目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等。以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。
1.1微机械剥离法石墨烯最早是通过微机械剥离法制得的。2004年,曼彻斯特大学Geim等[1]用胶带从石墨上剥下少量单层石墨烯片,成为石墨烯的发现者,并引发了新一波碳质材料的研究热潮。该法虽然可以获得质量较好的单层和双层石墨烯,能部分满足实验室的研究需要,但产量和效率过低,高质量的石墨烯的规模制备成为人们追求的目标。1.2氧化石墨还原法近年来,人们不断的探索新方法以提高石墨烯的产量,其中氧化还原法由于其稳定性而被广泛采用。这种方法首先制备氧化石墨∞],先将石墨粉分散在强氧化性混合酸中,例如浓硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂得到氧化石墨,再经过超声处理得到氧化石墨烯,最后通过还原得到石墨烯。然而,氧化过程会导致大量的结构缺陷,这些缺陷即使经1100℃退火也不能完全被消除,仍有许多羟基、环氧基、羰基、羧基的残留。缺陷导致的电子结构变化使石墨烯由导体转为半导体,严重影响石墨烯的电学性能,制约了它的应用。但是含氧基团的存在使石墨烯易于分散在溶剂中,且使石墨烯功能化,易于和很多物质反应,使石墨烯氧化物成为制备石墨烯功能复合材料的基础。1.3石 墨层间化合物途径石墨插层复合物是以天然鳞片石墨为原料,通过在层间插入非碳元素的原子、分子、离子甚至原子团使层间距增大,层间作用力减小,形成层间化合物。有人曾在膨胀石墨中加入插入剂,并利用热振动或酸处理使它部分剥离,从而得到石墨片或石墨烯[6-8]。但该法得到的石墨烯大小不一,尺寸难以控制。如果某种溶剂与单层石墨的相互作用超过石墨层与层之间的范德华力,那么即可通过嵌入溶剂将石墨层剥离开。Li等通过热膨胀使石墨层间距增大,再用发烟硫酸插层进一步增大层间距,最后加入四丁基氢氧化铵,经超声、离心得到稳定分散在有机溶剂中的石墨烯[9]。借鉴分散碳纳米管的方法,在极性有机溶剂中超声处理石墨粉也可以得到多层(<5)的石墨烯。Lotya等通过在水一表面活性剂中超声剥离石墨,得到稳定的石墨烯悬浮液[1…。与氧化石墨法相比,石墨插层化合物途径制得的石墨烯结构缺陷少,质量高,但是有机溶剂和表面活性剂难以完全除去,影响石墨烯的电学性能,而且部分有机溶剂价格昂贵。1.4沉积生长法沉积生长法通过化学气相沉积在绝缘表面(例如SiC)或金属表面(例如Ni)生长石墨烯,是制备高质量石墨烯薄膜的重要手段。有研究者通过对Si的热解吸附,实现了在以si终止的单晶6H—SiC的(0001)面上外延生长石墨烯膜或通过真空石墨化在单晶SiC(0001)表面外延生长石墨烯。Hannon等[11]在SiC表面上外延生长了石墨烯膜,但是由于SiC在高温下易发生表面重构,导致表面结构复杂,难以获得大面积、厚度均一的石墨烯膜。Emtsev等[12]在氩气中通过前位石墨化在si终止的SiC(0001)表面制备出了单层石墨烯薄膜,薄膜的厚度和质量都有所提高。近年来,以金属单晶或薄膜为衬底外延生长石墨烯膜的研究取得很大进展。Sutter等[13]在Ru(0001)表面逐层控制地外延生长了大面积的石墨烯膜,制备过程中,首层石墨烯与金属作用强烈,而从第二层起就可以保持石墨烯固有的电子结构和性质。Coraux等[14]利用低压气相沉积法在Ir(111)表面生长了单层石墨烯膜。采用类似的方法,在Cu箔表面也能制备出大面积、高质量石墨烯膜,而且主要为单层石墨烯。而韩国科学家则在多晶Ni薄膜上外延生长了石墨烯膜[1…,他们先在si-sio§衬底上生长出300nm厚的Ni,然后在1000(C的甲烷气氛中加热
石墨烯的制备原理:首先,将石墨粉末氧化,变成“氧化石墨(GO)”粉,然后将其混入水溶液中,均匀涂在PET(polyethyleneterephthalate)等薄膜基板上注。石墨烯的制备方法如下:1、 氧化石墨烯化学气相沉积法中国科学院物理研究所硕士生蔡伟伟在萨斯大学奥斯丁分校罗德尼教授和陈东敏研究员的指导下,开发出一套化学气相沉积仪(CVD),他们用这套沉积仪首次制备出高品质13C同位素合成石墨。该方法能够有效减少石墨烯岛的数量,显著加快石墨烯的生长速度和提高石墨烯的质量。化学气相沉积法将对石墨烯的应用研究起到极大地推动作用,美国的哥伦比亚大学教授菲利普金就曾表示气相沉积法是制备大尺寸、高质量石墨烯最省钱的方法之一,这对于量化生产石墨烯具有相当重大的意义。2、 取向附生法氧化石墨烯取向附生法的工作原理是利用生长基质原子结构“种”出石墨烯。其生成步骤是:先让碳原子在1150℃下渗入钌,经冷却到850℃后,大量碳原子就浮出表面,最终长成第一层石墨烯。当第一层覆盖80%后,第二层随之生长。利用这种方法制备石墨烯不仅需要稀有金属钌,而且得出的石墨烯薄片厚度不匀,效果往往达不到预期的效果。3、微机械分离此方法是获得石墨烯最普通的方法,可以直接将石墨烯薄片从较大的晶体上剪裁下来。2004 年,英国的KostyaNovoselov 就是用机械分离法首次制备出单层石墨烯,用此方法制备出的石墨烯可以在外界环境下稳定存在。这种方法的优点是过程简单,氧化石墨烯缺点是不易控制产物的尺寸,难以获得所需要的石墨烯。
每个人的生命都会经历不同的成长阶段,在20多岁的年纪里,正是享受美好人生的时光。大多数人的年轻岁月,有收获,有失去,有彷徨,也有惊喜,但是,总有一些人超脱正常人的范畴,做出令绝大多数人一生都无法企及的成就。
例如,在22岁时被世界顶级科学杂志《自然》评选为“2018年度十大科学”之首的天才少年曹原。他是一位95后,他也是一个长相普通的年轻人,然而,他的传奇经历却令人惊艳赞叹。
曹原
1996年,曹原在素有天府之国美誉的成都出生,三岁时,他跟随父母举家搬迁至深圳。那个时候的深圳,已经被浓烈的电子氛围所包围着,人们常说90年代的深圳有三多:钱多、人多、电子产品多。自从曹原记事起,他的周围就充满了电子产品。
别的孩子在这座城市接触到的是各种精美的玩具,曹原在这座城市,能够找到却是各种电子产品的元件和线路。小时候,他最喜欢做的事,就是在那些老旧的电子市场淘回来一大堆老物件,将这些东西拆了又装,尤其是里面的电子线路,一直是他的最爱。
实验室
这样的生活氛围与兴趣爱好,为曹原改写世界科学未来进程,埋下了伏笔。2007年,11岁的曹原被选拔入深圳耀华实验学校读书。在整个广东省而言,深圳耀华自成立之初就有着“天才学校”的美誉,凡是能够进入这所中学读书的少年,都有着异于常人的天赋才华。从这所学校出来的差生,只能够读深圳大学;平常学生的初级目标是清华北大;能让耀华中学的优秀学生奋力拼搏的学习目标,都是世界顶尖大学牛津、斯坦福等学校。
曹原
即便这所高校中的学生都是优中选优的尖子生,曹原仍然在同届学生中脱颖而出。所有的课程,他一听就会;他对于课本知识的理解,远超出于老师的教学大纲。下课的闲余时间,曹原利用同龄孩子玩游戏、追明星的时间,进行着一个人的电子元件试验。善解人意的父母为了支持曹原的爱好,专门为曹原在家中搭建了一个实验室,一些小型实验的拆线、安装,曹原一个人就能在家中的实验室完成。
曹原中学照片
曹原这种过人的学习天赋,受到了学校校长的重视,为了让曹原得到最优秀的教育资源,学校为他组建了一支专门的教学团队,帮助曹原迅速学习初中和高中课程的同时,还专门对曹原的创新探究精神进行了培养。仅用了三年的时间,14岁的曹原已经完成了初高中的所有课程,并于2010年参加高考,当年,曹原以669分的高考成绩考入了中国科学技术大学少年班学院。创立于1978年的中科大少年班,从来不缺乏所谓的“神童、天才”,但是曹原的出现,依然让这个传说中的少年班增加了一个传说级的人物。
左一为曹原
曹原成为了老师和同学眼中公认的“大神”,但是,这位大神少年从来没有恃才傲物过,明明已经占到了同龄人科技圈的顶端,曹原仍然用沉稳低调的步伐,完成了自己大学本科的学业。读大学期间,他主动到曾长淦教授的实验室学习,在老师的指导下,他勤勤恳恳地进行石墨烯等方面的理论研究。
2012年,曹原被学校派为首批国际交流生,前往密歇根大学进行学习;2013年,他斩获顶尖海外交流奖学金,并获得了前往牛津大学进行为期两个月科学试验;2014年,曹原在获得学院最高荣誉奖学金的同时,为了继续深造自己的科研理论,他前往美国麻省理工大继续学习。
曹原本科毕业
这个在中国一鸣惊人的天才少年,在这个被称为全球顶尖学术天堂的地方,又将绽放出怎样的光芒?在麻省理工学习期间,他用了4年的时间潜心于研究石墨烯的超导性。其实早在国内读书期间,曹原就已经提出过如何改变材料性质达到超导状态的问题,多年以后,他仍然在坚持这个问题的研究,并且得到了震惊物理界的答案。2017年,曹原在该所学校攻读博士期间,他根据理论推测出:叠加在一起的两层石墨烯会发生巨变,从而能够实现超导体性能。然而,对曹原的这个推测,物理学界的许多大佬嗤之以鼻。
麻省理工学院
他们认为,一个年仅22岁的中国准博士生,竟然仅凭借自己的推测理论,就想要解开“电力物理界的黑暗时代”存在了30年悬而未解的问题,这是天方夜谭。面对这种质疑声与嘲笑,曹原没有丝毫退缩,他信心满满地进行两层石墨烯材料特定叠加实验,即便是在得出正确实验结果之时,曹原仍然花费了6个月的时间,为他确立石墨烯传导理论准备足够多的支撑资料与论文。
就在2018年的3月5日,曹原将自己与石墨烯超导理论有关的两篇论文投稿给《自然》杂志编辑部后,他的论文令全球科学界震动万分。一个名不见经传的年轻少年,竟然凭借一己之力打破了困扰物理学界107年的难题,并让石墨烯超导领域取得了极大突破。
2018《自然》杂志封面
同年,《自然》杂志10大人物封面评选中,整个封面图片竟然是采用石墨烯的碳环结构与数字“10”作为基础设计而成。这本世界顶级学术期刊杂志,迎来了最年轻的中国学者,肯定了曹原对于这个全新物理研究领域的贡献。从此以后,曹原不仅是中国物理学家的骄傲,全球各界物理学家也都知道他的名字。
从那个时候到今天,仍然有无数的顶级大学和科研机构向曹原伸出橄榄枝,甚至希望他能够以教授的身份任职。对于全球顶尖物理机构和大学的邀请,曹原做出了这样的答复:“我学成以后要回到中国的。”他是中国少年,他有着中国少年的雄心壮志,他为当下青年树立了榜样,这样的优秀人,才能够称之为“全民偶像”。
曹原理论成就
根据最近的学术报道,苏州大学材料与化学化工学部的汪胜教授团队最近发表了一篇题为“CoCu纳米芯片的反应性气体传感器应用研究”的论文。该研究利用电化学沉积法制备了CoCu合金纳米芯片,并将其应用于反应性气体传感器中。研究显示,在CO2和NH3等反应性气体的作用下,CoCu纳米芯片的电阻率发生明显变化。通过进一步的分析和实验,研究人员得出结论:CoCu纳米芯片可用作一种非常灵敏和准确的反应性气体传感器,并有望在环境检测、医疗诊断和制药生产等领域发挥重要作用。这项研究成果为新型纳米电化学材料的研究开辟了新的思路,对于促进纳米传感器技术的发展也具有重要意义。
表面等离体激元是自由电荷和电磁波耦合形成的集体电磁振荡模式,能够在纳米尺度上操纵光与物质的相互作用。不同金属结构中的等离体激元的色散模式取决于它们的空间维数,并且已经在基础物理学和应用技术中得到深入研究。 加州大学伯克利分校王胜及其导师王枫和合作者 最近报导了来自一维碳纳米管和二维石墨烯形成的混合维度范德华异质结构中的杂化等离体激元[1]。金属碳纳米管中等离体激元具有同常规等离体激元截然不同的量子特性,其等离体激元特性与载流子密度无关,故而无法通过栅极电压调控[2][3][4]。与此相反,碳纳米管/石墨烯异质结构中的等离体激元波长能够被栅极电压连续调控,且调控幅度高达75%,并与此同时保持了一维体系中等离体激元超空间压缩和低损耗的优异特性。这表明混合维度范德华异质结构能够实现兼具各种不同功能的电可调控的等离体激元纳米元件。该成果发表在国际期刊 《Nature Communications》 上[1]。
第一作者:王胜,SeokJae Yoo, Sihan Zhao,伯克利
通讯作者:王胜,SeokJae Yoo, 王枫,伯克利
表面等离体激元是自由电荷和电磁波耦合形成的集体振荡模式, 并能在超越衍射极限的纳米尺度之下调控光与物质的相互作用。材料体系的空间维度对等离体激元的特性有深远的影响。在碳纳米管等一维材料中,电子之间的强关联相互作用形成Luttinger液体,导致一维Luttinger液体体系呈现特殊的量子等离体激元特性。在金属性碳纳米管中,等离体激元结合了非色散的传播速度,深亚波长局域,以及低损耗等优异特性,但由于该体系中的量子等离体激元不随载流子浓度变化故而无法被栅极电压调控[2][3][4]。被氮化硼二维薄膜包裹的二维石墨烯中的等离体激元能够很好地被栅极电压调控。不同维度材料之间等离体激元的耦合可以极大地改变等离体激元的色散性质并呈现新的性能,然而这种混合维度材料中的等离体激元模式尚未得到探测。
鉴于此, 加州大学伯克利分校王胜及其导师王枫和合作者 设计并制备了碳纳米管/氮化硼/石墨烯混合维度的范德华异质结构并研究了该混合维度异质结构中碳纳米管等离体激元和石墨烯等离体激元的强耦合作用。亮点如下:
亮点1. 借鉴二维材料中的基于温控黏性塑料薄膜的干法转移堆叠技术,成功可控地制备了干净的碳纳米管/氮化硼/石墨烯混合维度异质结构,并用自己搭建的灵敏度极高的扫描近场光学显微镜系统性地研究了该体系中的杂化等离体激元模式。
a SWNT/h-BN/Graphene异质结构中等离体激元的红外纳米成像示意图。设计的混合维度异质结构通过基于温控黏性塑料薄膜的干法转移堆叠技术实现,自上而下布局为SWNT/Top h-BN/Graphene/Bottom h-BN/SiO2/Si。石墨烯载流子密度可以通过施加的栅极电压Vg所连续调控。为实现基于扫描近场光学显微镜的红外纳米成像,使用波长为10.6 μm的红外激光照射原子力显微镜的针尖尖端并收集来自尖端的弹性散射光。b 石墨烯和顶部h-BN层的边界分别用黑色和绿色虚线勾勒出轮廓。石墨烯和顶部h-BN之间的重叠区域以及其顶部的碳纳米管(光学不可见)构成了SWNT/h-BN/Graphene异质结构。c , d 异质结构代表性区域的高度像和相应的近场图像。c 中的M1和M2是金属碳纳米管,由于等离体激元的激发,在近场图像中具有明亮的对比度,而c 中的S是半导体碳纳米管,由于缺乏自由电子,近场响应可忽略不计。
亮点2. 通过栅极电压电调控石墨烯中等离体激元的波长以实现同金属碳纳米管中等离体激元波长相匹配,从而实现两种等离体激元模式的强耦合作用。该强耦合作用形成的杂化等离体激元兼具了碳纳米管等离体激元深亚波长局域以及低损耗的特性,同时也具有石墨烯等离体激元电可调控的特性。这些特性是单一体系中等离体激元难以兼具的,故而这种混合维度等离体激元体系能够实现兼具各种优异性能的电可调控的纳米光学器件。
a 长SWNT M1的高度像。b – i 在40到-100 V的不同栅极电压下SWNT M1的相对应的近场图像。与碳纳米管平行的双条纹源于针尖尖端激发和碳纳米管反射的石墨烯等离体激元波之间的干涉。随着栅极电压的增加,双条纹变得更加明显且更加分开。这种演化表明石墨烯载流子密度和相应的石墨烯等离体激元能够由施加的栅极电压连续调节。我们清楚地观察到碳纳米管末端附近显著的近场信号振荡,并且它们敏感地依赖于栅极电压。等离体激元波长λp等于近场图像中振荡周期的两倍,由白色双箭头(d和i)所标记,并且随着栅极电压远离0V而变得更长。j 短SWNT M2的高度像。k – s SWNT M2在40到-120 V的各种栅极电压下的相对应的近场图像。SWNT M2作为法布里-珀罗等离体激元纳米腔,其中传播的等离体激元在纳米腔两端来回反射并产生集体响应。从m - s,波腹的数量从7减少到4,实现的等离体波激元调控幅度约为 75%。
参考文献
[1] Wang, Sheng et al. Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures. Nature Communications 12, 5039 (2021).
[2] Wang, Sheng, et al. "Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes." Nature Materials 19, 986-991 (2020).
以及本公众号往期文章“半导体碳纳米管中的非线性拉廷格液体等离体激元”。
[3] Wang, Sheng, et al. "Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon." Nano Letters 4, 2360-2365 (2019):2360-2365.
[4] Wang, Sheng, et al. "Metallic Carbon Nanotube Nanocavities as Ultra-compact and Low-loss Fabry-Perot Plasmonic Resonators." Nano Letters 4, 2695-2702 (2020).
以及本公众号往期文章“NanoLett.:金属碳纳米管纳米腔:超紧凑和低损耗法布里-珀罗等离激元谐振器”。
文章链接
本文转自:
等离激元前沿
近期,苏州大学材料与化学化工学部的汪胜教授在国际重量级学术期刊Advanced Materials上发表了题为“Ultrastrong and Tough Graphene Aerogel Fibers with Hierarchical Architecture”的论文。该论文报道了一种新型石墨烯气凝胶纤维,该纤维具有超强和韧性的特点,并且具有分层结构。这种新型石墨烯气凝胶纤维的制备方法简单易行,所得纤维具有超高的拉伸强度和韧性,并且具有显著的储能能力和超高的导电性能,因此在柔性电子、高强度材料和先进能源储存等领域有着广泛的应用前景。这项研究成果的发表不仅提高了我国在新型高性能材料领域中的国际影响力,而且也为石墨烯气凝胶纤维的制备和应用提供了新的思路。
可以试试RSC advances、jmc,如果文章有新意,建议投carbon
推荐《化学学报》,核心期刊,有相关栏目,简介如下:
《化学学报》是1933年创办的中文学术期刊,曾用名《中国化学会会志》,月刊,中国化学会、中国科学院上海有机化学研究所主办,中国科学院主管。学报刊载化学各学科领域基础研究和应用基础研究的原始性、首创性成果,涉及物理化学、无机化学、有机化学、分析化学和高分子化学等。
目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等。以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。
材料科学啊,一本开源类的刊物
制备石墨烯最常见的思路是先氧化石墨,然后利用超声、高温等手段使得石墨一层一层剥开(当然也许是几层),最终还原。工业上今年尚未有批量生产,能见到的都是企业、研究所或高校的实验室的少量制备。
推荐《化学学报》,核心期刊,有相关栏目,简介如下:
《化学学报》是1933年创办的中文学术期刊,曾用名《中国化学会会志》,月刊,中国化学会、中国科学院上海有机化学研究所主办,中国科学院主管。学报刊载化学各学科领域基础研究和应用基础研究的原始性、首创性成果,涉及物理化学、无机化学、有机化学、分析化学和高分子化学等。
目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等。以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。
材料科学啊,一本开源类的刊物
因为是Nature这个杂志是世界上历史最悠久的自然文化杂志之一,在这个领域有着非常高的声望,可以说是自然领域的权威杂志。杂志的声望高,门槛高,对于文章的要求也随之就高。
中国“天才少年”曹原又发Nature了,这是他的第5篇,曾2次一天连发2篇Nature。2018年曹原曾一天连发2篇Nature,2020年5月7日,他再次一天连发2篇Nature,曹原因发现石墨烯超导角度,轰动国际学界,开辟了凝聚态物理研究的新领域,成为Nature杂志创刊149年来,以第一作者身份发表论文的最年轻中国学者。当年,《自然》发布的年度世界十大科学人物中,曹原位居榜首。在Nature发布文章为何难,下面具体分析:
一、《自然》上发表文章是非常光荣的。《自然》上的文章会经常会被引用。这有助于晋升、获得资助和获得其它主流媒体的关注。所以科学家们在《自然》或《科学》上发表文章的竞争非常激烈。与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、与作者无关的科学家来检查和评判文章的内容是否正确有效。作者要对评审做出的提问与质疑给予处理,如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章,从而不能发表。
二、科学的发展基本发端于西方。几百年来西方科学在全球也一直占据着主导地位。像《科学》、《自然》、《细胞》、《柳叶刀》等,全球有影响力的杂志期刊都在西方,而全球一流的科学家也都在西方,包括评判科学发展的评价体系也是由西方提出并打造出来的。科学是同行评价体系,如果一个顶尖的研究脱离了同行的评价体系,其成果和地位就很难在业界认可。 所以说,如果你能在nature上面发表文章的话,说明你在这一领域有非常深的认识,研究和了解,并且能够在这个领域创造属于自己的价值,推动这一领域的研究和发展。
三、要想在Nature 上发表文章,首先要对自己领域最近10年的文章进行分类。以氧化物燃料电池领域为例,在2002-2012年区间总共有8篇文章发表在这两个杂志上。如果你研究的小领域没有文章在NS或者Nature的子刊上,那说明杂志编辑认为你的领域不具有很广的关注度。同时,要分析是些什么样的突破发表在NS上。比如在这8篇文章,有6篇文章直接与燃料电池的阳极材料有关。这说明如果你能在阳极的研究中有所突破,存在在NS上发表的可能性。再进一步分析其细节,你会发现更多的规律。 当然,并不是说你知道这些趋势,你一定能够在这样上面有所突破,但是能够给你一个非常具有指引性的思路。
近年来,限域空间纳米流体传质领域取得显著进展,特别是一维碳纳米管以及二维纳米结构组成尺寸均一的纳米及次纳米尺度离子通道,孔隙内部微观结构和表面化学特性更为可控,是制备高功率纳米流体离子导体的理想材料结构体系。受自然界独特的微观结构的启发,将二维材料通过简单的湿法纺丝重新组装成具有纳米尺度间隙的纤维结构。重组后形成的二维材料层与层之间的限域空间可以充当分子和离子运输的二维通道。Ti 3 C 2 T x 作为二维材料MXene中发展最成熟的材料之一,具有很多与氧化石墨烯结构类似的薄层二维结构,丰富的表面官能团以及极性溶剂高分散等特性,还具有氧化石墨烯不具备的高导电性,是制备高导电纳米流体纤维的理想材料。但是由于Ti 3 C 2 T x 较大的长径比以及柔性片层结构,在湿法纺丝过程中片层易褶皱、堆叠,造成结构缺陷,显著降低纤维力学、导电特性,阻碍离子在纤维结构内部传导,从而制约了Ti 3 C 2 T x 纤维在传感、储能、制动等多功能方面的应用 探索 。
Ti 3 C 2 T x 分散液在外界剪切力作用下,可形成定向液晶结构,可借助湿法纺丝过程形成二维片层的取向排布结构。 苏州大学 邵元龙教授团队 借助这一原理,控制湿法纺丝过程的喷丝口断面结构以及牵伸速率,诱导Ti 3 C 2 T x 片层形成取向结构,并通过Mg 2+ 离子交联作用,最终制备得到具有高取向度结构的Ti 3 C 2 T x 纤维,实现力学性能,导电性能,离子传导性能以及电化学性能的提升。相关工作以“Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation”发表在《 ACS Nano 》上。
这项研究工作中Ti 3 C 2 T x 纤维取向度大幅度的提高主要依赖于 喷丝口的设计以及牵伸过程 。 受 流体定向 纺丝过程的启发 ,作者设计不同的喷丝口来探究Ti 3 C 2 T x 片层在流动过程中的排列情况。当处于液晶态的Ti 3 C 2 T x 纤维经过 高度纵横比的扁平状流体通道时,受到的剪切力在横向上显著增强;在水平剪切力引导下, Ti 3 C 2 T x 片层沿着纤维轴向定向排列。与圆状通道相比,扁平状流体通道有效解决了了剪切力梯度变化问题,减少了纤维中片层褶皱,孔洞等缺陷。为了提升纤维的取向度,作者对所制备的Ti 3 C 2 T x 初生凝胶纤维进行 牵伸处理 ,经过 牵伸后的纤维内部片层排列更加紧密,消除了片层间不规则的孔隙 ,这种取向结构将加速电子传输,减少电荷转移电阻和电能损失,经过WAXS测试纤维的 取向度高达0.86 。与此同时,作者采用 离子交联 进一步提升Ti 3 C 2 T x 纤维的力学性能。镁离子进入层间后与Ti 3 C 2 T x 片层 表面含氧官能团产生静电相互作用,减弱片层间双电层的厚度,增强层与层之间相互作用力 。经过交联之后的纤维力学强度高达 118MPa ,电导率提升到7200 S cm –1 ,实现优异的电子传导。通过红外热成像仪对纤维导热性能进行测试,发现 Ti 3 C 2 T x 纤维在低功率下能够快速升温到108 。
Ti 3 C 2 T x 取向纤维的离子传导及电化学特性
高定向的Ti 3 C 2 T x 纤维在保持高机械性能和电子传导的同时,还能够实现优异的离子传导。与无序片层组装成的纤维相比, 定向纤维内部片层能够互相连接构成连续的层状通道 ,离子在其中的传输路径更短,传输速率更高 。当电解质被限制在纳米通道中时,电解质会表现出截然不同的性质。在比德拜长度更窄的纳米流体通道中,内壁上的表面电荷排斥单极离子并吸引反离子。这种单极离子传输可以使离子电导率提高几个数量级在1mM盐浓度下,高度定向的Ti 3 C 2 T x 纤维表现出9.7 10 4 S cm 1 高离子电导率。有效的离子输运电导率还可以促进离子在Ti 3 C 2 T x 薄片表面的快速输运,形成电双层,提高功率密度和速率能力。定向Ti 3 C 2 T x 薄片可以与密集填充的薄片形成受限的纳米流态离子传输通道,在这种电解质离子约束场景下,局部库仑有序排列被打破,层状受限孔可以有效地用于电荷存储。对Ti 3 C 2 T x 片层进行定向,同时使层状孔适应电解质离子的大小,这是一种很有前途的策略,可以最大限度地提高比电容,高达1360 F cm 3 。
小结
作者通过微流体通道控制二维片层材料取向排列,构筑快速离子传输通道;采用离子交联进一步提升纤维各项性能,从而制备出优异的Ti 3 C 2 T x 纳米流体取向纤维,有望在人工纤维组织、生物传感器分析和神经电子学中得到广泛的应用。
团队介绍:
邵元龙 ,苏州大学能源学院特聘教授,博导,北京石墨烯研究院石墨烯生物质纤维课题组组长。2016年获得东华大学材料加工工程专业博士学位,博士导师为李耀刚教授和王宏志教授,期间于2013-2015年于美国加州大学洛杉矶分校Richard B. Kaner教授课题组博士联合培养。2016-2018年剑桥大学石墨烯中心从事博士后研究,合作导师为Andrea C. Ferrari教授和Clare P. Grey教授。2018-2019年于沙特阿卜杜拉国王 科技 大学任职研究科学家,合作导师为Vincent C. Tung教授。2019年9月,加入苏州大学能源学院,任特聘教授。迄今以第一作者、通讯作者在 Nat. Rev. Mater. , Nat. Commun. (2篇), Adv. Mater., Energy Environ. Sci., Adv. Energy Mater., ACS Nano (2篇) ,Adv. Funct. Mater., Mater. Horiz. (2篇)等国际知名学术期刊发表SCI论文26篇,他引4300余次,7篇被ESI收录为高被引论文(Top 1%),2篇被ESI收录为热点论文(Top 0.1%)主持国家自然科学基金,江苏省自然科学基金青年基金,国家重点实验室开放课题等多项科研项目。担任国际期刊《Frontiers in Chemistry》(影响因子3.782,中科院SCI化学2区)“Advanced Materials for Supercapacitors”专刊客座编辑。
李硕 ,2019年9月至今为苏州大学能源学院与材料创新研究院硕士研究生,导师为邵元龙教授。主要从事功能纤维器件相关研究。入学以来以第一作者在ACS Nano杂志上发表论文;荣获苏州大学研究生学业奖学金二、三等奖。
【课题组招聘】
招聘石墨烯及复合纤维方向博士后2-3名
招聘需求
1. 年龄原则上不超过 35 岁, 身心 健康 ,具有较高的思想道德素养、良好的团队合作精神和奉献精神;具有一定材料、化学领域的研究基础;有较强的英文阅读和写作能力;
2. 博士后要求具有国内外高校或者科研院所的材料、化学、物理等专业博士;
3. 具有纤维纺丝、柔性可穿戴器件、理论计算等相关研究背景人员,优先录取。
应聘材料:
1. 个人简历,包括基本信息、学习和科研经历、已有成果;
2. 代表论文电子版;
工作待遇
按照苏州大学统招博士后发放相关待遇,具体如下:
(一) 统招博士后人员聘期内的总薪酬由基本年薪和奖补金两部分构成。绩效评估优秀者的总薪酬为 100 万元,绩效评估良好者的总薪酬为 80 万元,绩效评估合格者的总薪酬为 60 万元。
1.基本年薪:20 万元(去除学校承担的 社会 保险和公积金之后的税前收入),按月发放。
2.奖补金:根据绩效评估结果按年度发放。
(二)对表现优异的博士后,合作导师将追加基本年薪,相关追加部分不计入 聘期内总薪酬,额外发放。
(三)提供 0.1 万元/月的租房补贴(不计入总薪酬)。
(四)在站期间获得国家博士后创新人才支持计划、博士后国际交流计划引进项目、博士后国际交流计划派出项目、香江学者计划、澳门青年学者计划、中德博士后交流项目等项目资助的,所获得的资助补贴不计入学校的总薪酬,另外叠加发放。
(五)在站期间获得的科研成果可按照学校规定享受学校科研成果奖励。
(六)在站期间可根据学校专业技术职务评聘相关规定参加专业技术职务任职资格评审。
(七)绩效评估优秀者,可优先推荐应聘校内教学科研岗位。
有意向者请将个人简历,以及代表作等相关信息发送到邮箱: 。
投稿模板:
单篇报道: 上海交通大学周涵、范同祥《PNAS》:薄膜一贴,从此降温不用电!
系统报道: 加拿大最年轻的两院院士陈忠伟团队能源领域成果集锦
每个人的生命都会经历不同的成长阶段,在20多岁的年纪里,正是享受美好人生的时光。大多数人的年轻岁月,有收获,有失去,有彷徨,也有惊喜,但是,总有一些人超脱正常人的范畴,做出令绝大多数人一生都无法企及的成就。
例如,在22岁时被世界顶级科学杂志《自然》评选为“2018年度十大科学”之首的天才少年曹原。他是一位95后,他也是一个长相普通的年轻人,然而,他的传奇经历却令人惊艳赞叹。
曹原
1996年,曹原在素有天府之国美誉的成都出生,三岁时,他跟随父母举家搬迁至深圳。那个时候的深圳,已经被浓烈的电子氛围所包围着,人们常说90年代的深圳有三多:钱多、人多、电子产品多。自从曹原记事起,他的周围就充满了电子产品。
别的孩子在这座城市接触到的是各种精美的玩具,曹原在这座城市,能够找到却是各种电子产品的元件和线路。小时候,他最喜欢做的事,就是在那些老旧的电子市场淘回来一大堆老物件,将这些东西拆了又装,尤其是里面的电子线路,一直是他的最爱。
实验室
这样的生活氛围与兴趣爱好,为曹原改写世界科学未来进程,埋下了伏笔。2007年,11岁的曹原被选拔入深圳耀华实验学校读书。在整个广东省而言,深圳耀华自成立之初就有着“天才学校”的美誉,凡是能够进入这所中学读书的少年,都有着异于常人的天赋才华。从这所学校出来的差生,只能够读深圳大学;平常学生的初级目标是清华北大;能让耀华中学的优秀学生奋力拼搏的学习目标,都是世界顶尖大学牛津、斯坦福等学校。
曹原
即便这所高校中的学生都是优中选优的尖子生,曹原仍然在同届学生中脱颖而出。所有的课程,他一听就会;他对于课本知识的理解,远超出于老师的教学大纲。下课的闲余时间,曹原利用同龄孩子玩游戏、追明星的时间,进行着一个人的电子元件试验。善解人意的父母为了支持曹原的爱好,专门为曹原在家中搭建了一个实验室,一些小型实验的拆线、安装,曹原一个人就能在家中的实验室完成。
曹原中学照片
曹原这种过人的学习天赋,受到了学校校长的重视,为了让曹原得到最优秀的教育资源,学校为他组建了一支专门的教学团队,帮助曹原迅速学习初中和高中课程的同时,还专门对曹原的创新探究精神进行了培养。仅用了三年的时间,14岁的曹原已经完成了初高中的所有课程,并于2010年参加高考,当年,曹原以669分的高考成绩考入了中国科学技术大学少年班学院。创立于1978年的中科大少年班,从来不缺乏所谓的“神童、天才”,但是曹原的出现,依然让这个传说中的少年班增加了一个传说级的人物。
左一为曹原
曹原成为了老师和同学眼中公认的“大神”,但是,这位大神少年从来没有恃才傲物过,明明已经占到了同龄人科技圈的顶端,曹原仍然用沉稳低调的步伐,完成了自己大学本科的学业。读大学期间,他主动到曾长淦教授的实验室学习,在老师的指导下,他勤勤恳恳地进行石墨烯等方面的理论研究。
2012年,曹原被学校派为首批国际交流生,前往密歇根大学进行学习;2013年,他斩获顶尖海外交流奖学金,并获得了前往牛津大学进行为期两个月科学试验;2014年,曹原在获得学院最高荣誉奖学金的同时,为了继续深造自己的科研理论,他前往美国麻省理工大继续学习。
曹原本科毕业
这个在中国一鸣惊人的天才少年,在这个被称为全球顶尖学术天堂的地方,又将绽放出怎样的光芒?在麻省理工学习期间,他用了4年的时间潜心于研究石墨烯的超导性。其实早在国内读书期间,曹原就已经提出过如何改变材料性质达到超导状态的问题,多年以后,他仍然在坚持这个问题的研究,并且得到了震惊物理界的答案。2017年,曹原在该所学校攻读博士期间,他根据理论推测出:叠加在一起的两层石墨烯会发生巨变,从而能够实现超导体性能。然而,对曹原的这个推测,物理学界的许多大佬嗤之以鼻。
麻省理工学院
他们认为,一个年仅22岁的中国准博士生,竟然仅凭借自己的推测理论,就想要解开“电力物理界的黑暗时代”存在了30年悬而未解的问题,这是天方夜谭。面对这种质疑声与嘲笑,曹原没有丝毫退缩,他信心满满地进行两层石墨烯材料特定叠加实验,即便是在得出正确实验结果之时,曹原仍然花费了6个月的时间,为他确立石墨烯传导理论准备足够多的支撑资料与论文。
就在2018年的3月5日,曹原将自己与石墨烯超导理论有关的两篇论文投稿给《自然》杂志编辑部后,他的论文令全球科学界震动万分。一个名不见经传的年轻少年,竟然凭借一己之力打破了困扰物理学界107年的难题,并让石墨烯超导领域取得了极大突破。
2018《自然》杂志封面
同年,《自然》杂志10大人物封面评选中,整个封面图片竟然是采用石墨烯的碳环结构与数字“10”作为基础设计而成。这本世界顶级学术期刊杂志,迎来了最年轻的中国学者,肯定了曹原对于这个全新物理研究领域的贡献。从此以后,曹原不仅是中国物理学家的骄傲,全球各界物理学家也都知道他的名字。
从那个时候到今天,仍然有无数的顶级大学和科研机构向曹原伸出橄榄枝,甚至希望他能够以教授的身份任职。对于全球顶尖物理机构和大学的邀请,曹原做出了这样的答复:“我学成以后要回到中国的。”他是中国少年,他有着中国少年的雄心壮志,他为当下青年树立了榜样,这样的优秀人,才能够称之为“全民偶像”。
曹原理论成就