小裂纹。存在于小裂纹处的矿物颗粒薄膜状的液态水,经过长时期的风化脱水后,加剧了氧化程度,出现了白色颗粒状斑痕。真品在缓慢的自然沁色下,因一般晶体面原始状态下都是不太平整的,沁色沿着玉材内部固有的晶体间隙而产生。而解理小裂纹一旦形成,原来不太平整的晶体面,会因解理面的形成而光滑难以入沁。所以肉眼看沁似乎与饭糁白斑同处一处,其实并不在一个间隙的网面上。而人工染色因为没有那么多的加工时间来完成自然沁染过程,快速的强酸强碱破坏了晶体结构,使其晶体间隙所过强酸碱之处,均产生了晶体结构的破坏,导致间隙的毛细管通道错综交往,故伪沁是无法与真品在这个条件下一致的,这就是沁染有讲究的意思。现在许多人把饭糁白斑同玉质内部的玉花等同而语,这个是非常错误的。因为两者是非常容易分辨的。为什么会出现这样的看法,主要是一些所谓专家在写文章的时候,贴图误导所致!我们的古玉鉴定常常借助的是眼学。面对那么多的古玉沁色和许多未知的玉文化领域,在没有更多的科技研究成果支持下,要判断一件玉器的真伪,确实是件不容易的事情。现在的作伪仿古技术,已经大大超越了个体的人脑智慧程度,一个作伪方法的出现,往往是依靠—个作伪群体的学识,或者借助公布出来的科技研究成果集合而成的。所以旧时的眼学如果没有一个与时俱进的升华过程,想对一些传世古玉进行有说服力的鉴定,怕是很难很难。任何事情一旦出现偏执,就极容易产生负效应。比方看沁辨古玉,是个非常好的方法,可如果唯沁而论新老,而不究其肌理,就容易导致自己的研学误入歧途。因为入土后玉器的沁色多变,一件玉器在同样的埋藏条件下,断为两截,断合面的两侧,一段有沁而另一段却丝毫没有沁色。如江苏北阴阳营出土的玉璜。这种情况在出土资料中常常能见到。如果对沁色浸染的肌理不加研究,对民间此类传世品做鉴定时,把一个判真,一个判假是有可能的。那么简而论之,它的阴阳沁色肌理在哪里?我们不妨从矿物晶体的构造学上找找答案。这种现象和晶体解理的交角有关。原始状态下的晶体晶面一般不太平整,一经受外力产生解理后,这样的晶面就消失了,产生了所谓的具有光滑面的晶体解理。解理也就是晶体内部在连接力弱的地方,受外力作用(如敲打、挤压等)出现了断口。解理面呈完全性或不完全性的光滑平面,透闪石的断面,小角侧的聚合解理面,容易形成纤维丝状或错综细多片状。而大的一侧,则较易显示为平整的光滑面。我们在做沁色实验的时候,知道玉的内部显微结构特点直接影响到蚀变速度。具体地说,顺着杂乱排列的透闪石针状晶体,比沿着整齐排列的晶体更易于蚀变溶解,沿裂缝处和未抛光的表面蚀变更加迅速。所以一段有沁而另一段却丝毫没有沁色的肌理,就是因为受外力作用后玉器断口解理的交角接受沁色的速度不同所致。我们了解了晶体解理断口与裂纹的情况,对沁色的辨伪就大有裨益。现在玉器鉴定界对伪沁的认识表述是基本一致的。如杨伯达先生的《传世古玉辨伪综论》中有关伪沁的介绍“自然沁色或浮于玉表,或渗入肌理。其色深浅不等,自然生动,几无定律可循。而人工伪沁则不同,往往避硬就软,渗入石性、瑕疵、绺璺等,其瑕疵绺璺处染色特重。‘非贵非瑕’处伪沁浮于表面”。还如“人工沁附着于器表,有的沿着绺裂向内渗透。附着在表面上的一层一般说比较薄,个别也有较厚的,像涂上漆胶片般,成片脱落后露出玉肌口。沁入绺夹缝的亦较厚”。这些论述都是非常精辟的。不过如湖北随县擂鼓墩曾侯乙墓出土的鸟首形玉佩和兽面纹玉琮,我们发现许多出土真品的沁色,也是沿着绺裂向内渗透的。这就使我们的辨伪工作容易陷入两难的境地。自然沁色非常丰富,随不同地域的埋葬土壤和环境的不同,沁色出现的特征也有很大差异性。要做到都了如指掌谈何容易?如果我们牢记仿伪者仿效自然沁,总是以牺牲玉材晶体内部结构为代价,用有关化工原料通过一定的工艺手段而成的,和自然沁色在晶体解理断口与裂纹处,往往不受沁的这一特性相比较,那么,我们就可以把握住一个相对简捷的辨伪方法。也就是说如果有沁的地方出现了如果是伪沁的话,必然会沿着绺裂向内渗透,正是“避硬就软”伪沁的形成特征。而如果周边都有沁,唯绺裂处没有沁色,则正可以说明它没有被强酸强碱破坏,仍然具有晶体解理断口与裂纹的平滑面,不易受沁之特性。由此,哪怕整个玉器就那么一点点如先推断它属伪沁,而本该受沁而却没有沁的特征,也就不排除它为真了。江苏吴县张陵山4号墓出土的良渚文化兽面纹玉琮。红褐色沁斑上有个非常明显的绺裂纹,自然沁色未见顺绺裂向两端裂纹渗浸。南阳百里溪Ml出土西汉玉剑璲的局部自然受沁和绺裂共存的图,未见绺裂处受沁。南阳桐柏县月河Ml出土的春秋晚期玉圭,圭上端有自然沁色和绺裂处共存的现象,同样都具有绺裂处明显不受自然沁染的特征。因为,自然沁色在裂隙处,因裂纹的晶体解理面是平滑的,不易受沁染的同时,在自然风化的作用下,原裂隙间的不参加晶格的吸附水,会随时间的推移而部分损失,导致绺裂处的对光折射率产生变化。光的折射中和了裂隙处一些可能留存的自然沁色反映。所以裸眼观察古玉有沁色的裂隙面,会形成一种明显的色差效果。一般在自然墓葬环境里,是不可能存在温度达100~110℃的条件,所以,这些渗入在矿物和矿物集合体中的水分子,是不会全部从矿物中退出。只有人工伪沁采用强酸强碱高温加压的方法制沁,才会使这些吸附水全部消失。这样,一旦裂隙的人工沁色积聚起来,而因缺少了水分子对光的漫射作用,更因为人工做沁会使作为结构单位的参加晶格存在于结晶里的水分子,在高温的条件下,全部或部分地失去。随着失水作用的发生,矿物的晶格也开始破坏,同时引起物理性质的变化。导致矿物内部构造的连结力降低,沁色出现死斑不活的现象也就不奇怪了。传统眼学主要凭个人的经验判断,给一件藏品下具有个人见解性的结论。经验上的判断,常常给出的鉴定报告,会有一些因人的经验水平的不同,而使得鉴定报告令人难以正确理解,或因不确定的语言,而使所谓鉴定报告等于没有一样,经不起推敲。如对一件玉器的鉴赏判伪,传统眼学者常常有人会以器物形制不对,纹饰力度不好,纹饰不爽,沁色浮不入肌理,皮壳、灰皮色不对等来表述。这样的鉴定,即使对同一件器物,又会因鉴定对玉文化知识的了解,学识程度的不同而各异。个人主观因素占有较大比例。有些说辞无法量化,亦无法准确表达器物的信息含量,以致鉴定专家众说纷纭,难以出现认识上的共识。即使在鉴定小组里,常常也会出现资历老、影响大的人说了就算的现象。当然,从暂时解决鉴定分歧矛盾上,尊重学长是个可行而又不得已的方法。但,它并不是完全科学的。因此鉴定古玉,需要建立起一个科学、客观的理论与方法。我们呼唤在玉文化的系统研究成果的指导下,通过眼学的判断,通过科学鉴定手段的有效介入,将地质地矿学的知识和指纹痕迹学等引入鉴定中来。只有这一天的到来,才可以说立新时代古玉鉴定学之本的学科,才真正得以兴起。

糖的还原作用生成氧化亚铜沉淀的颜色决定于颗粒的大小,Cu2O颗粒的大小又决定于反应速度。反应速度快时,生成的Cu2O颗粒较小,呈黄绿色;反应慢时,生成的Cu2O颗粒较大,呈红色。有保护胶体存在时,常生成黄色沉淀。实际生成的沉淀含有大小不同的Cu2O颗粒,因而每次观察到颜色可能略有不同。溶液中还原糖的浓度可以从生成沉淀的多少来估计,而不能依据沉淀的颜色来区别。

铜表面沉积氧化亚铜颗粒研究论文

氧化亚铜电化学制备法具有流程短、成本低、操作简单、产量高、工作环境良好和产品质量高等诸多优点

关于氧化亚铜的电化学制备的目的和意义相关资料如下氧化亚铜是一种性能优异的p型半导体材料,其带隙宽度与可见光波长范围相对应,适合被太阳光直接激发而具有光催化和光电特性,非常具有应用潜力。但是氧化亚铜基光催化和光电器件并没有得到普遍应用,原因是受现有方法和工艺的限制,氧化亚铜的制备成本难以降低、制备过程较为繁复,加之本身量子效率不高,实际性能很难令人满意。因此,探索和丰富氧化亚铜的制备手段,并研究制备工艺与氧化亚铜自身属性和应用性能之间的关系,对于拓展氧化亚铜基光催化和光伏材料的应用以及能源产业的优化都具有重要的意义。从理论上讲,氧化亚铜的量子效率可以通过两种方式提高,一是通过利用异质结之间的势垒来对光生电子-空穴对实现有效分离,二是减小氧化亚铜的晶粒尺寸来阻碍光生电子-空穴对的复合。所以,本文探索了阳极氧化和电沉积等两种电化学制备方法,分别在铜箔和导电玻璃表面制备了氧化亚铜薄膜,表征了其光催化和光电性能,并重点探讨了制备工艺、薄膜成分和形貌以及光催化和光电性能方面的相互作用机理。本文的主要研究内容如下:1.利用阳极氧化+水解/还原两步法在铜箔上制备了氧化亚铜薄膜。研究了阳极氧化过程中氯化铵电解液pH值和浓度、电流密度、温度以及搅拌等工艺条件对于阳极表面成分和形貌的影响,并结合固-液界面双电层动力学、热力学模型和电化学表征数据对于影响机理进行了分析。研究表明:在阳极氧化过程中,当电解液为酸性时,铜箔表面主要生成氯化亚铜薄膜,当电解液为碱性时,则生成氢氧化铜薄膜,因为氯化铵电解液的pH值升高无论是在动力学方面还是热力学方面都更适合氢氧化铜的生成;电解液浓度升高会使产物的析出电流增加,电极表面双电层中的电荷传输和离子结合速率都得到提升,有利于氢氧化铜的生成;较高的电解液温度有利于氢氧化铜的水解反应,同时有利于氯化亚铜晶粒的长大;在阳极氧化过程中加入搅拌是防止钝化膜生成的一个必要手段,但是搅拌速度不宜过快。阳极氧化完成后,将制得的氯化亚铜薄膜浸入双氧水稀溶液并光照,可以利用水解和发泡反应将氯化亚铜薄膜转化为氧化亚铜海绵状多孔纳米晶薄膜;制得的氢氧化铜薄膜则可以通过在还原性气氛下热处理或与葡萄糖溶液反应来进行还原,转化为氧化亚铜。2.对氧化亚铜薄膜的光催化性能进行了表征。薄膜在90分钟内对甲基橙的光催化降解率达到了60%~70%;氧化亚铜薄膜还可以光催化加速氧化剂对亚甲基蓝等有机染料的氧化脱色,使得脱色速率提高了一倍以上;氧化亚铜薄膜在光照下对于污染河水水样中的藻类具有非常显著的杀灭效果,4小时内对蓝藻、绿藻和杂藻的杀灭率分别达到了100%、100%和;同时,对水样中有机污染物也起到了明显的降解作用,4小时内水样中总碳、总磷和总氮含量分别下降了、和。氧化亚铜薄膜还在光解水析氧反应中具有很高的催化活性,8小时内的单位质量产氧量达到了μmol每毫克氧化亚铜。

铜在一般环境下不会生成氧化亚铜的,因为氧化亚铜很容易被氧化,在溶液中亚铜离子就可以自身歧化反应变为铜离子和铜

铜表面有红色粉末是氧化亚铜之类的氧化物。氢氧化铜[Cu(OH)2],微毒,用作分析试剂,还用于医药、农药等。可作为催化剂、媒染剂、颜料、饲料添加剂、纸张染色剂等。

制取氧化亚铜结晶研究论文题目

氧化亚铜制取:

一、干法:

铜粉经除杂质后与氧化铜混合,送入煅烧炉内加热到800~900℃煅烧成氧化亚铜。取出后,用磁铁吸去机械杂质,再粉碎至325目,制得氧化亚铜成品。如果采用硫酸铜为原料,则先用铁将硫酸铜中的铜还原出来,以后的反应步骤与以铜粉为原料法相同。

二、葡萄糖还原法:

将硫酸铜溶液与葡萄糖混合后加入氢氧化钠溶液进行反应,生成氧化亚铜,经过滤、漂洗、烘干粉碎制得氧化亚铜产品。

三、电解法在铁:

制壳体内衬聚氯乙烯的电解槽中,以浇铸铜板作阳极,紫铜板作阴极,用铬酸钾作添加剂,食盐溶液作电解液,其中含氯化钠为290~310g/L、铬酸钾为~、温度70~90 ℃、pH8~12、电流密度1500 A/m2的条件下进行电解,生成氧化亚铜。

扩展资料:

氧化亚铜的性质与稳定性:

一、如果遵照规格使用和储存则不会分解,未有已知危险反应,避免氧化物、水分/潮湿、空气.

二、不遇稀硫酸和稀硝酸生成铜盐。在空气中会迅速变蓝。能溶于浓碱、三氯化铁等溶液中。氧化亚铜剧毒。

三、氧化亚铜在干燥的空气中虽然稳定,但在湿空气中会慢慢氧化,生成氧化铜,故可作为除氧剂使用;另外,用还原剂容易使其还原为金属铜。氧化亚铜不溶于水,与氨水溶液、浓氢卤酸形成络合物而溶解,极易溶解于碱性水溶液。

参考资料来源:百度百科—氧化亚铜

氧化亚铜 光电池没听说过 不过碰巧 我学过半导体物理与固体物理...胡诌两句你看看有理不..1 p型半导体的导电原理是一致的 只要它叫p型 也就是受主型 即 得电子那种的 光照激发 这个不一定是价带的电子 参杂以及金属氧化物半导体 本来能带就挺复杂 有可能是杂质能级上的载流子出现某种漂移而 2 pn结实际是为了构建一个内部存在势差 可能就是说 氧化亚铜能够在氧化物与铜之间构成了一个电势差3 化学沉积没做过 磁控溅射了解一点 磁控溅射比较好 厚度可以控制 甚至多把的可以讲一个样品上的厚度控制线线性变化的 这样可以很好的控制镀膜次数 没实践过 但是据我所知 任何两种材料欧姆接触后 一定会有个电势差 只不过是大小而已 可能铜与氧化亚铜 效果明显吧...4 多沉底那种的 就非常复杂了 层层之间一定会有作用 如果薄层 那么个层也会有 那也不可能镀那么均匀 一定有厚有薄 这里问题就多了...这个没做过试验 不敢乱说 还是尝试一下检测看看比较理想 如果要寻找理论依据的话 也得有个实验现象不是 光有理论依据 实验上实现不了 那叫瞎说

其实光电池的原理,我认为可以大大简化。最简单的光电池就是一块锌板,和接地电路构成回路就可有电流通过。再升级一层,就是在简单的一块锌板后在绝缘紧贴一块金属板作为光电池的另一极,其实说白了就是一个特殊的电容,只是这个电容的电来自于光电子。光电池无非是金属板或其它材料在光照激发下溢出电子。只需要构造一定的结构利用这种电子就能做成光电池。

可以用酸溶的方法,不过要注意区分用硝酸的话氧化铜会溶解,无其他现象;而氧化亚铜会有气体(一氧化氮或二氧化氮)产生。用硫酸盐酸等氧化铜会溶解,无其他现象;氧化亚铜会溶解,同时生成单质铜。实际上氧化铜是黑色,氧化亚铜是砖红色,从颜色上就可以判断灼烧不是不可以只是实际操作不用此法,氧化亚铜高温不分解,而氧化铜会分解为氧气和氧化亚铜,反应温度约1000度,难达到。

铜表面化学沉铜颗粒研究论文

�性残斡谐ぬ跣巍C恐芟床圩雍笙�В�霾涣巳�彀逵殖鱿郑�帕B��龃蟆J�治薏撸�虢谈魑唬�呛卧�蛞�穑�绾谓饩�?急!是全板电镀,希普励药水检查:1。阳极铜磷含量不足,或者分布不均匀2。检查槽液温控系统是否故障,液温过高?3。氯离子含量不足4。阴极电流密度显示异常,可用卡表检验;5。检查槽液过滤系统是否异常;6。阳极钛篮导电不良7。槽液的酸含量过高或补充硫酸时以此添加量太多(一般不超过10%或者10升)8。检查空气搅拌管路系统有无积液,金属腐蚀等9检查空气搅拌管路是否有气压不足,槽液回流现象等可能有以下几个原因: 1、铜缸氯离子含量偏低; 2、光剂比例失调,可打槽片看一下; 3、保养时脱缸不彻底; 4、镀液受到污染。

沉淀法制备二氧化钛纳米粉体 XXX 化学与材料科学学院 04级化学 0409319 摘 要:本文以TiCl4和为原料,采用沉淀法制备TIO2纳米微粉,利用XRD等测试手段对样品的晶相组成、晶粒尺寸等性质进行分析,并在此基础上对晶粒尺寸、物相组成与PH值、干燥方法之间的关系进行讨论。结果表明:原料的pH值对粉体的晶型有显著影响,且微波处理相比传统的烘箱干燥,可得到晶粒更为细小的粉体。调整溶液的pH=7,微波处理10分钟, 700°C烧成并保温30min,可得到粒经小于35nm、颗粒分布均匀、团聚少的锐钛矿型TiO2粉体。 关键词: 二氧化钛;沉淀法;微粉 PREPARTION OF TITANIA DIOXIDE NAN-POWDER BY PRECIPITATIONXiao Junli (College of Chemistry and Materials Science, Anhui Normal University, Wuhu,241000)Abstract: Titania nano-powder was prepared by precipitation method, using TiCl4 as raw material .The crystal phase, grain size and morphology of samples were studied by XRD. Affection of the factors such as pH, drying method and temperature on the samples were discussed in details. The result shows: sample’s crystal phase is affected by pH value of the solution, and the sample, treated with microwave, has lesser grain size than the one dried by traditional method. The TiO2 powders calcined at 700oC for 30 min, for using the TiCl4 solution with pH value of 7 are anatase with less than 35 min diameter in even granularity distribution and less agglomerate after treated by microwave for 10 min. Key words: titanium dioxide; precipitation; nano-powder一.综述 (一) TiO2的结构和性能 常见的二氧化钛有金红石、锐钛矿和板钛矿3 种结构[1,3],前两者为四方晶系,后者为斜方晶系,金红石和锐钛矿结构虽均为四方晶系,但两者的空间群不相同, 3 种晶体构型虽都是[ TiO6 ]八面体共棱为基础的,但每种晶型的[ TiO6 ]八面体与其它晶型的[ TiO6 ]八面体共棱的数目不同,金红石是以2 个棱联结,板钛矿为3 个棱联结,而锐钛矿以4 个棱共用。由于锐钛矿、板钛矿和金红石的结构不同,稳定性不同,板钛矿和锐钛矿是低温相、金红石是高温相,前二者可以在600 ℃以上温度转变为金红石型,这种转化不是突跃式的,而是渐进的和不可逆的,这个转化除了受温度影响外,还受到能加速或阻止晶型转化的促进剂和抑制剂的影响。由于纳米金红石型二氧化钛的高稳定性、耐腐蚀性、耐候性和对人体无害性,以及它高的折射率、优异的透光性和很强的紫外线屏蔽能力,使它在高级涂料、化妆品、高分子材料、文物保护等诸多方面有巨大的应用前景,因而引起了人们的极大关注。而锐钛矿型二氧化钛旧称八面石。是钛矿的主要矿物组分之一。理论含钛60%。四方晶系,晶体呈锥状、板状或柱状等,晶体形态变化大。褐、黄、浅紫、灰黑、浅蓝绿色等。金刚光泽。硬度~,密度~。产于区域变质岩系的石英脉中或作为副矿物产于火成岩及变质岩中。用于生产钛白粉和海绵钛,也是提炼金属钛的矿物原料。 纳米材料是一种新兴材料,一般是指粒径小于 100 nm 的超微颗粒。这种超微颗粒具有表面积大,表面活性高,良好的催化特性,它既具有金属和非金属的特异性能。随着现代科学技术的迅速发展,纳米材料的应用也越来越广泛,对其要求也越来越高。就纳米二氧化钛而言,由于它具有极大的体积效应、表面效应、光学特性、颜色效应,故在光、电及催化等方面显示出其特殊性质,所以它作为一种新型材料,其应用领域日益广泛。 (二) 纳米TiO2 的应用 由于TiO2微粉具有这些特殊性能,这就决定了它在各个领域中具有广阔的应用前景。 (1)在化学工业中的利用 催化是纳米超微粒子应用的重要领域之一。利用纳米超微粒子的高比表面积与高活性可以显著地提高催化效率,国际上已作为第四代催化剂进行研究和开发。纳米 TiO 2 具有很高的化学活性,良好的耐热性和耐化学腐蚀性,可用作性能优良的催化剂、催化剂载体和吸收剂。如纳米 TiO2 在催化 H 2 S 除去 S 时,显示出相当高的催化活性。此外,纳米 SiO 2 和 TiO 2的无机或有机复合材料具有特殊功能,这些纳米材料正在开发中[1,2]。 (2)在电子工业产品中的应用 纳米 TiO 2是许多电子材料的重要组成部分,可用于制作纳米敏感材料及纳米陶瓷功能材料。由于纳米粒子尺寸小,比表面积大,表面活性高,所以适合作气敏材料,如有纳米 TiO 2 可制成灵敏度很高的气敏元件。同时,由于纳米相陶瓷一次成型塑性形变是可以实现的,人们利用纳米 TiO2 一次成型形变制成了纳米 TiO2陶瓷,这种陶瓷具有超细晶粒尺寸并保持它们的特性[3,4]。 (3)在环保方面的应用 纳米 TiO 2 粒子的光催化作用在环保方面有广阔的用途。国内外有许多文献报道了这方面的进展。英国伦敦和安大略核子技术环境公司,开发了一种新颖的常温光催化技术,采用人工光和纳米二氧化钛催化剂,可将工业废液和污染地下水中的多氯联苯类化合物分解[5]。当污染水通过二氧化钛涂层网络时,只要受到低计量紫外光的照射,便会发生反应,生成活性极强的氢氧自由基,迅速将有机毒物分解为二氧化碳和水。此外,利用纳米 TiO2 材料作为光催化剂还可催化降解纺织印染业和照相业排出的染料污染物。随着社会经济的发展,人们越来越重视生活质量和健康水平的提高。抗菌、防腐、除味、净化空气、优化环境将成为人们的追求。当前全球面临着严重的环境污染,纳米 TiO 2 作为而久的光催化剂已被应用在除了水和空气净化之外的各种环境方面的问题。有关资料表明,纳米TiO 2 对于破坏微观的细菌和气味是有用的。另外还可以使癌细胞失活,对臭味(4)在化妆品工业中的应用 纳米 TiO 2 具有优异的紫外线屏蔽性,再加上它的透明性(不会在皮肤上残留白色,能厚涂抹)和无毒(不会刺激皮肤引起发炎)等特点,至今已成为防晒化妆品的理想原料。据行业报道,在日本每年已有一定量的纳米 TiO 2作为防晒剂、化妆品底和口红等产品的添加原料[5,6]。 (5)在医药卫生和食品加工领域的应用 纳米结构不仅坚固,而且具有自身对抗外界不纯物质的能力,不易与外界不纯物质结合。同时,纳米级微粒或有机小分子将更有利于人体吸收,能提高药物的效能。因此纳米 TiO 2在健康卫生及食品工业有广阔的应用前景。有资料报道,已开发出具有抗菌和净化性能的 TiO 2薄膜陶瓷。另外,纳米 TiO 2已应用在食品工业中,如作乐百氏奶的添加剂。 此外,纳米 TiO 2 在塑料、涂料等工业也有广泛应用,可用作塑料填料、高级油漆、涂料的原料[5,7]。 (三) TiO 2粉体的制备 由于纳米 TiO 2具有许多优异性能,其用途相当广泛,因而其制备受到国内外的极大关注。目前制备纳米 TiO 2 粉体的方法主要有两大类:物理法和化学法。 (1)物理法 制备纳米 TiO 2 粉体的物理法主要有溅射,热蒸发法及激光蒸发法。物理法制备纳米粒子是最早的方法,它的优点是设备相对来说比较简单,易于操作和易于对粒子进行分析,能制备高纯粒子,还可制备薄膜和涂层。它的产量较大,但成本较高[7]。 (2)化学法 制备纳米 TiO2 粉体的化学方法主要有液相法和气相法。液相法包括沉淀法、溶胶-凝胶法和W/O微乳液法;气相法主要有 TiCl 4气相氧化法。液相法反应周期长,三废量较大,虽然能首先得到非晶态粒子,高温下发生晶型转变,但煅烧过程极易导致粒子烧结或团聚;而气相氧化法具有成本低、原料来源广等特点,能快速形成锐钛型、金红石型或混合晶型 TiO2 粒子,后处理简单,连续化程度高。但此法对技术和设备要求较高[8]。 1)均匀沉淀法 纳米颗粒从液相中析出并形成包括两个过程:一是核的形成过程,称为成核过程;另一是核的长大过程,称为生长过程。当成核速率小于生长速率时,有利于生成大而少的粗粒子;当成核速率大于生长速率时,有利于纳米颗粒的形成。因而,为了获得纳米粒子必须保证成核速率大于生长速率,即保证反应在较高的过饱和度下进行。均匀沉淀法制备纳米 TiO 2 是利用 CO(NH 2 ) 2 在溶液中缓慢地、均匀地释放出 OH - 。其基本原理主要包括下列反应[9]: CO(NH 2 ) 2 +3H 2 O=2NH 3 ·H 2 O+CO2 ↑ NH 3 ·H 2 O=NH 4 + +OH – TiO 2 + +2OH - =TiO(OH) 2 ↓ TiO(OH) 2 =TiO 2 +H2 O 在这种方法中,不是加入溶液的沉淀剂直接与 TiOSO 4发生反应,而是通过化学反应使沉淀在整个溶液中缓慢地生成。向溶液中直接添加沉淀剂,易造成沉淀剂的局部浓度过高,使沉淀中夹有杂质。而在均匀沉淀法中,由于沉淀剂是通过化学反应缓慢生成的,因此,只要控制好生成沉淀剂的速度,就可避免浓度不均匀现象,使过饱和度控制在适当范围内,从而控制粒子的生长速度,获得粒度均匀、致密、便于洗涤、纯度高的纳米粒子。该法生产成本低,生产工艺简单,便于工业化生产。 2)溶胶-凝胶法 溶胶-凝胶法是制备纳米粉体的一种重要方法。它具有其独特的优点[10],其反应中各组分的混合在分子间进行,因而产物的粒径小、均匀性高;反应过程易于控制,可得到一些用其他方法难以得到的产物,另外反应在低温下进行,避免了高温杂相的出现,使产物的纯度高。但缺点是由于溶胶-凝胶法是采用金属醇盐作原料,其成本较高,其该工艺流程较长,而且粉体的后处理过程中易产生硬团聚。 采用溶胶- 凝胶法制备纳米TiO 2 粉体,是利用钛醇盐为原料。原先通过水解和缩聚反应使其形成透明溶胶,然后加入适量的去离子水后转变成凝胶结构,将凝胶陈放一段时间后放入烘箱中干燥。待完全变成干凝胶后再进行研磨、煅烧即可得到均匀的纳米 TiO 2粉体。有关化学反应如下: 在溶胶-凝胶法中,最终产物的结构在溶液中已初步形成,且后续工艺与溶胶的性质直接相关,因而溶胶的质量是十分重要的。醇盐的水解和缩聚反应是均相溶液转变为溶胶的根本原因,控制醇盐水解缩聚的条件是制备高质量溶胶的关键。因此溶剂的选择是溶胶制备的前提。同时,溶液的 pH 值对胶体的形成和团聚状态有影响,加水量的多少会影响醇盐水解缩聚物的结构,陈化时间的长短会改变晶粒的生长状态,煅烧温度的变化对粉体的相结构和晶粒大小的影响。总之,在溶胶- 凝胶法制备 TiO 2 粉体的过程中,有许多因素影响粉体的形成和性能。因此应严格控制好工艺条件,以获得性能优良的纳米 TiO2 粉体。 3)反胶团或W/O微乳液法 反胶团或 W/O 微乳液法是近十年发展起来的一种新方法。该法设备简单,操作容易,并可人为控制合成颗粒的大小,在超细颗粒,尤其是纳米粒子的制备方面有独特优点。 反胶团是指表面活性剂溶解在有机溶剂中,当其浓度超过CMC (临界胶束浓度)后,形成亲水极性头朝内,疏水链朝外的液体颗粒结构。反胶团内核可增溶水分子,形成水核,颗粒直径小于 100 nm 时,称为反胶团,颗粒直径介于 100~2 000 nm时,称为 W/O 型微乳液[11]。 反胶团或微乳液体系一般由表面活性剂,助表面活性剂,有机溶剂和 H2O 四部分组成。它是一个热力学稳定体系,其水核相当于一个“微型反应器”,这个“微型反应器”具有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。反胶团或微乳液的水核尺寸是由增溶水的量决定的,随增水量的增加而增大。因此,在水核内进行化学反应制备超微颗粒时,由于反应物被限制在水核内,最终得到的颗粒粒径将受水核大小的控制。 反胶团或微乳液法制备纳米 TiO 2是利用 TBP (磷酸三丁酯)为萃取剂,煤油作稀释剂,在室温下萃取金属钛离子,同时控制条件使其形成有机相的反胶团溶液,将该溶液在室温下以氨水反萃,控制氨水用量和浓度,将得到的沉淀物洗涤干燥焙烧,即获得纳米 TiO 2粉体。 反胶团或微乳液法可利用胶团大小来控制微粒尺寸,在纳米粒子制备中具有潜在优势,但这种方法刚刚起步,有许多基础研究要做,反胶团或微乳的种类、微观结构与颗粒制备的选择性之间的规律尚需探索,更多的用于超微颗粒合成的新反胶团或微乳液体系需要寻找。 4) TiCl 4 气相氧化法 气相法制备纳米TiO 2 比较典型的是 TiCl 4气相氧化法。该法以氮气作TiCl 4的载气,以氧气作氧化剂,在高温管式气溶胶反应器中进行氧化反应,经气固分离,获得纳米 TiO 2粉[12]体。在此过程中,停留时间和反应温度对 TiO2的粒径和晶型有影响。 其反应原理:气相反应器中,反应物的消耗对粒子成核速率的影响比对生长速率的影响大,因为成核速率对体系中产物单体过饱和度更加敏感。随着反应进行,过饱和度迅速降低。反应初期以成核为主,而在反应后期成核终止,以表面生长为主。通常在高温下反应速率极快,延长停留时间,只是延长了粒子生长时间,因此产物粒径增大,比表面积减小。同时,停留时间延长,锐钛分子簇有足够时间转变成金红石分子簇,使金红石含量增大。另外,气相反应器中,超微粒子形成过程包括气相化学反应、表面反应、均相成核、非均相成核、凝并和聚集或烧结等步骤。在高温下气相反应速率非常快,以致温度变化对成核速率的影响已不显著,而温度升高,粒子表面单分子外延和表面反应速率加快;同时气体分子平均自由度增大,粒子之间碰撞加剧,颗粒凝并速率增大,粒子间易发生凝并长大。另外由于反应器中初生粒子相当细小,颗粒边界表面能很大,小粒子极易逐渐扩散,融合形成大粒子,从而降低表面能,反应温度越高,晶界扩散速率越快,烧结驱动力越大,从而导致粒子比表面积减小、粒径增大。 (四)本实验采用沉淀法制备二氧化钛的原因 (1)优点 原料来源广,成本低,设备简单,适于大规模生产, TiCl 4是一种廉价易得得化工原料,此法可得到分散性好粒经均匀得纳米级TiO 2,此实验重现行好,操作简单,粒径可控[10,11,12,13]。 (2)缺点 本实验在过滤,干燥和煅烧过程中易引起粒子间团聚,影响产品的分散性.由于过程中Cl-等无机离子的引入,需反复洗涤除去这些离子,存在工艺流程长,废液多,产物损失大的缺点,完全除去无机粒子较困难,所得的产物纯度不高[10,11,12,13]。二.实验部分 (一) 原料及设备 本文所采用的实验药品及规格如下表所示: 表1 实验药品及规格药品名称化学分子式等级四氯化钛TiCl 4AR无水乙醇C2H5OHAR氨水盐酸HClAR蒸馏水H2O自制硝酸银AgNO3AR本文所使用的实验设备及型号如下: 玻璃器皿 PH试纸 TG16G型离心机 DHG-9053A型干燥箱 HO3-A型磁力搅拌器 (二)实验工艺煅烧TiO2粉体TiCl4(aq)pH<1的水溶液氨水水洗调试pH值C2H5OH洗涤恒温箱80OC干燥微波干燥图1. 沉淀法制备TiO2粉体工艺流程图

化学沉铜铜离子分析方法:铜离子分析检测方法主要分为直接法和间接法两大类。

直接法是一类直接利用铜离子自身物理、化学性质对其进行分析检测的方法,包括原子吸收/发射光谱法和离子选择性电极法。

间接法是一类利用铜离子和指示剂(也可称为化学分子探针)之间的特异性化学反应或超分子作用产生的信号变化对铜离子进行分析检测的方法,包括传统的铜离子指示剂和近年来研究较热的铜离子荧光分子探针。

化学镀铜的用途

在化学镀铜过程中CU2+离子得到电子还原为金属铜,还原剂放出电子,本身被氧化。其反应实质和电解过程相同,只是得失电子的过程是在短路状态下进行的,在外部看不到电流的流通。因此化学镀是一种非常节能高效的电解过程,因为它没有外接电源,电解时没有电阻压降陨耗。

铜合金表面洗出铜颗粒研究论文

铜矿砂产品简介铜矿砂是从铜矿中开采出来的,然后经过选矿成为含铜品质较高、精细的砂状铜矿。铜矿砂成分有:氧化亚铁、二氧化硅、氧化二铝、氧化钙、铜

铜合金光亮化学抛光新工艺马晓春 楼程华 铜合金在仪器仪表、家庭用品、工艺品、标牌等方面有着广泛的应用。通过化学抛光得到的 光亮表面提高了铜合金的装饰效果和表面性能。近年来,国内外学者对铜及铜合金的抛光技术进行了大量的研究。国内大多使用铬酐型和硝酸型的酸洗剂,铬酐有毒而硝酸在使用过程中产生大量有毒的酸雾,危害人体并对环境造成了极大的污染。鉴于此,研究开发污染小、抛光效果好的抛光液意义重大。1 化学抛光工艺流程 化学除油→热水洗→冷水洗→化学抛光→冷水洗→10%H2SO4洗→冷水洗→中和。2 抛光液配方研制 抛光液配方确定 通过对国内外铜及铜合金化学抛光专利文献等有关资料研究和分析,并经反复试验,获得了 一种铜合金光亮抛光新工艺。其工艺配方如下:硫酸(d= g/dm3) 20~30 ml/L 过氧化氢 180~200 ml/L 甲 醇 60~80 ml/L 脲 素 2~3 g/L 活性剂 适量 温 度 30~35 ℃ 时 间 60~100 s 各组分的作用和反应机理 (1) 硫酸主要是溶解CuO,其含量过高会产生过腐蚀,太低则表面易形成白色条纹,必须 选择合适的含量。 (2) 过氧化氢抛光液中的主要氧化剂,与硫酸联合作用使制品表面光亮。其反应式为: 4Cu+2H2SO4+O2=2Cu2SO4+2H2O 2Cu2SO4+O2=2CuO+2CuSO4CuO+H2SO4=CuSO4+H2O 大量试验发现,H2O2含量太低时抛光效果差;太高酸洗后会产生粉红色的铜层,这主要是Cu2O经歧化反应产生铜附着于合金表面所致。 (3) 甲醇和脲素H2O2在溶液中不稳定,特别是在含铜离子的抛光液中分解更为严重。文献报道H2O2的分解是由于存在以下链式反应: H2O2→HO-2+H+ 分解反应 HO-2+Cu2+→Cu++HO2 活性基的产生 HO2+H2O2→O2+H2O+OH 链的引发 OH+H2O2→HO2+H2O 链的传递 OH+Cu+→Cu2++OH 化剂的再生 OH-+H+→H2O 链的终止 提高H2O2的稳定性是生产的关键。因此必须在抛光液中加入稳定剂,使其与金属离子相配位以抑制荷电子的移动或发生原子团的捕获使链式反应停止,通过对酰胺类和羟基类稳定剂的正交试验发现,甲醇和脲素的加入极大地提高了抛光液的稳定性。 (4) 活性剂 有缓蚀和抑制酸雾的能力,可提高制品的表面光亮度。 在配制溶液的过程中需用蒸馏水,新配制的溶液需加入一些铜片以防制品表面光亮不均匀。 试验和工厂生产使用表明:该抛光液污染小,溶液成分稳定,操作简单,抛光效果好,可获 得镜面光泽。作者单位:浙江工业大学机电学院(杭州 310014) 仅供参考!!!

卖瓶工业盐酸,里边泡点电池皮,用它清洗铜制品光亮度达到100%.而且造价低。

1. 游离氰化钠过低.2. 过滤机堵塞或流量不足.3. 电镀电流密度过高.4. 前处理不足, 异物(尤其是冲压油的润滑剂)未除净.5. 阳极袋破损.

相关百科

热门百科

首页
发表服务