随着社会主义现代化建设的不断发展,环境保护作为我国的一项基本国策已越来越受到人们的关心与重视。发达国家曾经走过一条先污染后治理的弯路,并为此付出了高昂的代价。我们作为发展中国家,现代化建设刚刚起步,理应吸取发达国家的经验教训,在进行现代化建设的同时,尽量减少污染,走一条发展与治理同步、以预防为主的环保工作新道路。为此,必须大力普及环境科学知识,提高人们的环境意识。 一、培养学生环境意识的必要性与紧迫性 我国的环境状况并不容乐观。大气污染、水污染等已经给人们的生产、生活带来灾害性影响。曾经风景如画的南京十里秦淮,如今已是垃圾充溢臭气熏天的“龙须沟”,淮河水无法饮用,大运河鱼虾绝迹,九七年的黄河断流,九八年的长江洪水,去年的沙尘暴等等,其后果已是触目惊心。至于城市的酸雨、近海的赤潮、湖水的干涸等,早已不再是新闻。因此,提高全民族的环境保护意识,已经摆上了国民教育的重要议事议程。而中学生正处于世界观与人生观形成的关键时期,环保意识一旦形成,对其一生的社会行为乃至对整个中国的经济发展与环境保护,无疑将产生巨大的影响作用。培养学生的环境保护意识,是一件事关未来、影响深远的大事情。 二、化学教育在培养学生环境意识中的重要地位 化 学 学 科 的特点,决定了化学教育在培养学生环境意识中占有重要地位。它同物理、生物等都是对学生进行环境教育的主要学科。许多污染物的成分、特性、形成过程、对人类生产生活的危害以及如何防治等,都与化学教学内容有着密切的联系。初中、高中化学教学大纲中也明确提出,化学教育应培养学生关心自然、关心社会的情感,对学生进行环境保护意识的教育。 三、化学教育如何培养学生的环境意识 在化学教育中,化学教师应有意识的对学生进行环境教育,概括起来,主要有以下几个途径: 1、在化学课堂教学中,渗透环境教育 在中学化学教材中,包含许多与环境保护有关的内容,例如作为大气污染物中的头两号“杀手”so2和co,在初中课本和高中一年级课本中都做过初步和系统地学习。教师在讲授该节内容时,就应给学生讲清so2、co的产生、特性及对人类的危害,并可根据学生的实际情况,讲解如何避免so2、co的产生及so2、co中毒后如何处理等。并由so2的特性讲解“酸雨”这种污染物的形成及危害。对于大气污染中的另一“杀手”——光化学烟雾,在高中第二册(试验本)教材中也介绍过,教师可结合1942年的美国洛杉矶光化学烟雾事件,给学生讲清其形成过程及危害,从而提高学生对环境污染的重视程度。 2、在化学试验过程中,进行环境教育 化学试验作为化学教学的重要组成部分,同样担负着对学生进行环境教育的重要职责,并且较之课堂教学更具有直观性。一方面,教师可以以环境污染物为试验样品,进行观察分析与研究。例如测定大气飘尘的浓度、测定雨水的ph值、用so2形成硫酸、硝酸的过程等等。另一方面,化学教师在自己做或指导学生做实验时,也可以切身实地的进行环境教育。例如在做有有毒性气体(如so2、co等)放出的试验时,可增加尾气处理装置,以减少有毒气体排放。对实验结束后的试验废液、废物应放入指定地点,这样既可减少污染物污染,也教育学生环境保护要身体力行,从自身做起,只有这样,才能形成良好的环保习惯。 3、在化学课外活动中,加强环境教育 一方面,可以通过化学课外兴趣小组,开展环境保护活动。例如组织学生测定大气污染物浓度、测定附近河、湖水的酸碱度,到附近工厂进行污水排放观察及污水处理参观,利用节假日到野外收集废电池等等,让学生亲身体验环境污染的程度及其危害性,增强环境观念。另一方面,要教育学生在日常生活中,从自身做起,从一点一滴的小事做起,时刻牢记环保使命,充分利用节约能源(如节水、节电、充分燃烧煤气、石油液化气等),合理分类存放生活垃圾(如电池回收、不乱到污水等),不使用污染环境的物品(如含p洗衣粉、喷发胶等),敢于同浪费资源、污染环境的行为作斗争,努力将环境污染降低到最低程度,保护好我们的家园。 总之,利用化学教学培养学生的环境意识,有着其他学科所不具备的优越条件。广大中学教师应充分利用这一优越性,为保护好我们的生活环境,使我国的现代化建设在未
发表论文:1.HuiXin, Kai Guo, Dan Li*,Huaqing Yang*, Changwei HuProduction of High-grade Diesel from Palmitic Acid over Activated Carbon-supported Nickel Phosphide CatalystsAppl. Catal. B-Environ., 2016, DOI: 10.1016/j.apcatb.2016.01.051. (B级, 2014-IF=7.435)2.Li-KeRen; Hua-Qing Yang*; Chang-Wei Hu*“Theoretical Study on the Catalytic Oxidation Mechanism of 5-Hydroxymethylfurfural to 2, 5-Diformylfuran by PMo-Containing KegginHeteropolyacid”Catal. Sci. & Technol., 2016, DOI: 10.1039/C5CY01895A. (C级, 2014-IF=5.426)3.Ting Qi, Hua-Qing Yang*, Dennis M. Whitfield, Kui Yu*, Chang-Wei HuInsights into the Mechanistic Role of DiphenylphosphineSelenide, Diphenylphosphine, and Primary Amines in the Formation of CdSe Monomers J. Phys. Chem. A, 2016, DOI:10.1021/acs.jpca.5b10675. (C级, 2014-IF=2.693) Ben-Fang Su; Hong-Quan Fu; Hua-Qing Yang*; Chang-Wei Hu “Catalytic Reduction Mechanism of NO by CO on Rh4 Cluster: A Density Functional Theory Study”Catal. Sci.& Technol., 2015, 5, 3203–3215.(C级, 2014-IF=5.426)5.Shu Chen; Hua-Qing Yang*; Chang-Wei Hu*“Theoretical Study on the Reaction Mechanisms of the Aldol-condensation of 5-hydroxymethylfurfural with Acetone Catalyzed by MgO and MgO”Catal. Today, 2015, 245, 100–107.(C级, 2014-IF=3.893)6.Hong-Quan Fu; Ben-Fang Su; Hua-Qing Yang*; Chang-Wei Hu“Theoretical Insight into C-H and C-C Scission Mechanism of Ethane on Tetrahedral Pt4Subnanocluster”RSC Adv., 2015, 5, 40978–40988.(C级, 2014-IF=3.840)7.Hua-Qing Yang; Hong-Quan Fu; Ben-Fang Su; Bo Xiang; Qian-QianXu; Chang-Wei Hu*“Theoretical Study on the Catalytic Reduction Mechanism of NO by CO on Tetrahedral Rh4Subnanocluster”J. Phys. Chem. A,2015, 119, 11548−11564. (C级, 2014-IF=2.693)8.Kui Yu*; Xiangyang Liu; Queena Y. Chen; Huaqing Yang*; Mingli Yang; Xinqin Wang; Xin Wang; Hong Cao; Dennis M. Whitfield; Changwei Hu; Ye Tao“Mechanistic Study of the Role of Primary Amines in Precursor Conversions to Semiconductor Nanocrystals at Low Temperature”Angew. Chem. Int. Ed.,2014, 53, 6898–6904.(B级, 2014-IF=11.261)9.Meng-Fu He; Hong-Quan Fu; Ben-Fang Su; Hua-Qing Yang*; Jin-Qiang Tang; Chang-Wei Hu*“Theoretical Insight into the Coordination of Cyclic β-D-Glucose to [Al(OH)(aq)] and [Al(OH)2(aq)] Ions”J. Phys. Chem. B, 2014, 118, 13890−13902.(C级, 2014-IF=3.302)10.Ting-Yong Ju; Hua-Qing Yang*; Fang-Ming Li; Xiang-Yuan Li ; Chang-Wei Hu*“Activation of Propane C-H and C-C Bonds by a Diplatinum Cluster: Potential EnergySurfaces and Reaction Mechanisms”Struct. Chem.,2014, 25, 471−481. (D级, 2014-IF=1.837)11.Ting-Yong Ju; Hua-Qing Yang*; Fang-Ming Li; Xiang-Yuan Li; Chang-Wei Hu*“Reaction Mechanism on the Activation of Ethane C-H and C-C Bonds by a Diplatinum Cluster”Theor. Chem.Acc., 2013, 132(9), 1387−1400. (D级, 2014-IF=2.233)12.QianqianXu; Huaqing Yang*; Chao Gao; Changwei Hu*“Theoretical Study on the Reaction Mechanism of NO and CO Catalyzed by Rh Atom”Struct.Chem., 2013, 24, 14−23.(D级, 2014-IF=1.837)13.Caiqin Li; Huaqing Yang*; JianXu; Changwei Hu“Hydroxylation Mechanism of Methane and its Derivatives over Designed Methane Monooxygenase Model with PeroxoDizinc Core”Org. Biomol. Chem., 2012, 10, 3924−-3931.(D级, 2014-IF=3.562)14.Fangming Li; Huaqing Yang*; TingyongJu; Xiangyuan Li; Changwei Hu“Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study”Int. J. Mol. Sci., 2012, 13, 9278−9297. (D级, 2014-IF=2.862)15.Song Qin; Huaqing Yang*; Chao Gao; JianXu; Changwei Hu*“Methane Dehydrogenation on Monomeric Rh Center Located on (100)γ-alumina — A Theoretical Study”Surf. Sci., 2012, 606, 1899–1905.(D级, 2014-IF=1.925)16.Fangming Li; Huaqing Yang*; TingyongJu; Xiangyuan Li; Changwei Hu“Activation of C–H and C–C Bonds of Ethane by Gas-phase Pt atom: Potential Energy Surface and Reaction Mechanism”Comput.Theor.Chem., 2012, 994, 112−120.(E级, 2014-IF=1.545)17.Liang Dong; Jun Wen; Song Qin; Na Yang; Huaqing Yang; Zhishan Su; Xiaoqi Yu; Changwei Hu*“Iron-Catalyzed Direct Suzuki−Miyaura Reaction: Theoretical and Experimental Studies on the Mechanism and the Regioselectivity”ACS Catal.,2012, 2, 1829−1837.(B级, 2014-IF=9.312)18.Liang Dong; Song Qin; Huaqing Yang; Zhishan Su; Changwei Hu*“Theoretical Investigation on Copper Hydrides Catalyzed HydrosilylationReaction of 3-methylcyclohex-2-enone: Mechanism and Ligands’ Effect”Catal. Sci. Technol., 2012, 2, 564–569.(C级, 2014-IF=5.426)19.Huaqing Yang; Changwei Hu*; Chao Gao; Mengyao Yang; Fangming Li; Caiqin Li; Xiangyuan Li“Theoretical Study on the Gas-Phase Reaction Mechanism Between Palladium Monoxide and Methane”J.Comput.Chem.,2011, 32, 3440−3455.(C级, 2014-IF=3.589)20.Mengyao Yang; Huaqing Yang*; Chao Gao; Song Qin; Changwei Hu*“Theoretical Study on the Gas-phase Reaction Mechanism BetweenRhodium Monoxide Cation and Methane”Struct.Chem., 2011, 22, 983−997.(D级, 2014-IF=1.837)21.Weiyi Li; Song Qin; Zhishan Su; Huaqing Yang; Changwei Hu*“Theoretical Study on the Mechanism of Al(salalen)-Catalyzed Hydrophosphonylation of Aldehydes”Organometallics,2011, 30, 2095–2104.(C级, 2014-IF=4.126)22.Chao Gao; Huaqing Yang*; JianXu; Song Qin; Changwei Hu*“Theoretical Study on the Gas-phase Reaction Mechanism BetweenRhodium Monoxide and Methane for Methanol Production”J.Comput.Chem.,2010, 31(5), 938−953.(C级, 2014-IF=3.589)23.JianXu; Huaqing Yang*; Song Qin; Changwei Hu*“Theoretical Study on Methane Hydroxylation by Mimic Methane Monooxygenase with Bis(μ-oxo)dimanganeseBore”J.Theor.&Comput.Chem.,2010, 9(1), 233−247.(E级, 2014-IF=0.638)24.Xiuli Cao; Song Qin;Zhishan Su; Huaqing Yang; Changwei Hu*; XiaomingFeng*“Theoretical Study on Hetero-Diels–Alder Reaction of Butadiene with Benzaldehyde Catalyzed by Chiral InIII Complexes”Eur. J. Org. Chem.,2010, 20, 3867−3875.(D级, 2014-IF=3.065)25.Liang Dong; Song Qin;Zhishan Su; Huaqing Yang; Changwei Hu*“Computational Investigation on the Mechanism and the Stereoselectivity of Morita–Baylis–Hillman Reaction and the Effect of the BifunctionalCatalyst N-methylprolinol”Org.Biomol.Chem.,2010, 8 3985−3991.(D级, 2014-IF=3.562)26.Huaqing Yang; Song Qin; Song Qin; Changwei Hu*“Theoretical Study on the Gas-Phase Reaction Mechanism Between Nickel Monoxide and Methane for Syngas Production”J.Comput.Chem.,2009, 30(6), 847−863.(C级, 2014-IF=3.589)27.Song Qin; Huaqing Yang; Song Qin; JianXu; Changwei Hu*“A DFT Study on the Reaction Mechanism of SrO + CH4”J.Theor.&Comput.Chem.,2008, 7(2), 189−203.(E级, 2014-IF=0.638)28.Song Qin; Changwei Hu*; Huaqing Yang; Zhishan Su; Dianyong Tang“Computational Investigation on Stereochemistry in Tianium-Salicylaldehydes-Catalyzed Cyanation of Benzaldehyde”J. Org. Chem.,2008, 73(13), 4840−4847.(C级, 2014-IF=4.721)29.Huaqing Yang; Changwei Hu*; Qin Song“Theoretical Study on the Reaction Mechanism of CH4 with CaO”Chem. Phys.,2006, 330, 343−348. (D级, 2014-IF=1.652)30.Zhishan Su; Song Qin; Dianyong Tang; Huaqing Yang; Changwei Hu*“Theoretical Study on the Reaction of Methane and Zinc Oxide in Gas Phase”J. Mol. Struc. (THEOCHEM ),2006, 778, 41−48. (E级, 2014-IF=1.545)31.Song Qin; Changwei Hu*; Huaqing Yang; Zhishan Su“Theoretical Study on the Reaction Mechanism of the Gas-Phase H2/ CO2/Ni(D) System”J. Phys. Chem. A,2005, 109, 6498−6502. (C级, 2014-IF=2.693)32.Song Qin; Changwei Hu*; Huaqing Yang“Theoretical Study on the Mechanism of the Reaction of Ni(dS)+H2+CO2→NiCO+H2O”J.Theor.Comput.Chem.,2005, 4(2), 449−459.(E级, 2014-IF=0.638)33.Changwei Hu*; Huaqing Yang; Ning-Bew Wong*;Yaoqiang Chen; Maochu Gong; AnminTian; Can Li; Wai-Kee Li“A Theoretical Study on the Mechanism of the Reaction of CH4 + MgO”J. Phys. Chem. A,2003, 107, 2316−2323.(C级, 2014-IF=2.693)34.Changwei Hu*; Huaqing Yang; Yaoqiang Chen; Maochu Gong; AnminTian; Ning-Bew Wong“CH2 Activation by Naked Ni atom. A DFT study”J. Mol. Struc.(THEOCHEM ), 2003, 639, 35−42. (E级, 2014-IF=1.545)35.Huaqing Yang; Yaoqiang Chen; Changwei Hu*; Maochu Gong; Hairong Hu; AnminTian; Ning-Bew Wong“Methane Activation by Naked NiAtom: a Theoretical Study”Chem. Phys.Lett.,2002, 355, 233−240. (D级, 2014-IF=1.897)36.杨华清; 胡常伟; 陈耀强; 龚茂初; 田安民“MgO活化甲烷碳氢键的密度泛函研究”化学学报 (ActaChimSinica),2002, 60(7), 1334−1338.(E级, 2014-IF=1.426)37.Huaqing Yang; Yaoqiang Chen; Changwei Hu*; Hairong Hu; Maochu Gong; AnminTian; Ning-Bew Wang“C-H Bond Activation: Ni(dS) + CH4 → NiCH2 + H2. A DFT Study”J. Mol.Struc.(THEOCHEM), 2001, 574, 57−74. (E级, 2014-IF=1.545)38.Changwei Hu*; Jie Yao; Huaqing Yang; Yaoqiang Chen; AnminTian“On the Inhomogeneity of Low Nickel Loading MethanationCatalyst”J.Catal.,1997, 166(1), 1−7. (C级, 2014-IF=6.921)
中文题目作者1a 作者2a,b 作者3a 通讯作者*,a,b(a单位1 合肥 230031)(b单位2 大连 116023) 摘要 摘要内容(摘要以提供论文的内容梗概为目的,不加评论和补充解释,简明、确切地论述研究目的、原理和结论,具有相对独立性。摘要应重点包括4个要素,即研究目的、方法、结果和结论。在这4个要素中,后2个是最重要的。在执行上述原则时,在有些情况下,摘要可包括研究工作的主要对象和范围,以及具有情报价值的其它重要的信息。不应有引言中出现的内容,也不要对论文内容作诠释和评论,不得简单重复题名中已有的信息;不用非公知公用的符号和术语,不用引文,除非该论文证实或否定了他人已发表的论文;缩略语、略称、代号,除了相邻专业的读者也能清楚理解的以外,在首次出现时必须加以说明;不用图、表、化学结构。中文摘要以300字左右为宜).关键词 关键词1;关键词2;关键词3;关键词4 (3~8个)Title in English(与中文题名含义一致,且每一个实词的第1个字母大写)Authora,d LI, Yi-Lina,b LI, Yinga LI, Yang*,a,b(a Laboratory of Environment Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031)(b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023)Abstract Content of abstract (英文摘要应符合英文语法,句型力求简单,通常应有10个左右意义完整,语句顺畅的句子).Keywords Keyword1; Keyword2; Keyword3; Keyword4 (中、英文关键词一一对应)正文(以1.5倍行距、宋体(英文用Times New Roman)、小四号字单面打印在A4纸上,稿件还应标注页码以利于编辑和修改。正文各部分都应简洁明了。层次标题一律用阿拉伯数字连续编号;不同层次的数字之间用小圆点相隔,末位数字不加标点符号。如“1”,“1.1”等)1 一级标题1.1 二级标题1.1.1 三级标题图1 中文图题Figure 1 Figure title in English (a) Bent; (b) Fe-Bent; (c) Fe-Al-Bent (图注)* E-mail: aaa@aaa.ac.cnReceived February 26, 2004; revised June 3, 2004; accepted September 13, 2004.国家自然科学基金(No. xxxxxxxx)资助项目. 表1 中文表题Table 1 Table title in EnglishCatalyst Bulk composition(atomic ratio) SBET/(m2•g-1)Co-B Co65.6B34.4 281%-Co-Zn-B Co66.7Zn0.7B32.6 362%-Co-Zn-B Co67.0Zn1.2B31.8 575%-Co-Zn-B Co65.4Zn2.8B31.8 7010%-Co-Zn-B Co65.8Zn4.8B29.4 79References 参考文献著录格式如下:期刊:1 (a) Doe, I. S.; Smith, J.; Roe, P. J. Am. Chem. Soc. 1968, 90, 8234.(b) Ache, H. J. Angew. Chem. Int. Ed. Engl. 1989, 28, 1.2 Wu, H.-S.; Zhou, W.-L. Acta Chim. Sinica 1997, 55, 453 (in Chinese).(武海顺,周伟良,化学学报,1997,55,453.)书:1 (a) Smith, A. B. Textbook of Organic Chemistry, D. C. Jones, New York, 1961, pp. 123-126. (b) Dean, F. M.; Sargent, M. V. In Comprehensive Heterocyclic Chemistry, Vol. 4, Eds.: Katrizky, A. R.; Rees, C. W., Pergamon, New York, 1984, p. 531.(c) Grubbs, R. H.; Pine, S. H. In Comprehensive Organic Synthesis, Vol 5, Ed.: Trost, B. M., Pergamon, New York, 1991, Chapter 9.3.会议论文:1 Kushio, T.; Shibuya, M.; Ebizuka, Y. In Towards Natural Medicine Research in the 21st Century, Excerpta Medica International Congress Series 1157, Eds.: Ageta, H.; Aimi, N.; Ebizuka, Y.; Fujita, T.; Honda, G., Elsevier Science, Amsterdam, 1998, pp. 421-428.专利:1 Wilson, D. A. US 4 339 070, 1983 [Chem. Abstr. 1983, 99, 138839].学位论文:1 Hess, J. S. M.S. Thesis, Michigan State University, New York, 1998.2 Zhu, L.-C. Ph.D. Thesis, Zhejiang University, Hangzhou, 1995 (in Chinese). 注意事项:1. 物理量使用斜体,数字与单位之间要加空格。2. 中文之间使用中文标点符号,英文之间使用英文标点符号且后面空一格。3. 常用符号如下:数学运算符使用全角符号:+,-,×,÷,=,<,>,≤,≥,±;化学键:—,=,≡;表示范围:~;比号:∶;中圆点:•;其他:℃,',°;使用希腊字母,插入符号时选择西文字体中的希腊字母。4. 对投稿论文的详细要求请参考《化学学报》投稿须知。
TbCl3-CdCl2-HCl-H2O(298.15K)的相平衡 学 生: 指导老师: 年级: 专业: 班级:摘 要 测定了四元体系TbCl3-CdCl2-HCl-H2O(298.15K)的相平衡溶度数据,绘制了相应的溶度图。该四元体系是复杂体系且有1个新物相化合物4CdCl2· TbCl3·14H2O生成。关键词 四元体系,相平衡,TbCl3 ,CdCl2 一 前 言稀土卤化物与稀碱卤化物所形成的化合物具有特殊的光学性质。文献[1-3]研究了稀土卤化物与稀碱金属卤化物在盐酸介质中的相平衡关系,且发现新化合物CsEuCl8·14H2O、Cs2EuCl5·4H2O、3CsCl·CeCl3·3H2O、CsCl·CeCl3·4H2O具有上转换发光性能。文献[4-6]分别研究了DyCl3-CdCl2- H2O和DyCl3-CdCl2-HCl-H2O(298.15K)的相平衡,YCl3-CdCl2-H2O和YCl3-CdCl2 -HCl-H2O(298.15K)的相平衡,在298.15K时CeCl3-CdCl2-H2O和CeCl3- CdCl2-HCl-H2O的相平衡,均发现了新的化合物,并且也具有上转换发光性能和较强的荧光性能。为比较过渡元素/稀土氯化物与稀碱金属/稀土氯化物盐水体系中相关系间的差异,丰富盐水相化学,和为合成新的化合物寻找可能的途径,本文在前述研究的基础上研究了在298.15K时四元体系TbCl3-CdCl2-HCl-H2O的相平衡关系,发现了1个未见文献报道新物相化合物。 二 实验部分1、试剂及仪器配制TbCl3·6H2O试剂:(1)称取适量Tb2O3固体,放在小烧杯中,加少量水。(2)量取适量浓度为35%的盐酸溶液,缓慢加入到盛有Tb2O3试剂的小烧杯中,搅拌。(3)加热至溶解成无色透明的液体,将其自然冷却。(4)过滤。将滤液加热至产生结晶膜后,自然冷却。(5)抽滤,晶体放入干燥器中自然干燥[1]。化学反应方程式: Tb2O3+6HCl=2TbCl3+3H2O。CdCl2、EDTA、AgNO3、六次甲基四胺、甲基红、二氯荧光黄、二甲酚橙、邻二氮菲均为分析纯试剂。使用蒸馏水。使用仪器:恒温搅拌装置(自制)。2、实验及分析方法设定一系列递变点,按四元体系斜截面布点配样,密封于塑料管中,在298.15K的恒温条件下进行搅拌。五天后调整试样的酸度,调节酸度,使各试样酸度一致。将调节过酸度的各试样封闭,继续恒温搅拌。待平衡后,取样,分析液体与湿渣组成。分析方法如下:以甲基红为指示剂,用标准氢氧化钠溶液滴定试样中盐酸的含量;用邻二氮菲掩蔽Cd2+后,以二甲酚橙为指示剂,六次甲基四胺为缓冲溶液,用标准EDTA溶液滴定试样中的三氯化铽的含量;以二氯荧光黄为指示剂,加稍过量碳酸钙固体中和盐酸,加糊精,用标准硝酸银溶液滴定氯离子;用差减法可求得试样中二氯化镉的含量。 三 结果与讨论1、四元体系TbCl3-CdCl2-HCl-H2O的溶度图表1为四元体系TbCl3-CdCl2-HCl-H2O在298.15K时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据。图1为相应的溶度图。 由图一知,该体系的溶度曲线由三段构成,分别对应化合物CdCl2·H2O、4CdCl2·TbCl3·14H2O(4:1型)和TbCl3·6H2O。其中4:1 型化合物是固液同成分溶解的化合物,可从体系中直接得到,是未见文献报道表1 四元体系TbCl3-CdCl2-HCl-H2O在298.15K时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据液相(%) 湿固相(%)四面体 三角形 四面体 三角形序号 HCl CdCl2 TbCl3 CdCl2 TbCl3 HCl CdCl2 TbCl3 CdCl2 TbCl3 平衡固相平均酸度 = 7.95%1 8.71 47.62 0 52.16 0 --- --- --- --- --- A 2 8.08 46.94 2.26 51.07 2.46 4.10 69.02 1.13 71.97 1.18 A 3 7.67 46.81 4.48 50.70 4.85 3.89 69.42 2.15 72.23 2.23 A 4 7.82 47.35 5.37 51.37 5.82 6.37 57.29 4.48 61.18 4.78 A+B 5 8.09 45.96 5.97 50.00 6.49 3.95 52.61 13.53 54.77 14.08 B 6 8.14 44.59 6.90 48.54 7.51 3.29 52.77 15.31 54.56 15.82 B 7 8.12 42.33 8.72 46.07 9.49 3.19 51.64 16.17 53.34 16.67 B 8 8.26 39.73 11.02 43.31 12.01 2.82 51.51 17.63 53.00 18.14 B 9 8.23 37.58 13.75 40.95 14.98 2.83 50.79 18.63 52.27 19.17 B 10 7.75 36.39 16.95 39.45 18.37 2.63 50.51 19.73 51.87 20.26 B 11 7.32 35.76 18.49 38.58 19.95 3.23 46.70 19.97 48.26 20.64 B 12 7.08 33.77 21.67 36.34 23.32 4.99 33.38 28.41 35.13 29.90 B+C 13 7.06 33.31 21.83 35.84 23.49 3.71 25.96 38.93 26.96 40.43 B+C 14 7.19 33.49 21.67 36.08 23.35 2.59 17.37 49.19 17.83 50.50 B+C 15 7.61 33.57 20.91 36.33 22.63 2.12 10.57 56.18 10.80 57.40 C 16 8.03 29.34 21.71 31.90 23.60 1.98 7.26 58.71 7.41 59.89 C 17 8.18 23.31 24.45 25.39 26.63 1.44 4.28 62.54 4.34 63.45 C 18 8.25 14.64 27.60 15.96 30.08 1.43 2.68 63.14 2.72 64.05 C 19 8.33 7.95 30.34 8.67 33.10 1.37 1.07 64.26 1.08 65.15 C 20 9.13 0 32.61 0 35.89 --- --- --- --- --- C 双饱点组成(平均值):E1: CdCl251.37%, TbCl35.82%; E2: CdCl236.08%, TbCl323.39%A:CdCl2·H2O ; B: 4CdCl2·TbCl3·14H2O; C:TbCl3·6H2O图1 四元体系TbCl3-CdCl2-HCl-H2O在三角底面TbCl3-CdCl2-H2O的溶度图的新物相化合物。2、四元体系RECl3-CdCl2-HCl-H2O(RE=La、Ce、Nd、Dy、Tb)间的比较轻稀土元素之间或重稀土元素之间,其相化学行为具有相似性及相异性。如轻稀土元素均有4:1型化合物和9:1型化合物。而重稀土元素有9:2型化合物。本文研究的铽属中稀土元素,其新化合物的类型却为4:1型,说明中稀土元素与轻稀土相比,具有相似性也具有相异性,而与重稀土元素具有相异性。这充分说明稀土元素具有“分组效应”。 四 结论研究了氯化铽与氯化镉在盐酸介质中相关系,绘制了相应的溶度图,在体系中发现和得到了新化合物4CdCl2·TbCl3·14H2O。本文的研究结果为合成新化合物提供了相关系依据。参考文献[1]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (cesium chloride+europium trichloride+hydrogen chloride+ water)quaternary system at T=298.15K and the fluorescence spectra of its compounds. J. Chem.Thermodynamics, 2002,34,1495~1506[2]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (CsCl-CeCl3-HCl-H2O system and the propertier of the compounds.Chinese Journal of Chemistry,2002,20(9):904-908[3]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Phase equilibrium system of CsCl-YCl3-HCl-H2O at T=298.15K and its compounds.Chinese Journal of chemistry,2004,22(10):1128-1132[4]乔占平,卓立宏,王惠.三元体系YCl3-CdCl2-H2O和四元体系YCl3-CdCl2-HCl-H2O(298.15K)的相平衡及其固相新化合物的研究[J].无机化学学报,2004,20(8):929-932[5] 乔占平,卓立宏,王惠.四元体系LaCl3-ZnCl2-HCl(7%)-H2O(298.15K)和三元体系ZnCl2-HCl-H2O(298.15K)相平衡的研究[J].无机化学学报,2003,19(3):303-306[6] 卓立宏,乔占平,郭应臣,王惠. CeCl3-CdCl2-H2O和CeCl3-CdCl2-HCl-H2O的相平衡.物理化学学报,2005,21(2):128-131Phase Equilibrium of the System TbCl3-CdCl2-HCl-H2O at 298.15KAbstract: The equilibrium solubilities of the quaternary system TbCl3-CdCl2-HCl-H2O was determined at 298.15K and the corresponding equilibrium diagram was constructed.The systems is complicated with one new compounds 4CdCl2· TbCl3·14H2O. Keywords: quanternary system, phase equilibrium, cadmium chloride, terbium chloride
332 浏览 5 回答
124 浏览 2 回答
201 浏览 7 回答
339 浏览 5 回答
344 浏览 5 回答
199 浏览 8 回答
134 浏览 6 回答
314 浏览 8 回答
290 浏览 3 回答
315 浏览 4 回答
184 浏览 4 回答
248 浏览 5 回答
170 浏览 3 回答
261 浏览 5 回答
224 浏览 8 回答