我觉得起码80%吧,不过前提是要尊重数据
这号说,,,简单。。。哦
r方一般0.999说明拟合的好。
在工程设计或科学实验中所得到的数据往往是一张关于离散数据点的表 ,没有解析式来描述 x-y关系。根据所给定的这些离散数据点绘制的曲线,称为不规则曲线,通常用曲线拟合的方法解决这类问题。
拟合优度检验:
主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。
假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。
实证结果R方超过80%太假了。国外的paper里的R方在10%就算不错的了,一般不到10%。
基于R语言实现Lasso回归分析主要步骤:将数据存成csv格式,逗号分隔在R中,读取数据,然后将数据转成矩阵形式加载lars包,先安装调用lars函数确定Cp值最小的步数确定筛选出的变量,并计算回归系数具体代码如下: 需要注意的地方: 1、数据读取的方法,这里用的file.choose( ),这样做的好处是,会弹出窗口让你选择你要加载进来的文件,免去了输入路径的苦恼。 2、数据要转为矩阵形式 3、(la) 可以看到R方,这里为0.66,略低 4、图如何看? summary的结果里,第1步是Cp最小的,在图里,看到第1步与横轴0.0的交界处,只有变量1是非0的。所以筛选出的是nongyangungunPs: R语言只学习了数据输入,及一些简单的处理,图形可视化部分尚未学习,等论文写完了,再把这部分认真学习一下~~在这里立个flag
热图是科研论文中一种常见的可视化手段,而在转录组研究领域,我们常常需要分析一些基因与基因之间的相关性,来判断生物样本中是否存在共表达情况,以及共表达基因模块。除了基因集之间,其他方向,比如免疫细胞群体之间相关性,样本的相关性,也常常用相关性热图的形式进行展示。总而言之,往大了说,任何表征相关性的数值都可以用相关性热图来进行绘制。 常规热图示例 我们先来看看下面这张图,这是一篇发表在 PLoS Medicine (IF = 11.048) 上的文章图,来看 22 种免疫细胞群体之间的相关性,其中红色的颜色代表正相关,蓝色代表负相关。每一格的数字代表相关系数。这是一种经常会用到的图形,不同于常规热图。常规热图中的每行代表一个观察值,每列代表一个样本,而我们在本次教程中,将为大家带来更高级,也更美观的相关性热图。 相关性热图 Step 1: R 包安装和数据输入 首先是安装必须 R 包,在这里我们需要用到 ggcorplot 和 ggthemes 这两个R包。 然后我们读入R表达谱数据。 数据一共有 10 个样本和 20 个基因,每一行为一个基因,每一列为一个样本,我们需要看这 20 个基因在这 10 个样本中的共表达情况,也就是基因和基因之间的相关性。 Step 2: 相关性计算 为了表示基因与基因相关性,我们除了要计算它们的相关性系数,还需要计算体现其显著性的 P 值。 计算相关性系数并显示前 6 个基因之间的相关性。相关性系数大于 0 为正相关,小于 0 为负相关。 计算基因与基因之间的相关性 P 值,其中 P 小于 0.05 认为这两个基因之间相关性是显著的。 Step 3: 相关性热图绘制 使用 ggcorplot 绘制基因与基因之间相关性热图。 Step 4: 初级美化 Circle 美化第一步,我们将矩形热图改成圆形 是不是大家瞬间觉得眼前一亮? Step 5: 中级美化 Clustering 虽然有所美观,但是,这样上面一张相关性热图还是存在问题的,大家是否发现热图中的点非常乱,让人没办法捕捉到其中的规律,不容易让人一眼抓住重点。所以,我们要对基因进行聚类。 这张热图,已经是非常漂亮了,放在文章中绝对让人眼睛一亮,正相关负相关基因清清楚楚。 Step 6: 高级美化 Triangle 当然,我们还可以进一步改善。因为相关性之间其实是有对称在的,左上角和右下角的图其实是一样的,这样绘制比较占版面。只绘制左上角的热图,可以让我们的图看起来没有那么臃肿。 Step 7: 终级美化 Label 那么如何显示相关性强弱呢,虽然颜色和点的大小可以看出来,但是毕竟没有那么直观。所以我们将相关性系数加上,并更改热图颜色。 这样基因相关性热图就相当完美了,可以直接放在文章图中,而且比 PLoS Medicine 那篇文章看起来更漂亮呢。 Step 8: 究级美化 Omit 不过,如果我们想知道哪些基因显著性是小于 0.05 的呢,虽然颜色和点的大小以及相关性系数可以看出来,但是如果被老板们问起,模棱两可的回答,可是相当危险的哦。所以,我们把显著性p值加上,并且直接隐藏 P 小于 0.05 的基因。
还有其他的要求吗?
关于论文怎么写。标准步骤如下 1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录) 3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。...
在r中看函数源代码:在R中,代码可以分为如下几个级别:首先,是你输入了函数对象名称,你可以直接看到代码的,如要获得函数对象fivenum的代码,就只需要在Console中键入函数对象名称fivenum就可以得到如下结果:function (x, na.rm = TRUE){xna <- is.na(x)if (na.rm)x <- x[!xna]else if (any(xna))return(rep.int(NA, 5))x <- sort(x)n <- length(x)if (n == 0)rep.int(NA, 5)else {n4 <- floor((n + 3)/2)/2d <- c(1, n4, (n + 1)/2, n + 1 - n4, n)0.5 * (x[floor(d)] + x[ceiling(d)])}}
一篇论文需要有自己的亮点。《拉丁美洲研究》编辑委员Fiona Macaulay曾经说过:“ 不要把你的亮点藏得像大海捞针一样 ”。 Nomogram就是这样一种可以清晰简洁地展示你的亮点方式。 近年来,Nomogram崭露头角,越来越多地在高质量临床论文中出现。 一张好的nomogram图能给你的论文添加一抹亮色。 Nomogram:中文称为诺莫图或者列线图,是由Henderson于1926年创制的一种预测模型,可以用多个指标诊断疾病、预测疾病预后、预测疾病复发等。 其核心在于对不同的指标分配不同的评分,联合所有评分计算总分,以此进行诊断或者预测。 接下来以一篇食管癌的nomogram为例给大家讲解下nomogram怎么解读。 Nomogram主要有三个部分:评分部分、指标部分和结局部分。 根据病人情况,选择对应指标的评分。 比如我的病人是一个65岁的女性食管鳞癌患者,其病理分级为高级别(G3)期,未进行放疗和化疗,TNM分期为T2 N0,检验淋巴结>13个。 我想要预测下该病人的3年生存率和五年生存率。 针对每个指标,比如年龄、性别、病理类型、放化疗情况等,对应评分部分,如下图。年龄65岁,对应的评分为12分;女性,对应的评分为0分;鳞癌,对应的评分为20分。 每个指标评分完毕后,将各个子分数相加,得到总分。 比如上述患者,相加后总分为150分。 在结局部分,根据150分的总分,分析对应的3年生存率和5年生存率,分别为54%和42% nomogram可用于预测个体患病的可能性;或者用于预测患者3年生存率、5年生存率等;或者用于预测患者复发或者转移的可能性等等。 在肿瘤领域应用最广泛,其他疾病的临床研究也可应用。 最常用的绘制工具是R语言。 最简便的绘制工具是“易侕软件”。 其他软件有SAS等。 在SEER研究中,Nomogram也是常规的一种套路。使用Nomogram发表SEER文章非常常见,也是一种比较快速的发文方法。
《Journal of Informetrics》在2017年11月刊载了一篇文章《bibliometrix: An R-tool for comprehensive science mapping analysis》,该文章介绍了一款用于文献网络分析的R包bibliometrix,相比其他文献计量的R包(如CITAN、hindexcalculator、scholar scientoText)功能方面要齐全很多,而且能够与R中其他的包相互配合使用。下文主要结合作者发表的该篇论文以及bibliometrix的帮助文档 [1] ,对该包的所有函数进行了分类整理 ,目的是与近期学过的vosviewer和citespace进行大致对比,方便以后的学习。 Bibliometrix的函数种类包含了科学知识图谱绘制的主要流程,即数据导入、格式转化、数据清洗与整理、描述性统计、共现矩阵建立、数据标准化、图谱绘制等。 一、数据导入类函数 二、数据格式转换函数 三、数据整理与清洗 四、描述性统计 五、生成矩阵 六、矩阵标准化 七、生成图谱 bibliometrix在前期数据格式转换、数据整理与清洗、矩阵建立与标准化、描述性统计等方面灵活性很大,只要将分析文献集转换为数据框格式,就可以很方便将文献数据过渡到一般性的数据,从而广泛地利用其他R包,但在图谱的展示上存在很大的不足。 【参考】 [1]
作者:(美)菲尔·斯佩克特 译者:朱钰、柴文义、张颖菲尔·斯佩克特1983年在美国德州农工大学获得统计学博士学位,1987年至今在美国加州大学伯克利分校从事教研工作。现任该校统计系的应用程序管理员,为统计系副教授,主讲统计计算课程。迄今已发表多篇关于统计计算和统计软件的论文,并著有三本书,其中data Manipulation with R已翻译成日文出版。
一篇论文需要有自己的亮点。《拉丁美洲研究》编辑委员Fiona Macaulay曾经说过:“ 不要把你的亮点藏得像大海捞针一样 ”。 Nomogram就是这样一种可以清晰简洁地展示你的亮点方式。 近年来,Nomogram崭露头角,越来越多地在高质量临床论文中出现。 一张好的nomogram图能给你的论文添加一抹亮色。 Nomogram:中文称为诺莫图或者列线图,是由Henderson于1926年创制的一种预测模型,可以用多个指标诊断疾病、预测疾病预后、预测疾病复发等。 其核心在于对不同的指标分配不同的评分,联合所有评分计算总分,以此进行诊断或者预测。 接下来以一篇食管癌的nomogram为例给大家讲解下nomogram怎么解读。 Nomogram主要有三个部分:评分部分、指标部分和结局部分。 根据病人情况,选择对应指标的评分。 比如我的病人是一个65岁的女性食管鳞癌患者,其病理分级为高级别(G3)期,未进行放疗和化疗,TNM分期为T2 N0,检验淋巴结>13个。 我想要预测下该病人的3年生存率和五年生存率。 针对每个指标,比如年龄、性别、病理类型、放化疗情况等,对应评分部分,如下图。年龄65岁,对应的评分为12分;女性,对应的评分为0分;鳞癌,对应的评分为20分。 每个指标评分完毕后,将各个子分数相加,得到总分。 比如上述患者,相加后总分为150分。 在结局部分,根据150分的总分,分析对应的3年生存率和5年生存率,分别为54%和42% nomogram可用于预测个体患病的可能性;或者用于预测患者3年生存率、5年生存率等;或者用于预测患者复发或者转移的可能性等等。 在肿瘤领域应用最广泛,其他疾病的临床研究也可应用。 最常用的绘制工具是R语言。 最简便的绘制工具是“易侕软件”。 其他软件有SAS等。 在SEER研究中,Nomogram也是常规的一种套路。使用Nomogram发表SEER文章非常常见,也是一种比较快速的发文方法。
还有其他的要求吗?
作者:(美)菲尔·斯佩克特 译者:朱钰、柴文义、张颖菲尔·斯佩克特1983年在美国德州农工大学获得统计学博士学位,1987年至今在美国加州大学伯克利分校从事教研工作。现任该校统计系的应用程序管理员,为统计系副教授,主讲统计计算课程。迄今已发表多篇关于统计计算和统计软件的论文,并著有三本书,其中data Manipulation with R已翻译成日文出版。