傅立叶级数是针对周期函数的,为了可以处理非周期函数,需要傅立叶变换。
1、傅里叶级数就是用一组正交函数将周期信号表示出来。傅里叶变换就是用一组正交函数将非周期信号表示出来。
2、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。
3、法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
傅立叶变换的提出:
1、傅里叶是一位法国数学家和物理学家的名字,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断,任何连续周期信号可以由一组适当的正弦曲线组合而成。
2、当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日和拉普拉斯,当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。