首页

职称论文知识库

首页 职称论文知识库 问题

离子交换与吸附期刊投稿

发布时间:

离子交换与吸附期刊投稿

属于化学的有:催化学报分析测试学报分析化学分析科学学报分析试验室分子催化高等学校化学学报高分子学报光谱学与光谱分析化学试剂化学通报化学物理学报化学学报化学研究与应用结构化学理化检验·化学分册色谱无机化学学报 物理化学学报应用化学有机化学中国科学·B辑: 化学 中国稀土学报 属于化工的有:催化学报分析化学感光科学与光化学 高等学校化学学报 高分子材料科学与工程高分子学报高校化学工程学报 工程塑料应用硅酸盐学报合成纤维合成纤维工业 合成橡胶工业化工进展化工学报化工自动化及仪表 化学反应工程与工艺化学工程化学世界化学通报计算机与应用化学精细化工精细石油化工 离子交换与吸附煤炭转化膜科学与技术农药燃料化学学报石油化工塑料工业无机材料学报现代化工橡胶工业应用化学中国塑料中国医药工业杂志zhh1249(站内联系TA)国外有什么好的期刊?myqianbao(站内联系TA)化工进展化工学报国外牛杂志比较多,要看你做那个领域的邱实(站内联系TA)化工三大顶级:AICHECESIND.ENG.CHE.RESyumiao123(站内联系TA)化工学报 化学工程lg8407(站内联系TA)是中文还是英文, 中文:化工学报 英文:chemical engineer science 化工三大顶级:AICHECESIND.ENG.CHE.RES 我下了那么多期刊,好像没这三个。有网站或下载链接吗?yumiao123(站内联系TA)英文的 AICHE CES IND.ENG.CHE.RES 中文的 化学工程 化工学报 都是很好的xiaoyuntm(站内联系TA)中文做理论比较多的就是化工学报了。meihuagong(站内联系TA)化工进展 化学工程 化工学报gzqz(站内联系TA)据师兄讲,化工类最好的就是《化工学报》,《化工进展》也很吃得香。搞传质、精馏、分离方向的《石油化工》也很有必要多留意。

中文化学化工核心期刊

化学类核心期刊:1.高等学校化学学报

2.分析化学

3.化学学报

4.化学通报

5.中国科学.B辑,化学 6.物理化学学报

7.光谱学与光谱分析

8.催化学报

9.理化检验.化学分册

10.应用化学 11.高分子学报

12.有机化学

13.无机化学学报

14.分析实验室

15.色谱

16.冶金分析 17.分子催化

18.分析测试学报

19.化学物理学报

20.计算机与应用化学

21.化学试剂 22.结构化学

23.化学研究与应用

24.化学进展

化工核心期刊:

1.化工学报

2.高分子材料科学与工程

3.石油化工

4.硅酸盐学报 5.高分子学报

6.燃料化学学报

7.中国塑料

8.应用化学

9.无机材料学报

10.化学工程

11.工程塑料应用

2.化工进展

13.现代化工

14.膜科学与技术 15.精细化工

16.高校化学工程学报

17.功能高分子学报

18.功能材料 19.塑料工业

20.化学反应工程与工艺

21.合成纤维工业 22.天然气化工.C1,化学与化工

23.化学世界

24.现代塑料加工应用 25.日用化学工业

26.精细石油化工

27.离子交换与吸附

28.塑料科技 29.合成橡胶工业

30.橡胶工业

31.中国医药工业杂志

32.合成树脂及塑料 33.化工新型材料

34.新型炭材料

35.涂料工业

36.硅酸盐通报

37.塑料 38.计算机与应用化学

39.煤炭转化

40.无机盐工业

41.过程工程学报

精细化工化工进展

色谱还有催化学报容易。

锂离子吸附发表论文

成果简介

精细的结构工程被广泛认为是提高锂存储转换型负极材料电化学性能的有力工具。 本文,中国科学院电工研究所张熊、马伟衍和中国科学院中国科学院大连化学物理研究所吴忠帅等研究人员在《Adv Funct Mater》期刊 发表名为“2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors”的论文, 研究提出了一种通用的静电自组装策略,用于在带负电荷的还原氧化石墨烯上原位合成层状MnO纳米(rGO/MnO)。

通过操作实验表征和理论计算证实了rGO/MnO异质结构的强界面异质结构和稳健的锂存储机制与快速 Li +扩散动力学和高锂吸附能力有关。由于快速的电荷转移、丰富的反应位点和稳定的异质结构,所合成的rGO/MnO负极具有高容量(0.1Ag-1时为860mAhg-1 )、优异的倍率性能(211mAhg-1 at 10 Ag -1 )和循环稳定性。值得注意的是,组装后的活性炭//rGO/MnO固态锂离子电容器(LICs)的柔性软包电池具有194 Wh kg -1的出色能量密度和40.7 kW kg -1的功率密度,两者均是迄今为止报道的最高柔性固态LIC之一。此外,LICs 具有超长的使用寿命,在 10000 次循环后保留率约为 77.8%,并且具有非凡的安全性,表明其具有巨大的实际应用潜力。

图文导读

图1、a) rGO/MnO异质结构的合成路线示意图。b) rGO 和 c) rGO/MnO 的 SEM 图像。d) rGO/MnO 中C、O 和Mn元素的EDS映射图像。e,f) rGO/MnO的TEM图g) HRTEM图像(插入:SAED)。

图2、a) rGO、MnO和rGO/MnO的XRD图谱。b-d) rGO/MnO 的 Mn 2p、C 1s 和 O 1s 的高分辨率 XPS 光谱。e) rGO、MnO和rGO/MnO的FTIR曲线。f) XAS 的 O K 边,g) EXAFS 光谱的 Mn K 边,和 h) MnO 和 rGO/MnO 的 WT-EXAFS 曲线。

图3、rGO/MnO异质结构的电化学性能

图4、a,b) Li +在 a) rGO 和 b) rGO/MnO 上的吸附能和相应的吸附位点。c) 计算的 rGO 和 rGO/MnO 中从初始状态 (IS) 到过渡状态 (TS) 并最终到最终状态 (FS) 的锂扩散势垒。

图5、固态柔性 AC//rGO/MnO LIC 软包电池的电化学性能

图6、a)AC//rGO/MnO LIC软包电池在2 A g -1的不同弯曲条件下2000次循环的柔性性能测试。b) 柔性固态 LIC 软包电池为 100 个红色 LED 供电。c,d) 用于检查柔性固态 LIC 软包电池安全性的测试。

小结

总之,提出了一种通用的界面工程路线,将 卷心菜状MnO纳米锚定在3D rGO“土壤”内,作为 LICs 的优良阳极。这项工作为具有高能量/功率输出的柔性 LIC 器件的实际应用提供了一种可行且可扩展的基于金属氧化物/石墨烯的电极设计策略。

文献:

车东西(公众号:chedongxi)文 | Bear

三星在全固态电池的量产之路上取得了突破性的进展!

日前,三星高等研究院与三星日本研究中心在《自然-能源》(Nature Energy)杂志上发布了一篇名为《通过银碳负极实现高能量密度长续航全固态锂电池》的论文,展示了三星对于困扰全固态电池量产的锂枝晶与充放电效率问题的解决方案。

▲三星在《自然-能源》杂志上发表论文

据了解,这一解决方案将帮助三星的全固态电池实现900Wh/L(区别于Wh/kg的计量单位,因不同材料密度不同,二者不可换算)的能量密度,1000次以上的充放电循环以及99.8%的库伦效率(也可称为充放电效率)。我国目前较为先进的固态电池技术虽然同样也能够实现1000次以上的充放电循环,但在库伦效率方面目前还达不到接近100%的程度。

据论文介绍,三星通过引入银碳复合负极、不锈钢(SUS)集电器、辉石型硫化物电解质以及特殊材料涂层,对固态电池的负极、电解质与正极进行了处理,有效解决了锂枝晶生长、低库伦效率与界面副反应,这三大固态电池量产所面临的核心问题,推动固态电池技术离产业化更进一步。

关键技术的突破,意味着固态电池市场卡位赛的开启,包括松下、宁德时代、丰田、宝马在内的一众玩家磨刀霍霍。可以预见,未来五年,固态电池技术将会成为这些公司技术交锋、产业布局的关键所在。

而三星,则会因为率先实现了技术上的突破,在这场竞赛中拥有相当大的领先优势。

一、全球争夺固态电池新风口 三星率先取得技术突破

固态电池一度被视为最适合电动汽车的电池技术,但这究竟是一种什么样的技术呢?

单从字面上理解,全固态电池意味着将现有电池体系中的液态电解质,完全替换为固态电解质。但在电池产业的定义中,固态电池有着三大技术特征——固态电解质、兼容高能量的正负极以及轻量化的电池系统。

固态电解质很好理解,区别于传统锂电池中所使用的碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯等液态电解质,固态电解质是一种新型的,作为电池正负极之间离子移动通道的材料,目前主要分为三类——聚合物材料、无机氧化物材料、无机硫化物材料。

与液态电解质对比,固态电解质具有高温下稳定、不易燃的理化特性,同时其机械结构也能抑制锂枝晶生长,避免其刺穿隔膜造成电池短路。

同时,常规液态电解质高压之下易氧化的特点对于固态电解质而言也不复存在,因此固态电池可采用能量密度更高、放电窗口更高、电势差更大的正负极解决方案。

而由于固态电池电芯内部不含液体,可以实现先串联后并联组装的方式,减轻了电池PACK的重量;固态电池性质稳定的特点,也可以省去动力电池内部的温控元件,进一步实现动力电池的减重。

上述三大特征所对应的,正是固态电池对比传统锂电池所具有的技术优势。简单来说,就是更高的能量密度、更大的放电倍率、更长的循环寿命以及更加轻量化的电池系统设计。

这些技术优势决定,固态电池将会是未来十年内最适合电动汽车的动力电池,以动力电池产业内部对固态电池量产进度的研判,到2025年之后,固态电池将逐渐成为动力电池领域的主流产品。

可以说,谁抢下了固态电池,谁就抢下了未来十年内,新能源产业发展的先机。

在这一思想的主导下,丰田、宝马、大众等国际一线车企,松下、三星、宁德时代等动力电池企业,甚至是戴森、NGK|NTK等跨界而来的巨头玩家,纷纷涌入固态电池领域,试图通过投资并购、技术合作、独立研发等手段,在固态电池尚未实现产业化之前完成卡位。

▲大众推出了搭载固态电池的奥迪PB18 e-tron

但当这些玩家真正下场布局的时候,固态电池的技术难度远超他们的想象。当下固态电池技术距离量产还需要解决诸多难点,有研究显示,锂枝晶的形成、界面阻抗导致的库伦效率低、固态电解质与正负极产生副反应等问题在固态电池的实验中尤为明显。

三星日前在《自然-能源》杂志上发表的论文,正式针对这些问题提出了解决方案。

▲三星在《自然-能源》杂志上发表论文

首先,三星通过银碳复合材料与不锈钢(SUS)集电器减少了负极锂离子过量不均匀沉积,并采用锂离子迁移数更高的硫化物固态电解质(一般液态电解质锂离子迁移数为0.5,硫化物固态电解质锂离子迁移数为1),减少了电解质中锂离子的沉积,在负极与电解质两个区域内减少了锂枝晶形成的可能性。

其次,三星对NCM正极层进行了LZO涂层的涂覆处理,使用0.5nm的LZO涂层将正极材料与硫化物固态电解质分隔开,并通过LZO涂层自身良好的电导率实现阻抗的减小,用以提升电池系统的库伦效率。

与此同时,LZO涂层与银碳复合材料层的存在也阻断了硫化物固态电解质与正负极产生副反应的可能,最大限度地保证了固态电池在工作过程中的正常表现与可循环性。

通过这套解决方案,三星的全固态电池实现了900Wh/L的能量密度、1000次以上的充放电循环以及99.8%的库伦效率。

而同样在研究固态电池的丰田、松下团队,目前的固态电池技术虽然能做到更高水平的循环次数,但其能量密度仅为700Wh/L,库伦效率也在90%左右。宁德时代的固态锂电池理论上能够做到1000Wh/L以上的能量密度,但在库伦效率方面,同样要弱三星一筹。

三星的这套解决方案有效地克服了固态电池产业化的技术难点,如果以卡位赛的思路来评价三星在众多对手中间的地位,那么三星在固态电池关键技术上的突破,无疑为其赢下了起跑阶段的优势。

二、三星解决锂枝晶生长问题的三大法门

三星在全固态电池研究过程中遇到的第一个难题就是锂枝晶问题,锂枝晶的形成对于所有的锂电池而言,都是不得不面对的问题。

其生成原理是锂离子在负极与电解液中的不均匀沉积,所形成的树杈状的锂离子结晶体,这些结晶体在放电倍率超过电池设计上限以及长期的充放电循环中均有可能出现。

而锂枝晶一旦出现,则意味着电池内部的锂离子出现了不可逆的减少,同时锂枝晶会不断吸附游离的锂离子实现生长,最终可能会刺破隔膜,导致电池正负极直接产生接触引发短路。

曾有观点认为,固态电解质的力学特性能够抑制锂枝晶的生长,阻止其对隔膜的破坏,但实际上,这样的设想并未实现。

有研究显示,通过固态电解质离子通道的锂离子抵达负极时的位置更不均匀,固态电解质与负极界面之间也存在间隙,因此容易造成锂离子的不规则沉积,从而形成锂枝晶。并且在这种情况下,导致锂枝晶出现的电压甚至低于传统的锂电池。

面对这一难题,三星提出了一种三合一的解决方案:

1、银碳复合材料层

三星在硫化物固态电解质与负极材料之间,添加了一层银碳复合材料层。

其充电过程中的工作原理,是在锂离子通过电解质抵达负极最终沉积的过程中,使锂离子与银碳材料层中间的银离子实现结合,降低锂离子的成核能(可简单理解为聚集在一起的能力),从而使锂离子均匀地沉积在负极材料上。

▲银碳复合层(红线部分)在电池结构中的示意图

而放电过程中,原本沉积在负极材料上的银-锂金属镀层中,锂离子完全消失,返回正极,银离子则会分布在负极材料与银碳复合材料层之间,等待下一次充电过程中锂离子的到来。

针对银碳复合材料层是否在锂离子沉积过程中产生了效果,三星团队进行了对照实验。

首先,该团队研究了无银碳复合材料层,负极直接与硫化物固态电解质接触的情况。

当充电率(SOC)50%,且充电速率为0.05C(0.34mAh/cm2)时,尽管锂离子在负极的沉积并不致密,但其沉积物较厚且形状随机,具备生成锂枝晶的可能性。

▲无银碳层时锂离子在负极的沉积情况

并且,在10次完整充放电循环之后,该电池容量与初始容量对比出现了大幅下滑,大约在经历了25次充放电循环之后,电池的容量已经下降至初始容量的20%左右。

▲无银碳层电池电量衰减情况

据三星研究团队分析,这种情况很可能是电池内部产生了锂枝晶,导致活动的锂离子数量大幅减少,从而减少了电池的放电容量。

而在存在银碳复合层的情况下,首次充电过程(0.1C,0.68mAh/cm2)中,锂离子通过银碳层后,在负极形成了致密且均匀的沉积物。

据三星研究团队推测,银碳层中的银在锂离子经过时,与锂离子进行结合,形成银锂合金,降低了锂离子的成核能,并在抵达负极的过程中形成了固溶体,使锂离子均匀地沉积在负极材料上。

▲银离子在多次循环后的分布情况

而在随后的放电过程中,电子显微镜下的图像显示,锂离子100%返回了正极材料,并未在负极材料中存在残留,这意味着本次充放电的过程中,锂离子几乎没有发生损失,也没有存留沉积,避免锂枝晶的形成。

2、SUS集电器负极

银碳复合材料层很大程度上解决了锂离子不均匀沉积的问题,但为了尽可能减少锂枝晶的形成,还需要对电池中“过量”的锂进行削减。

提出这一说法的原因,是因为三星发现被盛传适合作为高能量密度(3,860 mAh g?1)负极材料的金属锂,在固态电池中并不适用。

过量的锂在高电压的作用下很可能会自发聚集,形成锂枝晶。

因此,三星在其全固态电池解决方案中使用了不含锂的不锈钢(SUS)集电器作为负极,作为锂离子的沉积载体和电池的结构体而言,SUS材料的机械强度十分可靠。

并且由于负极材料不含锂,也能够抑制锂枝晶的形成。

3、辉石型硫化物固态电解质

锂枝晶形成的另一处位置是电解质,由于传统电解质锂离子迁移数通常为0.5,过量放电造成的大量锂离子迁移会使锂离子沉积在离子通道内,在长期的循环中有可能形成锂枝晶。

而三星在全固态电池解决方案中使用的电解质是锂离子迁移数为1的辉石型硫化物固态电解质,其锂离子迁移数较一般电解质更大,不容易使锂离子沉积其中,因此也能够抑制锂枝晶的形成。

通过上述三种方法,三星的全固态电池解决方案有效避免了锂枝晶的形成,在其数千次的循环试验中,采用这一方案的固态电池没有形成锂枝晶。

三、特殊涂料解决阻抗问题 充放电效率高达99.8%

针对全固态电池研发的另外两个难点——界面阻抗高引起的库伦效率问题、固态电解质与正负极产生副反应的问题,三星也给出了解决方案。

在固态电池中,固态电极与固体电解质之间会形成固-固界面,与传统电池的固-液界面拥有良好的接触性不同,固体与固体之间的直接接触难以做到无缝。即是说,固-固界面的接触面积要比相同规格的固-液界面接触面积小。

根据接触面积影响离子电导率的原理,接触面积越小,界面之间的离子电导率就越低,阻抗也就越大。

而在相同电压下,阻抗越大,电流也就越小,电池的库伦效率就越低。

不仅如此,固态电解质在与活性正极材料接触的过程中,也会产生界面副反应。

根据加州大学圣地亚哥分校的研究成果,正极锂离子脱嵌过程中产生的氧将会与硫化物固态电解质中的锂产生强烈的静电作用,电解质与正极材料之间阳离子的互扩散会形成SEI膜(一种覆盖在电极表面的钝化层),并在反复的循环中出现增厚、阻碍离子运输的现象。

这一现象也会导致电池的库伦效率降低。

为应对上述两个问题,三星在正负电极方面均进行了处理。

在正极方面,三星通过对正极NCM材料涂覆一层5nm厚的LZO(Li2O–ZrO2)涂层,用来改善正极与电解质固-固界面的阻抗性能。

▲NCM正极材料外涂覆的LZO涂层

与此同时,涂覆的LZO涂层阻断了正极材料与硫化物固态电解质之间的副反应,这使得二者间不会出现SEI膜,库伦效率得到了提升,放电容量的衰减也同时被大幅减缓。

在负极方面,硫化物固态电解质通过银碳层与负极间接接触,界面阻抗同样得到了改善,银离子还能够帮助锂离子完成在负极的均匀沉积,阻抗进一步减小。

而三星使用SUS集电器作为负极材料的另一个原因也是因为SUS集电器与硫化物几乎不产生反应,也就是说负极与硫化物固态电解质的副反应的可能性也被断绝。

除此之外,三星所选用的辉石型硫化物固态电解质拥有与一般液态电解质相同的离子传导率(1-25ms/cm),因此,该电解质本身的导电能力就很强,对于提升库伦效率也有帮助。

在三星研究团队1000次的充放电循环中,该套电池解决方案的平均库伦效率大于99.8%。而在去年7月,我国中科院物理所发表的固态电池解决方案中,其电池的库伦效率大约为93.8%。

四、三星领先一步 其他玩家仍有五年窗口期

三星的全固态电池解决方案,在一定程度上解决了当下固态电池产业化的三大技术难点。关键技术被攻克,意味着固态电池离产业化更进一步,电动汽车能用上固态电池的日子,也变得更近了。

三星研究团队在论文中直言:“我们研发的全固态电池拥有900Wh/L以上的能量密度与1000次以上的充放电循环寿命,出色的性能使得这套解决方案成为固态电池领域的关键性突破,很可能助推全固态电池成为未来电动汽车高能量密度与高安全性电池的选择。”

但需要注意的是,当一家企业宣布完成前瞻性技术关键难点突破的同时,也意味着该企业的技术壁垒正在建立,其他企业的机会则相应缩小。尤其是在电池这类技术优势大过天的产业中,技术壁垒的突破难度不言而喻。

此前,日本锂电材料商日立化成完成碳基负极技术研发,对我国材料企业的封锁时长达到30年之久。

而三星、LG化学、SKI等企业更是早早布局电池上游的隔膜、电解液、电极等领域,培养了自己的供应商体系的同时,将大量专利收入手中,形成了对其他电池企业的封锁之势。

此次三星率先突破固态电池技术难点,势必也会对其他电池企业进行专利封锁,中日韩等动力电池企业突破固态电池难点的技术路径又少了一条。

这就是三星在固态电池卡位赛中,取得先发优势的结果。

但对于三星而言,先发优势并不意味着胜券在握。固态电池的量产对于三星来说,仍有许多难点。

首先,硫化物固态电解质对生产过程的要求极高,暴露在空气中容易发生氧化,遇水易产生 H2S 等有害气体,生产过程需隔绝水分和氧气。

其次,银碳层的规模化投产需要规模不小的贵金属银的采购,成本颇高。

对于近年来盈利状况不佳的三星电池业务而言,新建产线采购贵金属的成本与固态电池量产后的市场之间形成的投入产出比,值得衡量。

因此,在固态电池的风口还未到来之前(业内认为会在2025年小规模量产),其他动力电池企业仍然拥有一段市场与技术的窗口期,固态电池的第一把交椅目前仍然虚位以待。

在日本,松下已经与丰田结盟,在两年之前拿出了700Wh/L能量密度的固态电池解决方案。

国内宁德时代近日公布的专利则显示,其全固态锂金属电池的能量密度理论上能够超过1000Wh/L,中科院物理所也完成了能将固态电池库伦效率提升至93%以上的材料研发。

美国动力电池初创公司Solid Power得到了现代、宝马、福特等车企的投资,宣布将在2026年量产能够用于电动汽车的固态电池。

可以预见的是,未来五年内,动力电池产业将围绕固态电池这一关键技术打响一场暗战。中、日、美、韩的动力电池企业均已入场布局,准备在固态电池风口到来之时,争抢该领域的龙头位置。

结语:固态电池难点被三星攻克

在此前的固态电池研发中,锂枝晶问题、库伦效率问题与界面副反应问题难倒了众多电池领域的研发团队。

但此次三星通过银碳复合材料与SUS集电器负极,有效解决了锂枝晶形成的问题,LZO涂层对正极的包覆也使得电池系统的库伦效率达到了99.8%。

可以认为,固态电池技术的关键难点已被三星攻克,固态电池产品距离量产又近了一步。

这一现象意味着在未来五年的时间里,布局固态电池领域的车企、动力电池供应商以及跨界玩家都将顺着这一思路进行研究,推动固态电池领域实现从研发到量产的突破。

综合入局玩家体量、资本助推以及电动汽车产业的需求三点来看,固态动力电池产业的风口或许很快就会到来。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

其实这里面有几个都可以,具体自己点开链接看

离子交换期刊投稿周期

1 石油化工,2 合成橡胶工业,3 高分子材料科学与工程,4 化学工程,5 橡胶工业,6 质谱学报,7 硅酸盐通报,8 功能高分子学报,9 精细石油化工,10 感光科学与光化学,11 合成纤维工业,12 化学反应工程与工艺,13 精细化工,14 化工进展,15 现代化工,16 光谱实验室,17 功能材料与器件学报,18 合成化学,19 中国塑料,20 膜科学与技术,21 煤炭转化,22 化学世界,23 合成纤维,24 离子交换与吸附,25 化工自动化及仪表,26 塑料工业,27 计算机与应用化学,28 炭素,29 纤维素科学与技术 。投的光谱学与光谱分析期刊什么时候可以被检索3个月。《光谱学与光谱分析》是1981年创办的中文学术期刊,月刊,中国光学学会主办,中国科学技术协会主管,投的光谱学与光谱分析期刊会在3个月可以被检索,期刊主要刊登激光光谱测量、红外、拉曼、紫外、可见光谱、发射光谱、吸收光谱、X-射线荧光光谱、激光显微光谱、光谱化学分析、国内外光谱化学分析最新进展、开创性研究论文、学科发展前沿和最新进展、综合评述、研究简报、问题讨论、书刊评述。

中文化学化工核心期刊

化学类核心期刊:1.高等学校化学学报

2.分析化学

3.化学学报

4.化学通报

5.中国科学.B辑,化学 6.物理化学学报

7.光谱学与光谱分析

8.催化学报

9.理化检验.化学分册

10.应用化学 11.高分子学报

12.有机化学

13.无机化学学报

14.分析实验室

15.色谱

16.冶金分析 17.分子催化

18.分析测试学报

19.化学物理学报

20.计算机与应用化学

21.化学试剂 22.结构化学

23.化学研究与应用

24.化学进展

化工核心期刊:

1.化工学报

2.高分子材料科学与工程

3.石油化工

4.硅酸盐学报 5.高分子学报

6.燃料化学学报

7.中国塑料

8.应用化学

9.无机材料学报

10.化学工程

11.工程塑料应用

2.化工进展

13.现代化工

14.膜科学与技术 15.精细化工

16.高校化学工程学报

17.功能高分子学报

18.功能材料 19.塑料工业

20.化学反应工程与工艺

21.合成纤维工业 22.天然气化工.C1,化学与化工

23.化学世界

24.现代塑料加工应用 25.日用化学工业

26.精细石油化工

27.离子交换与吸附

28.塑料科技 29.合成橡胶工业

30.橡胶工业

31.中国医药工业杂志

32.合成树脂及塑料 33.化工新型材料

34.新型炭材料

35.涂料工业

36.硅酸盐通报

37.塑料 38.计算机与应用化学

39.煤炭转化

40.无机盐工业

41.过程工程学报

褐藻多糖硫酸酯是一类独特的水溶性硫酸杂多糖,具有多种生物活性。研究用复合酶法提取分离羊栖菜褐藻多糖硫酸酯,利用动物试验,分析羊栖菜褐藻多糖硫酸酯和日本厚叶海带、真海带、大连厚叶海带、裙带菜的褐藻多糖硫酸酯对小鼠的降血脂作用。动物实验结果表明,日本厚叶海带、真海带和羊栖菜高剂量组、裙带菜低剂量组的褐藻多糖硫酸酯显著降低了TC、TG水平;大连厚叶海带和羊栖菜低剂量组、裙带菜高剂量组的褐藻多糖硫酸酯显著降低了TG水平;各褐藻多糖硫酸酯组均显著降低了LDL-C水平。比较5种褐藻多糖硫酸酯对小鼠体内抗氧化酶的影响,表明日本厚叶海带和羊栖菜的褐藻多糖硫酸酯各剂量组均显著降低了MDA水平;日本厚叶海带、真海带和大连厚叶海带的高剂量组均显著升高了SOD水平,而羊栖菜和裙带菜褐藻多糖硫酸酯的低剂量组具有同样作用;除羊栖菜低剂量组,其余各组均显著升高了GSH-Px水平;同样,除日本厚叶海带和羊栖菜高剂量组,其余各组均显著升高了NO值。研究结果显示这5种褐藻多糖硫酸酯具有较好的降血脂、抗氧化作用。制作单位是大连海洋大学食品科学与工程学院 国家海藻加工技术研发分中心 辽宁省水产品加工及综合利用重点实验室; 获得海洋公益性行业科研专项项目

楼主急着发表的话,建议楼主到投稿到《广东化工》,一般三天内就会回复作者,如果作者稿件急需处理,当天审阅完毕就可以回复作者发表时间,稿件可以加急处理。可到百度搜索 广东化工 第一个链接,选择在线投稿。也可以通过邮箱投稿:

投稿英文期刊阴离子交换膜

只允许单独的阴离子和阳离子通过,允许阴离子通过时,阳离子不可以通过,允许阳离子通过时,阴离子不可以通过。

离子交换膜是对离子具有选择透过性的高分子材料制成的薄膜,阳离子膜通常是磺酸型的,带有固定基团和可解离的离子 如钠型磺酸型:固定基团是磺酸根 解离离子是钠离子,阳离子交换膜可以看作是一种高分子电解质,他的高分子母体是不溶解的,而连接在母体上的磺酸集团带有负电荷和可解离离子相互吸引着,他们具有亲水性由于阳膜带负电荷,虽然原来的解离正离子受水分子作用解离到水中,但在膜外我们通电通过电场作用,带有正电荷的阳离子就可以通过阳膜,而阴离子因为同性排斥而不能通过,所以具有选择透过性。阴离子交换膜的本质是一种碱性电解质,对阴离子具有选择透过性作用,因此还被称为离子选择透过性膜。一般以-NH3+、-NR2H+或者-PR3+等阳离子作为活性交换基团,并且在阴极产生OH-作为载流子,经过阴离子交换膜的选择透过性作用移动到阳极。阴离子交换膜具有非常广泛的应用,它是分离装置、提纯装置以及电化学组件中的重要组成部分,在氯碱工业、水处理工业、重金属回收、湿法冶金以及电化学工业等领域都起到举足轻重的作用[1] 。近年来,随着新型化学电源的发展,阴离子交换膜作为电池隔膜在液流储能电池、碱性阴离子交换膜燃料电池、新型超级电容器等方面的应用也得到关注和研究。

你把电极反应方程式写一下就清楚了。

可以看到,负极需要消耗掉OH-,而正极反应产生OH-,所以要用阴离子交换膜使得正极产生的OH-迁移到负极,负极的OH-得到补充。假如说采用阳离子交换膜,那么OH-无法迁移,只能是阳离子K+转移,没有什么作用,只会使得电极A处KOH浓度不断变小,而B处KOH浓度不断变大,最终反应会终止。

你想做燃料电池吗

吸附投稿期刊

给期刊投稿一般需要遵循以下步骤:

确定投稿期刊:首先需要确定你的研究领域和研究成果所适合的期刊,可以通过学术搜索引擎或者相关学术网站查找。

阅读期刊的投稿要求和指南:不同期刊的投稿要求和指南可能有所不同,需要仔细阅读期刊的投稿要求和指南,了解期刊的主题、范围、格式和投稿流程等。

准备投稿材料:根据期刊的要求,准备好投稿所需的材料,包括论文、摘要、图表、参考文献等。

提交投稿:将准备好的投稿材料通过期刊的在线投稿系统或者邮件发送给期刊的编辑部。

等待审稿结果:期刊的编辑部会将投稿材料送至专家进行审稿,一般需要等待数周至数月不等的时间,根据审稿结果进行修改和完善。

发表文章:如果文章通过审稿并被期刊接受,期刊将会通知作者并安排发表。

针对吸入之际可以投哪些期刊这一问题,可以采取以下解决方法:首先,可以查阅相关期刊的网站,查看期刊的类型,以及期刊的投稿要求,以确定是否符合投稿要求。其次,可以查阅期刊的审稿流程,以及期刊的审稿时间,以确定是否符合投稿要求。最后,可以查阅期刊的发表率,以及期刊的影响因子,以确定是否符合投稿要求。此外,在投稿之前,还可以查阅期刊的编辑部,以及期刊的编辑团队,以确定是否符合投稿要求。此外,还可以查阅期刊的发表费用,以及期刊的发表政策,以确定是否符合投稿要求。总之,在投稿之前,应该充分了解期刊的类型、审稿流程、发表率、影响因子、编辑部、编辑团队、发表费用和发表政策,以确定是否符合投稿要求。

《中国科学化学》。《中国科学化学》期刊,只要符合投稿原则是好投的,期刊要发表的文章必须未在其他任何地方、以任何形式发表过,不接受“一稿多投”。该期刊是中国科学院和国家自然科学基金委员会,共同主办的化学类综合性学术期刊。

相关百科

热门百科

首页
发表服务