当然可以,不算一稿两投,但是需要在会议论文的基础上进行再次加工,形成更丰富和透彻的内容,再去发表期刊论文。这不仅符合期刊论文需要丰富内容的特点,而且这种做法也不会被认定会自我抄袭和重复。
对于时效性很强的学科,比如计算机方向,很多学者会选择先发国际会议论文,再整理完善成期刊论文或甚至觉得没有必要而不再发表期刊论文。
稿件要求
1、题名:准确,简明,清晰,符合索引要求,中文题名一般不超过20个汉字。
2、作者单位:提供作者一,二级单位的名称及邮编。
3、摘要:以提供论文内容梗概为目的,包括:研究目的,方法,结果和结论4个基本要素,不加评论和注释,以第三人称简明,确切地记述论文的重要内容,不用"本人,笔者,本文"等第一人称作主语,以200至300字左右为宜。
4、关键词:是表征论文主题内容具有实质意义的词语,一般3~8个。
5、作者简介:姓名(出生年—),性别(民族——汉族可省略),籍贯,学历(学位),职称,职务,研究方向.请提供第一作者联系电话和E-mail地址。
6、参考文献:在正文中采用顺序编码制对所引的内容进行标注.参考文献中作者3人以上时,必须写齐前3人姓名,超过3人时,其后加",等"。
第一步. 调研、入门1. 确定一个感兴趣的大领域,比如分布式系统或者机器学习,或者深度神经网络。读这个领域经典算法和技术,也可以是几本比较好的书,读完然后再实践实践,动手加深理解。这个过程做完就算是初步入门了。2. 找该领域的顶级会议,比如系统领域的有OSDI、SOSP,机器学习的领域有ICML、CVPR,深度学习的有NIPS、ICLR等等,可以搜CCF会议推荐列表看各领域的顶会列表。然后看近几年这些顶会的论文,因为这代表了最新的研究热点,咱不是说一味的追热点啊,毕竟对于初学者没有足够的领域专业背景,追热点是最快的方法。因为热点往往是该领域最亟待解决的问题,往往是发展最快的小方向,也最容易产生新成果。如果是老问题,人家都研究十几年了,给你留下的待解决的问题就很少或者不是很重要。当然如果是有几十年经验的研究者就不必追热点,他们知道该领域哪些是fundamental的问题,哪些是最值得研究的问题。3. 读了这些前沿论文后,确定一个小方向,比如分布式系统是个大方向,小方向可能是机器学习分布式训练;大方向是深度学习,小方向可能就是graph embedding;大方向是机器学习,小方向可能是半监督学习等等。确定小方向的过程是个知识不断积累的过程,非常重要,这需要你对大方向有很多了解,对小方向有更深入更全面的理解,需要读好至少100篇以上论文,需要你知道该小方向的研究进展历史,这需要你知道该小方向别人都在哪方面做工作,做该小方向的顶级研究组都有哪些,他们正在干什么。第二步. 发现问题这步超级难,如果发现了个好问题,那就是成功的一半。这个问题最好是重要的、本质的、没有直观解决方法的。4. 确定小方向后,你需要阅读大量的这个小方向的论文和了解开源项目,再不断聚焦,再确定一个要改进和优化的小小方向,这个可能就是论文的主题。小小方向可能是机器学习分布式系统中的parameter server通信模型,可能是dynamic graph embedding等。然后就要更聚焦地读这方面的相关论文,这时候论文就比较少了,几篇到几十篇到几百篇都有可能,这些论文要精读,花几个月时间研究一篇论文也不为过。5. 挑几个重要的论文工作实现,也可以找开源的运行跑一跑试一试,idea往往从实际运行中来,光靠读是不行的。这个跑一跑可能需要你尝试不同的运行环境,不同的workload数据集,不同的应用场景等。比如,parameter server(PS)模型在本地集群上跑是不是和paper声明的一样、在异构的动态性极强的集群环境下效果怎么样、除了paper提到的算法处理其他算法的时候效果怎么样、除了paper提到的数据集换另外一类数据集怎么样;graph embedding方法处理密集图和稀疏图都怎么样,处理动态变化的图怎么样,等等吧。你要发现X方法仅在a环境下好用,在b环境不好用。这个就是发现问题的过程。当然,没经验的研究者可能很难想到多种环境、多种workload、多种应用场景,这就需要积累。另外一个发现问题的方法是从实际生产中来,这个当然是最好的,但是往往是大企业环境下才有这个条件。6. 确定你发现的问题还没有被解决。这又需要广泛的阅读和调研,但是问题已经很聚焦了,搜索也会很容易,用你特定问题的关键字在google 搜索(这里强烈建议用google,其他搜索引擎基本搜不到),找到解决相关问题的论文。看看这些论文是不是已经解决了该问题,如果解决了,你有两种方案:第一,该问题已经解决的非常好了,放弃解决该问题。第二,该问题的解决方案还有问题,我还有更好的办法。我建议后者,最起码尽量尝试尝试。5和6步是个迭代的过程…第三步. 分析问题7. 分析问题产生的本质原因。这个往往和第5步发现问题同时进行。这一步靠的是功底和积累,靠的是对问题的理解程度。理解的越深刻,分析的越透测,你之后产生的解决思路就越有可能正确和有效。比如分布式机器学习的PS模型在异构环境下、和在处理数据不均匀的情况下就不好,本质原因是其同步的集中式通信模型,造成PS集中服务器往往需要等待。传统graph embedding方法采用批处理模式,需要graph的全局信息做embedding,当然无法应付动态性非常强的局部更新情况。8. 基于分析,就是对该问题的深刻理解,产生改进的idea。这个可能很难,可能靠运气,但我觉得更多的是靠对问题的理解程度,理解的越深刻,本质原因抓的越准,就越可能产生创新idea。读过一本介绍google企业文化的书,google产品的成功,既不是靠技术能力,也不是靠用户需求,而是靠技术洞见(insight),这就是对问题本质的深刻理解。比如,PS模型在某环境下问题的本质原因是集中式的同步模型,那么我们就可以提出尝试异步通信的模型的idea。分析能力跟个人的批判性思维、独立思考能力都有关,而这正是中国人欠缺的,可以通过读有深刻见地的书籍文章、经常提问来锻炼。第四步. 解决问题9. 实现你的idea,做大量实验验证。这需要动手能力,需要编程能力,需要坐得住。10. 验证你的解决方案,根据实验分析不断优化你的方法。做了大量试验后,得到了若干结果,可能是不好的结果,但是不要一下子否定自己的解决方案,这不能说明你的idea不好用。一个好的方法往往经过千锤百炼,同样,你的idea通常不会一下子就成功。需要你根据实验结果分析不好的原因,然后基于你的理解改进方法,这是一个反复不断迭代的过程。比如,你发现异步PS模型效果还不如原来的呢。那么关键的是,你要问自己为什么?为什么理应提升的却没有提升?你要看实验运行的日志,看看是哪里慢了,差在哪里,最后你经过不断的实验、分析、思考,你发现了,你提出的异步PS模型虽然没有了等待开销,但是计算的有效性却降低了,结果整体性能反而下降了。那么你下一次迭代就要想怎么把这个计算有效性提上来。我又有了个方法,可以评估每次计算的有效性,然后把计算资源都投到有效性高的计算上。OK,idea不错,那么怎么评估有效性呢?不能开销太大,否则又得不偿失了,你可能想到了一种近似地评估方法。重新实现后,发现效果还不错。OK,恭喜你!你可以准备发论文了!整个研究过程,导师将起到关键的作用。导师可能会给你个问题,这是难能可贵的,基本帮你做了一半的事了,否则你可能需要花上一年时间找问题。然后整个研究过程,都是在导师的引导下进行,需要定期向导师汇报,与导师讨论idea和请导师分析实验结果。最好自己也要经常找同门讨论,而不是闭门造车。第五步. 撰写论文11. 设计你的论文,草拟论文的骨架。每一章都写啥,每一段都写啥,实验都做啥。论文的逻辑往往比语言重要的多,逻辑合理的论文更易读懂,即使咱华人有天生的英语语言缺陷,但是好的逻辑就可以弥补这个不足。写论文就和讲故事一样,怎么能把一个事说明白,不那么简单,甚至说很难,需要不断锻炼。写完给老师看,老师同意后进行下一步12. 写作论文。这个就是根据骨架填肉的过程,但是这一步也不简单,特别对于英语不好的同学,写出来的东西简直是不忍直视、不堪入目、毁人三观。最近上海某高校老师辱骂学生这事就是因为这个,我可以说,我每次看到学生论文也都是这个心情,给学生通宵改论文在家里一边改一边骂,但是当面对学生还是要以鼓励为主,要耐心,要耐心,要耐心,尽力压制自己的怒火,以平和的心态帮助学生提高,期望他下次能给个更好的版本。但是往往事与愿违,看淡点吧,仅求写作态度好点就行了,毕竟这不是一朝一夕能提高的,需要你不断积累。有几个写作的方法吧。第一,不要自己想当然,对于不确定的句型,用“”扩上上google搜,看看你这句型有多少人用过,如果没有几个人用,那就别用,换个写法。第二,读别人论文时,遇到好的句型就记下来,不断积累才能提高。第三,避免一切语法错误,我觉得这个是可以做到的,现在网上那么多工具都可以用。语法错误都避免不了那基本就是态度问题。遗憾的是,我很少遇到能避免语法错误的学生,我生气往往是因为态度问题,而不是能力问题。第四,尽量用短句用简单句子,别用长句。你写论文是为了让别人理解你的方法,不是写文艺作品,能说明白就行。13. 提炼总结,改进方法。写作的过程也是屡顺自己思路的过程,写作的过程中往往也能发现自己方法的漏洞,那么就要继续回到8,重新思考解决方案,又或者你发现需要补实验来支撑你的论点,那么就继续实现系统做实验,得到实验结果。14. 关于实验。怎么做实验是学生总问的问题,怎么做科学实验也是一个很重要的问题,有对照组、无偏的、定量的,这些都是科学实验的重要要素。如果有解决该问题的其他方法你首先要说明你的方法更好,至少在某一方面更好,这其中可能要涉及到不同的执行环境,或不同的算法数据集。然后设计实验说明你的方法好在哪里,用实验数据说明,比如异步PS和同步PS对比。然后你要进一步用实验数据说明,异步PS的有效性也提高了,如果不考虑有效性的话那么结果就不好。然后你的方法是否有些重要的超参数,试试variation导致各种结果。在实验结果展示方面,要学会用各种工具画各种图,把重要的因素用可视化方式体现出来。第六步. 投稿和看待审稿意见15. 接下来就是投稿。选一个合适的会议或期刊投稿,这个可以听老师的,老师基本有这方面的常识,根据你工作的方向和档次选择合适的去处。确定好了哪个会议期刊后,就需要按照会议期刊要求来整理论文格式,latex是必会的工具了。之后赶在deadline之前提交论文,这个最后的几天可能很痛苦,因为你的论文和方法总有改进的地方,老师的要求会让你最后几天是最忙的几天。但是需要认识到,凡事无完美,你总也改不到完美,你需要一个deadline来督促你完成一个milestone。开始进一步工作或下一个工作。16. 看待评审意见。接下来是漫长的等待,会议一般是2-3个月的时间,结果可能是接收也可能是拒掉,相比于结果,更应该看评审意见,看看这些意见是否合理,是否能解决,无论是接收还是拒绝,然后接下来就再次回到解决问题的部分,再次开始优化方法的过程。如果是接收了,那就可以准备订机票开会旅游去了。如果是拒掉那一般是有比较大的问题,那就再仔细深思下一下你的方法。继续优化,还是降低档次投个差点的会,就看你导师的了。第七步. 后续17. 宣传你的工作,扩大影响力。首先你可能是要去参加会议,做个漂亮的ppt,反复演练,争取有比较好的演讲效果。有时你导师有机会去一些地方做报告,把这个工作介绍一下,都是扩大影响力的方法。18. 开放源码。还有是尽量把自己工作的代码和数据开放,挂到网上,让别人来使用,接受别人的改进意见或者是简单的debug。咱不是专业的工程人员,也不用指望你的成果可以马上用于生产,个人觉得开放代码主要是为了让别人更好滴了解你的方法,这有助于扩大影响力,产生后续研究工作。如果有人引用你的论文、或咨询论文内容、又或是使用了你的代码和数据,这也算是你对整个科研事业有那么一丁点的贡献了,这比水论文有意义多了。整体来说,发表论文需要你有:批判思维能力,动手能力,知识面,写作能力,表达能力,英语,韧劲(抗打击能力)等等一系列能力,如果在研究生期间真能发表一篇论文,经历了以上这么多磨难和锻炼,我想你的能力也是不知不觉提高了很多,成为了该小小方向的一个小小的专家了。这对你来说,是最最重要的。这里我提到了韧劲,就是说,在解决问题过程中,你会受到不断的打击,包括来自导师的、来自自己的实验结果方面的、来自评审意见的,但是你要做的就是,站起来,继续凿,直到导师满意,知道reviewer满意,直到大家满意。别把这事想简单了,当你想象一下周围好多人都发好多sci了,而你还在为这么一篇完全未知结果的论文而这么努力的时候,我觉得大部分人可能就是缺少这个韧劲才最终以失败告终的…最后,我想再强调一下,发论文不是简单地发论文,而是通过发论文宣传你的工作,以便对某技术或人有那么一丁点影响。无论你发哪个档次的论文,只要目标正确,我觉得你都会有收获和有贡献的。相比较于为了发论文而发论文,你会觉得你是那么地高尚和高大,他们只是造废纸,而你已经对社会有贡献了…(以上内容来源于学术堂)
只要是在期刊发表过的都是不可以再去发的
Computational visual media conference是清华大学图形学实验室主办的国际会议,是亚洲图形学学会的三大会议之一(另两个是Pacific Graphics和GMP)。Computational visual media conference会议每年投稿100-240篇,录取25-38篇,论文全部发表在期刊上,包括:CCF A类的IEEE TVCG,CCF B类的Graphical Models和JCST,以及同名的期刊《Computational visual media》,该刊EI收录,Scopus影响因子2.9,高于graphical models.值得投稿!
附件是计算机领域的学术会议等级排名情况,分为A+, A, B, C, L 共5个档次。其中A+属于顶级会议,基本是这个领域全世界大牛们参与和关注最多的会议。国内的研究者能在其中发表论文的话,是很值得骄傲的成就。A类也是非常好的会议了,尤其是一些热门的研究方向,A类的会议投稿多录用率低,部分A类会议影响力逐步逼近A+类会议。B类的会议分两种,一种称为盛会级,参与的人多,发表的论文也多,论文录用难度比上两个级别要低很多,通常是行业内的学者们年度交流的好时机。一种是专业级的小会,圈子往往比较小,但是也有一些相对质量不错的成果发表。另外B类也是一个分水岭,是区分NB成果和普通成果的分界线,往下的C类会议知名度就低很多了,而L级的会议更多。如果不是为了注水,而是追求论文的质量多过数量的话,不建议在L级会议上发表论文。除此以外计算机还有更多的会议不在列表内,这些属于更不入流的会议了CORE Computer Science Conference RankingsAcronymStandard NameRankAAAI National Conference of the American Association for Artificial Intelligence A+ AAMAS International Conference on Autonomous Agents and Multiagent Systems A+ ACL Association of Computational Linguistics A+ ACMMM ACM Multimedia Conference A+ ASPLOS Architectural Support for Programming Languages and Operating Systems A+ CAV Computer Aided Verification A+ CCS ACM Conference on Computer and Communications Security A+ CHI International Conference on Human Factors in Computing Systems A+ COLT Annual Conference on Computational Learning Theory A+ CRYPTO Advances in Cryptology A+ CSCL Computer Supported Collaborative Learning A+ DCC IEEE Data Compression Conference A+ DSN International Conference on Dependable Systems A+ EuroCrypt International Conference on the Theory and Application of Cryptographic Techniques A+ FOCS IEEE Symposium on Foundations of Computer Science A+ FOGA Foundations of Genetic Algorithms A+ HPCA IEEE Symposium on High Performance Computer Architecture A+ I3DG ACM-SIGRAPH Interactive 3D Graphics A+ ICAPS International Conference on Automated Planning and Scheduling A+ ICCV IEEE International Conference on Computer Vision A+ ICDE IEEE International Conference on Data Engineering A+ ICDM IEEE International Conference on Data Mining A+ ICFP International Conference on Functional Programming A+ ICIS International Conference on Information Systems A+ ICML International Conference on Machine Learning A+ ICSE International Conference on Software Engineering A+ IJCAI International Joint Conference on Artificial Intelligence A+ IJCAR International Joint Conference on Automated Reasoning A+ INFOCOM Joint Conference of the IEEE Computer and Communications Societies A+ InfoVis IEEE Information Visualization Conference A+ IPSN Information Processing in Sensor Networks A+ ISCA ACM International Symposium on Computer Architecture A+ ISMAR IEEE and ACM International Symposium on Mixed and Augmented Reality A+ ISSAC International. Symposium on Symbolic and Algebraic Computation A+ ISWC IEEE International Symposium on Wearable Computing A+ IWQoS IFIP International Workshop on QoS A+ JCDL ACM Conference on Digital Libraries A+ KR International Conference on Principles of KR & Reasoning A+ LICS IEEE Symposium on Logic in Computer Science A+ MOBICOM ACM International Conferencem on Mobile Computing and Networking A+ NIPS Advances in Neural Information Processing Systems A+ OOPSLA ACM Conference on Object Oriented Programming Systems Languages and Applications A+ OSDI Usenix Symposium on Operating Systems Design and Implementation A+ PERCOM IEEE International Conference on Pervasive Computing and Communications A+ PERVASIVE International Conference on Pervasive Computing A+ PLDI ACM-SIGPLAN Conference on Programming Language Design & Implementation A+ PODC ACM Symposium on Principles of Distributed Computing A+ PODS ACM SIGMOD-SIGACT-SIGART Conferenceon Principles of Database Systems A+ POPL ACM-SIGACT Symposium on Principles of Prog Langs A+ RSS Robotics: Systems and Science A+ RTSS Real Time Systems Symp A+ SENSYS ACM Conference on Embedded Networked Sensor Systems A+ SIGCOMM ACM Conference on Applications, Technologies,Architectures, and Protocols for Computer Communication A+ SIGGRAPH ACM SIG International Conference on Computer Graphics and Interactive Techniques A+ SIGIR ACM International Conference on Research and Development in Information Retrieval A+ SIGKDD ACM International Conference on Knowledge Discovery and Data Mining A+ SIGMETRICS ACM SIG on computer and communications metrics and performance A+ SIGMOD ACM Special Interest Group on Management of Data Conference A+ SODA ACM/SIAM Symposium on Discrete Algorithms A+ SOSP ACM SIGOPS Symposium on Operating Systems Principles A+ STOC ACM Symposium on Theory of Computing A+ UAI Conference in Uncertainty in Artifical Intelligence A+ UbiComp Uniquitous Computing A+ VLDB International Conference on Very Large Databases A+ WWW International World Wide Web Conference A+ ACM-HT ACM Hypertext Conf A AH International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems A AID International Conference on AI in Design A AIED International Conference on Artificial Intelligence in Education A AIIM Artificial Intelligence in Medicine A AIME Artificial Intelligence in Medicine in Europe A AiML Advances in Modal Logic A ALENEX Workshop on Algorithm Engineering and Experiments A ALIFE International Conference on the Simulation and Synthesis of Living Systems A AMAI Artificial Intelligence and Maths A AMIA American Medical Informatics Annual Fall Symposium A AOSD Aspect-Oriented Software Development A APPROX International Workshop on Approximation Algorithms for Combinatorial Optimization Problems A ASAP International Conference on Apps for Specific Array Processors A ASE Automated Software Engineering Conference A ASIACRYPT International Conference on the Theory and Applications of Cryptology A ASIS&T Annual conference of American Society for Information Science and Technology A ATVA International Symposium on Automated Technology for Verification and Analysis A AVSS Advanced Video and Signal Based Surveillance A BMVC British Machine Vision Conference A BPM International Conference in Business Process Management A CADE International Conference on Automated Deduction A CAIP International Conference on Computer Analysis of Images and Patterns A CaiSE International Conference on Advanced Information Systems Engineering A CANIM Computer Animation A CASES International Conference on Compilers, Architecture, and Synthesis for Embedded Systems A CBSE International Symposium Component-Based Software Engineering A CC International Conference on Compiler Construction A CCC IEEE Symposium on Computational Complexity A CCGRID IEEE Symposium on Cluster Computing and the Grid A CDC IEEE Conference on Decision and Control A CGI Computer Graphics International A CGO Code Generation and Optimization A CIDR Conference on Innovative Data Systems Research A CIKM ACM International Conference on Information and Knowledge Management A CLUSTER Cluster Computing Conference A COCOON International Conference on Computing and Combinatorics A CogSci Annual Conference of the Cognitive Science Society A COLING International Conference on Computational Liguistics A CONCUR International Conference on Concurrency Theory A CoNLL Conference on Natural Language Learning A CoopIS International Conference on Cooperative Information Systems A Coordination International Conference on Coordination Models and Lanuguages A CP International Conference on Principles & Practice of Constraint Programming A CPAIOR International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems A CSB IEEE Computational Systems Bioinformatics Conference A CSCW ACM Conference on Computer Supported Cooperative Work A CSFW IEEE Computer Security Foundations Workshop A CSSAC Cognitive Science Society Annual Conference A CVPR IEEE Conference on Computer Vision and Pattern Recognition A DAC Design Automation Conf A DAS International Workshop on Document Analysis Systems A DASFAA Database Systems for Advanced Applications A DATE IEEE/ACM Design, Automation & Test in Europe Conference A DEXA International Conference on Database and Expert Systems Applications A DIGRA Digital Games Research Conference A DIS Designing Interactive Systems A DISC International Symposium on Distributed Computing (ex WDAG) A DocEng ACM Symposium on Document Engineering A DOOD Deductive and Object-Oriented Databases A DUX Design for User Experience A EAAI Engineering Applications of Artifical Intelligence A EACL European Association of Computational Linguistics A EASE International Conference on Evaluation and Assessment in Software Engineering A EC ACM Conference on Electronic Commerce A ECAI European Conference on Artificial Intelligence A ECCV European Conference on Computer Vision A ECDL European Conference on Digital Libraries A ECIS European Conference on Information Systems A ECML European Conference on Machine Learning A ECOOP
中国化学会是全国性的学术团体,旗下拥有多个专业委员会,为化学领域的科学研究和技术发展提供了广泛的交流平台。因此,中国化学会会议论文的发表具有一定的权威性和学术价值。中国化学会会议论文的发表通常需要经过严格的审稿程序,包括初审、专家评审等环节。而要想顺利发表,需要注意以下几点:1. 选题要突出,研究内容要有创新性和实用性,能够对该领域做出重要贡献。2. 论文写作要规范,结构清晰,表述准确,实验数据准确可靠。3. 参考文献要充分,引用的文献要具有较高的学术价值,参考文献的格式要符合中国化学会的要求。4. 发表前要认真检查论文的语言表达、格式、图表等配套资料是否齐备、准确规范。需要注意的是,中国化学会会议论文的发表并不是一件容易的事情,需要具备较丰富的研究经验、实验能力和科研素养。同时,也要关注各类学术活动信息,积极参与学术交流。
中国化学会会议论文不好发表,因为这个论文的话对于论文的专业能力水平要求都很高,并且来说的话审核也是比较严格的。
是的,中国化学会会议可以发表论文。为了发表论文,必须要先准备一份完整的论文,并且论文要达到规定的字数要求,通常至少要求200字以上。然后,可以通过中国化学会官方网站提交论文,并等待审稿,审稿结果会在一定的时间内收到。如果论文符合要求,就会被接受发表;如果不符合要求,就会被拒绝发表。此外,还需要注意论文内容与会议主题有关,内容要充实,思路要清晰,论述要明确,以符合会议要求。
你在中国比较权威的杂志发表 最好在教育报什么 的 这些都是教育部的杂志期刊什么 的 或者在什么教师杂志发表
307 浏览 5 回答
100 浏览 3 回答
83 浏览 7 回答
181 浏览 2 回答
334 浏览 4 回答
269 浏览 5 回答
113 浏览 2 回答
262 浏览 6 回答
358 浏览 3 回答
311 浏览 4 回答
263 浏览 6 回答
103 浏览 5 回答
125 浏览 4 回答
209 浏览 4 回答
248 浏览 9 回答