博科园-科学科普:自1929年以来,化学和物理一直试图通过调用全ci方法来预测复杂的化学反应,但直到现在才成功。全ci计算具有预测化学反应的潜力。这项研究的研究人员报告了一种新的全ci方法首次在量子计算机上实现,这篇论文发表在ACS中央科学期刊上。正如狄拉克在1929年量子力学建立时所宣称的那样,精确地应用数学理论来求解SE,会导致方程过于复杂而无法求解。事实上,在全ci方法中需要确定的变量的数量随着系统大小呈指数级增长,并且很容易遇到诸如指数爆炸之类的天文数字。例如,只涉及42个电子的苯分子C6H6的全ci计算维数为10^44,这是任何一台超级计算机都无法处理的。
更糟糕的是,离解过程中的分子系统具有极其复杂的电子结构(多构型性质),任何一台超级计算机都无法进行相关的数值计算。根据OCU研究小组的说法,量子计算机可以追溯到1982年费曼的建议,即量子力学可以通过计算机本身来模拟,而计算机本身是由遵循量子力学定律的量子力学元素构成。20多年后,哈佛大学(university of Harvard)教授阿斯普鲁-古奇克(Aspuru-Guzik,自2018年起多伦多大学[Toronto university]教授)和同事们提出了一种量子算法,能够计算原子和分子的能量,而不是以指数的方式,而是以多项式的方式对系统变量的数量进行计算,在量子计算机上的量子化学领域取得了突破。
将Aspuru量子算法应用于量子计算机上的全ci计算时,需要得到与所研究的SE的精确波函数接近的近似波函数。否则,坏的波函数需要极端多的重复计算步骤才能得到精确的波函数,从而阻碍了量子计算的优势。由于电子在化学键解离过程中不参与化学键合,所以化学反应具有多构型的性质。OCU研究人员已经解决了这个量子科学和化学中最棘手的问题之一,并在实现一种新的量子算法方面取得了突破,该算法在多项式计算时间内生成称为组态函数(CSFs)的特定波函数。然而,先前提出的量子计算算法不可避免地涉及到许多化学键的离解和形成,从而产生许多不参与化学键的电子,使量子算法难以应用。这就是所谓的“量子困境”。
OCU研究人员引入了一个二自由基特征yi(0 ~ 1)来测量和表征开壳电子结构的性质,并利用其二自由基特征构建化学反应所需的多构型波函数,在量子计算机上沿整个反应路径进行全ci计算。这种新方法不需要耗时的后hartree - fock计算,避免了计算的指数爆炸,首次解决了“量子困境”。OCU小组写道:这是一个实用的量子算法的第一个例子,该算法使用于预测化学反应路径的量子化学计算能够在配备了大量量子位元的量子计算机上实现。这一实现使量子化学计算在量子计算机上实际应用在化学和材料科学的许多重要领域。
博科园-科学科普|研究/来自:大阪市立大学
参考期刊文献:《ACS Central Science》
论文DOI:10.1021/acscentsci.8b00788
博科园-传递宇宙科学之美