首页

职称论文知识库

首页 职称论文知识库 问题

材料专业发表过的学术论文

发布时间:

材料专业发表过的学术论文

彭家惠性别:男出生年月:1962年10月职称:教授籍贯:重庆巴南学历:研究生学位:工学博士学习工作经历:1979.9~1983.7四川大学化学系本科学习1983.7~1986.8重庆建筑工程学院基础部任教,助教1986.9~1989.6浙江大学材料系研究生学习1989.7~2000.4重庆建筑大学建材系,1991年3月讲师,1995年特聘副教授,1999年特聘教授2000.5~2000.6美国伯克利国家实验室学术交流2003.9~2004.12重庆大学材料学院材料学专业学习获博士学位2000.6至今重庆大学材料科学与工程学院,教授、新型建材研究所所长,2003年获重庆大学优秀青年教师奖,2001.5至今被聘为材料物理与化学博士点学术带头人主要社会兼职:建设部新型建材制品应用技术委员会委员;建筑节能国家级组成员;中国消防标准防火建材技术委员会委员;中国商品砂浆专业委员会委员;中国石膏建材专业委员会委员;中国水泥化学专业委员会委员;《粉煤灰综合利用》编委主持和参加过的主要科研项目:主要从事建筑材料与建筑节能的研究与开发工作,在石膏基材料、脱硫石膏资源化、磷石膏杂质影响机理、硬石膏激发机理、EPS表面无机改性等方面的研究已进入国际前沿。先后承担了26项国家、部、省市级下达的科研项目,主持三项国家自然科学基金项目、10余项省部级项目。论文、专著发表及获奖情况:发表了80余篇学术论文,其中第一作者50篇,SCI收录2篇,22篇被EI收录。石膏基粉刷材料成套技术获建设部科技进步三等奖,被列为国家“九五”科技成果重点推广计划。获奖专利及其他荣誉:获得三项国家发明专利(“外保温砂浆及方法”,专利号ZL01107173.7,第一发明人;“环保型石膏基建筑腻子粉”,专利号ZL03117999.1,第一发明人;“楼面保温隔声材料及其方法”,专利号ZL2005100571653,第一发明人)。学术专长及成果:合作出版了专著、教材两本《夏热冬冷地区建筑节能技术》、《建筑材料性能学》,主编了两本重庆市地方标准《重庆市住宅卫生间设施功能与尺度标准》DB50/T5022-2002、《重庆市住宅厨房设施功能与尺度标准》DB50/T5023-2002,作为主要编写人之一编写了《重庆市居住建筑节能设计标准》DB50/5009-1999、《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001、《重庆市住宅性能评定技术标准》DBJ/T50-040-2005等8部标准。主要研究方向:从事建筑材料与建筑节能的研究与开发工作,在石膏基材料、脱硫石膏资源化、磷石膏杂质影响机理、硬石膏激发机理、EPS表面无机改性等方面的研究已进入国际前沿

跟具体发表期刊有关,但是不错了。虽然影响因子不能完全评价一个期刊的好与坏,但是能在影响因子高的期刊上发文,也是一种被认可的表现。进入2019年以来,材料化学类影响因子(以2018年为准)排名前五的期刊为Nature Reviews Materials, Chemical Reviews, Nature Energy, Chemical Society Reviews和Nature Materials,最高的Nature Reviews Materials影响因子高达74,发文数量为59篇。总发文数量前10名的高校或机构发文情况:其中中国科学院以413篇的发文数量高居榜首,紧随其后的是清华大学(105篇),中科大(74篇)及北京大学(73篇)。中科院如此高的发文数量一方面是因为拥有数量众多的研究所,另一方面是因为中科院作为中国自然科学的最高学术机构,具有很强的攻克科研难题的能力。在高校中清华大学、中科大及北京大学作为中国最高学府,在材料学科的建设与培养中也具有非常亮眼的表现。

教授,博士研究生导师,现任昆明理工大学校长,云南省中青年学术和技术带头人,教育部高等学校机械学科教学指导委员会委员,云南省机械工程学会副理事长、铸造分会理事长,云南省耐磨耐热耐蚀材料协会副理事长,中国机械工程学会磨损及失效预防委员会委员,中国机械工程学会铸造分会委员。1996年获云南省优秀教师称号,教育部第五届霍英东青年教师奖。 研究方向:金属耐磨材料加工、半固态材料加工。主持或参加了国家级、省部级科研项目及企业委托项目10余项,在国内外刊物上发表学术论文50余篇,其中被SCI、EI、ISPT收录论文10篇,获省科技进步奖2项科研成果“控制冷却贝氏体球墨铸铁”及“控制冷却贝氏体耐磨铸钢”实现产业化,取得了显著的经济效益。 教授,博士研究生导师,现任云南省新材料制备与加工重点实验室主任、昆理工鑫博科技有限公司总经理,兼任云南省热处理协会副理事长,云南省技术创新人才。 研究方向:功能材料和有色金属复合材料制备加工一体化新技术研究。先后主持过十二项国家和省部级课题的研究工作,其中国家高技术产业化推进项目一项;国家自然科学基金二项;云南省重大科技攻关项目二项;云南省省长基金一项; 云南省自然科学基金三项;云南省中小科技企业创新基金一项;云南省省院省校合作基金一项;中国有色高校科学基金一项。在国内外刊物或国际会议论文发表论文50余篇,其中有15篇论文分别被SCI,EI,ISTP收录。获得三项发明专利;六项实用新型专利。有五项科研课题通过云南省及有色总公司组织的专家鉴定,为国际先进水平。二项成果获省级科技三等奖。 教授,博士研究生导师,现任学校分析测试中心主任,云南省新材料制备与加工重点实验室副主任,中国材料研究学会理事,中国有色金属学会合金加工学术委员会委员,中国空间材料专业委员会委员。 研究方向:材料成形与加工技术及其工程模拟研究。近年来,主持和参加国家自然科学基金项目,云南省自然科学基金重点项目,云南省计委攻关项目,教育部重点科技项目,云南省自然科学基金项目,云南省教委科学基金项目,国家级教改项目等十余项。研究成果已公开发表50余篇论文,其中被SCI.、EI.收录6篇次,获1999年云南省自然科学三等奖一项,获2004年云南省教学成果一等奖一项,2005年获国家级教学成果二等奖。出版专著《复合带材异步轧制工艺基础及理论研究》一部。合作获发明专利三项。 教授,博士研究生导师。 研究方向:金属间化合物制备研究、机械合金研究、新材料制备研究。主持过云南省自然科学基金重点项目、国家自然科学基金、云南省科技厅国际合作项目、云南省自然科学基金等多项科研项目,发表论文50余篇,获云南省自然科学三等奖一项。 博士、教授,博士研究生导师,现任昆明理工大学教务处处长,兼任全国高职高专人才培养水平评估委员会委员、全国本科教育水平评估专家。 研究方向:材料制备与加工工程、计算机仿真模拟。共完成科研项目24项,先后在国内外学术刊物或学术会议上发表学术论文和专著39篇(本);在国内主持或参加科研项目11项;主讲过8门专业基础课或专业课;独立编写约20万字的教材一本,并参加一本全国高等学校统编教材的编写工作,独立完成其中约5万字的章节。 教授,博士研究生导师。现任校光电子新材料研究所所长,中国物理学会会员,中物理学会光散射专业委员会副主任秘书长,美国材料科学研究会会员,国际拉曼光谱杂志顾问、编委,巴勒斯坦物理学会名誉会员,化学物理学报光谱与光谱分析,光散射学报编委、副主编。研究方向:光电子功能材料物理及应用、钙钛矿结构薄膜、纳米材料、拉曼光谱研究。发表学术论文200余篇,共获中国国家发明奖三等奖中国科学院自然科学二等奖和三等奖,邮电部技术进步三等奖,云南省自然科学技术二等奖六项,获授权专利7项。 研究员,博士研究生导师,现任理学院激光应用研究所所长,中国光学学会全息专业委员会委员,美国工程光学学会SPIE会员。享受国务院政府特殊津贴,2004年9月获全国优秀教师称号,2005年4月获云南省优秀工作者称号。研究方向:信息光学及数字图像处理研究。获云南省自然科学二等奖一项,科技进步三等奖两项;在国内外学术杂志发表研究论文50余篇,被SCI、EI、ISTP、SA等引用60余篇(次);出版专著《激光热处理优化控制研究》和《激光的衍射及热作用计算》两部。 教授,博士研究生导师,现任材冶学院副院长。研究方向:功能材料 纳米材料主持、参加过包括云南省自然科学基金重点项目、国家自然科学基金、国家高技术研究发展计划863计划子课题、国家科技攻关计划及科技型中小型企业技术创新项目子课题、云南省科技厅国际合作项目、云南省自然科学基金等多项科研项目,发表科研论文40余篇,目前国家高技术研究发展计划863计划子课题、云南省科技厅国际合作项目各一项。 博士,教授,博士研究生导师。 研究方向:生物组织工程支架材料。主持过教育部重点项目1项、省自然科学基金和省二层次人才基金4项科研;参与国家基金和省基金8项。承担二层次人才项目“溶胶-凝胶法制备梯度功能材料”的研究,现主持中-意国际合作项目“骨再生纳米复合材料”的研究,《激光与材料表面的相互作用和热场模拟》专著一部,在国内外学术杂志发表论文40余篇,其中属SCI检索源杂志的共10余篇。多年从事激光加工技术的研究和开发;溶胶-凝胶法制备新型催化剂载体、微滤和纳滤材料的研究开发;组织工程支架材料的研究和开发工作。 博士,教授,博士研究生导师。 研究方向:材料加工新技术近十年来,科研工作主要是对连续挤压理论和工程应用进行系统研究,1996年提出了多材料连续挤压复合的工艺原理。自主设计并制造了连续挤压复合工业机型,形成了示范性工艺流程,具有年产1000吨精密异型材的生产能力。根据连续挤压及喷射沉积的发展需求,2004年提出了喷射沉积连续挤压的技术集成思路,将先进的材料制备与成形技术相结合,为高性能材料的短流程、近终形、高成材率的加工提供一种新的方法,属于材料成形技术方面的前瞻性工作,目前在研项目为云南省应用基础研究重点项目“喷射沉积连续挤压高合金材料基础研究”。先后主持省基金、国家基金、云南省重点项目、省科技攻关、浙江省科技攻关等项目的研究工作 教授,博士,博士研究生导师。云南省中青年学术技术带头人后备人才。研究方向:多孔金属材料先后主持国家自然科学基金、云南省自然科学重点基金、国际合作等项目的研究。发表研究论文30余篇,SCI、EI收录10篇,授权国家发明专利5项,出版学术专著一部“有色金属矿产资源的开发及加工技术-加工部分”,出版“多孔泡沫金属”译著一部,获云南省科技进步二等奖1项。目前主要从事多孔金属材料(泡沫金属和金属蜂窝)的研究和开发工作。

北材料专业发表的论文

北大本科生,刚刚凭借在芯片领域的贡献,斩获国际计算机学会(ACM)年度学生科研竞赛总决赛 第一名 (本科生组)!

还收获了来自《人民日报》的点赞。

这位少年名叫 郭资政 ,是北京大学图灵班大四学生,目前已直博本校集成电路学院。

而此次比赛的获奖,在他的科研/竞赛履历中并不是第一次。

此前,他已经作为北京大学超算队的一员,收获世界大学生超级计算竞赛ASC一等奖。

还在DAC、ICCAD、DATE等芯片设计自动化(EDA)领域国际顶会上发表了 8篇 一作论文。

△图源:北京大学

在官微底下,不少网友纷纷为其点赞祝贺。

一作身份发表8篇顶会论文

北大 图灵班 ,是北京大学专为培养计算机科学领域拔尖人才成立的班级,每届学生均是从几千名大一新生中优中选优。

作为图灵班的一员,郭资政在大二时便有机会进入各个课题组体验科研生活。

据北大官微报道,他与EDA之间的缘分就始于前沿计算中心举办的科研轮转活动。

当时大二的他,第一个即选择了集成电路学院林亦波研究员的课题组。刚好林亦波的研究方向是EDA以及EDA算法的GPU/FPGA加速。

EDA的重要性无需赘述,它也叫做芯片设计自动化,是我国“卡脖子”关键技术之一。

不少媒体评价,“谁掌握了EDA,谁就有了芯片领域的主导权。”

而郭资政的主要研究方向,是 EDA中的静态时序分析领域 。作为芯片设计的重要步骤,它是对数字电路的时序进行计算、预计的工作流程,流程中不需要进行仿真。

据他本人主页显示,本科2020年至2022年期间共发表了11论文,其中以一作身份发表8篇,均被EDA领域的国际顶级学术会议和期刊DAC、ICCAD、TCAD等接收。

这当中包括提出的使用GPU加速静态时序分析的算法,首次实现线性时空复杂度、效率提升一百倍的路径分析算法。

此番获奖的论文,叫做Heterogeneous Timing Estimation, Optimization, and Verification for VLSI Circuit Design Automation(用于VLSI电路设计自动化的异质定时估计、优化和验证),被收录于ICCAD 2021。

除此之外,他还将人工智能融入了进来。

比如,将 图神经网络和时序分析引擎 相结合,提出跨越芯片设计流程多个环节的建模技术。

还有像受深度神经网络启发提出了基于可微时序引擎的布局优化算法,据称还是学界首次。

经过优化的布局框架可以在 WNS 和TNS上分别实现最多32.7%和59.1%的改进,并且在 GPU 上运行时都实现了1.80倍的加速。

基于这样的学术表现,他获得了北大最高荣誉 第十三届学生五四奖章 。

毕业之后,他将继续留在本校,在集成电路学院攻读博士学位。

谈及EDA方向的选择,郭资政表示,一方面是国之所需。响应国家的号召,解决国家发展需求的技术难题。

另一方面也是兴趣驱动,跟此前的竞赛经历不无关系。

事实上,在中学时代,郭资政就已经参与到信息学竞赛当中,也凭此获得北大降分录取资格。

而他当年的bzoj提交记录,是这样式儿的。

进入北大之后,他还和队友一起获得过2019年国际大学生程序设计竞赛ICPC区域赛冠军、世界大学生超算竞赛ASC一等奖、ACM SRC@ICCAD学生科研竞赛本科生组第一名,多次获得ICPC/CCPC大学生程序设计竞赛金奖等荣誉。

6位获奖者中5位为华人

值得一提的是,除郭资政以外,在今年SRC全球决赛的6人获奖名单中,还有4人亦为华人面孔。

包括:

另外,在郭资政去年拿到第一名(1st place)的SRC@ICCAD学生研究竞赛中,中国大学亦收获颇丰。

比如浙江大学的本科生Yu Qian,就凭借在内容寻址存储器方面的研究,拿到本科生组第三名。

而研究生组的第一名XiaoFan Zhang,本硕毕业于电子科技大学,目前在伊利诺伊大学香槟分校攻读博士。

研究生组的第三名Qi Sun,则来自香港中文大学,他本科毕业于西安电子科技大学。

可以说,这也是近年来中国大学、华人学生们在世界EDA竞赛中频频崭露头角的缩影。

去年,同样是在EDA领域国际顶会ICCAD的竞赛当中,华中科技大学一举夺魁,以#中国团队拿下EDA全球冠军#的话题冲上热搜,引发不少讨论。

而在2017-2019年期间,福州大学在该项赛事中实现 三连冠 。

ICCAD CAD算法竞赛举办以来产生的30个冠军中,则有 11个 花落香港中文大学。

需要承认的是,在EDA领域,中国仍然面临着“卡脖子”的困境。

但在学术练兵场上,后备力量的光芒亦正在愈发闪亮。

你觉得呢?

参考链接: [1] [2] [3] [4]

— 完 —

校内招聘会跟学校合作比较好的多是到钢铁厂或钢铁研究院。其实现在北京地区的招聘会各个学校都通用,一般都有机会去参加面试,你只要你有能力和学识,即使外校的招聘会去了也很有优势,所以真才实学比较重要。

北京科技大学材料科学与工程学院于1996年10月由材料科学与工程系、金属压力加工系、表面科学与腐蚀工程系、冶金系铸造教研室合并组建而成。1998年12月,应用科学学院的材料物理系、物理化学系无机非金属材料部分并入材料科学与工程学院后,学院成立了材料物理系、金属材料系、功能材料与表面技术系、粉末材料系、表面科学与腐蚀工程系、金属压力加工系、铸造研究所等8个系所。2001年3月,8个系所重新调整为材料学系、材料加工与控制工程系、材料物理与化学系、无机非金属材料系、粉末冶金研究所等4系2所2中心。北科大材料科学与工程研究生就业还是基本上是在研究所和钢企。研究院北京有色金属研究总院 钢铁研究总院 北京航空材料研究院 重庆仪表材料研究所 西北有色金属研究院 中国建筑材料科学研究总院 上海宝钢研究院 中国石化石油工程技术研究院公司首钢总公司 太原钢铁(集团)有限公司 马钢(集团)控股有限公司 重庆仪表材料研究所 马钢(集团)控股有限公司 三一电气有限责任公司 中国冶金科工集团有限公司 中国核电工程有限公司 潍柴动力股份有限公司 三一重工股份有限公司 贝卡尔特超硬复合新材料有限公司

材料专业发表论文

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

1.1原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

1.2PANIF的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

1.4PANIF/rGO复合材料制备

按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

1.5仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

2.1形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

2.2FTIR分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

2.4电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

2.1 研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

2.2 试验与研究

2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

2.3 产品的性能

2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

2.4 产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

在项目建设中,材料的选择直接影响着工程造价,尤其是新型建筑材料的投入往往会使工程造价大幅度增减。下面是我为大家整理的材料工程 毕业 论文,供大家参考。

材料工程毕业论文 范文 一:金属材料工程专业实践教学研究

摘要:通过对实践教学在新形势下的重要性及意义进行阐述,结合沈阳化工大学的发展定位,以化工行业为依托,对金属材料工程专业实践教学模式进行改革,优化专业课程的实践教学,加强校企合作,强化实践教学的管理,构建了完善的金属材料工程专业实践教学体系,努力培养学生创新能力,使其成为高素质应用型人才。

关键词:金属材料工程;实践教学;教学改革;人才培养

沈阳化工大学金属材料工程专业是应社会经济发展需求,尤其是化工行业建设的需求,在原金工教研室师资力量和实验设备条件的基础上,经过充分的论证、申请,于2006年国家教委批准,开始面向全国招生,同年获批材料学硕士学位授予权。在专业建设中,充分发挥化工大学化工行业特色优势及高素质专业教师队伍的优势,不断改革完善培养方案、培养模式,逐步形成了立足行业、与辽宁工业产业紧密衔接、全方位实践创新能力培养的专业特色,专业定位符合本校办学定位和发展方向,已纳入本校专业建设规划并进行重点建设,成效显著。在2013年辽宁省普通高等学校本科专业综合评价中,全省九所学校金属材料工程专业参评,沈阳化工大学的金属材料工程专业排名第二。实践教学是培养本科生理论联系实际,也是培养本科生创新意识和创新能力的主要途径[1]。但近年来,在市场经济的影响下,许多生产企业以影响生产和安全为由不愿接待本科生实习,同时,本科生实习的积极性也不高,导致实习效果不尽如人意。

1金属材料工程专业实践教学的现状

当前我国普通院校本科生 教育 普遍存在的一个突出问题是本科生创新意识差和创新能力不足,动手能力较很弱,难以适应激烈的市场竞争和知识经济的快速发展的需要[2]。而实践教学是培养本科生综合素质,提高本科生解决实际问题的能力,以及促使本科生将所学的理论知识向实际技能转化的环节。通过实践教学可以巩固、加深本科生对所学的理论知识的理解,并能够培养本科生严肃认真的科学态度[3]。高等学校中的传统的金属材料工程专业实践教学通常具有如下特点:首先,本科生实验教学内容主要以演示性、验证性实验居多,综合性实验和设计性实验相对较少,实验教学多以模仿为主,创新内容涉及较少。其次,部分本科生的课程设计和毕业设计与实际生产相脱节,影响本科生的就业竞争力。最后,由于受到现实条件的限制,目前的本科生生产实习和毕业实习主要采取到相关企业生产现场进行观摩教学的方式,大多数本科生很难彻底认识企业生产的组织和实施过程。实践教学环节存在的这些问题制约着本科生创新能力的提高[4],为培养二十一世纪合格的金属材料专业人才,沈阳化工大学金属材料工程专业近年来对金属材料工程专业实践教学体系进行了一系列改革,形成了稳定而有效的实践性教学体系。

2专业课程实验的优化

为培养二十一世纪化工行业合格的金属材料工程专业人才,自2006年以来,沈阳化工大学金属材料工程专业对实验教学内容统筹规划、整体安排。经过几年的改革和实践,建立了具有化工行业特点及金属材料工程专业特色、科学合理的实验教学内容,结合沈阳化工大学的化工特色,针对化工单元设备的主要加工 方法 ,如压力加工、焊接、机械加工及化工单元设备的腐蚀问题。强化金属塑性加工原理、焊接冶金学、焊接工艺与设备、金属腐蚀与防护、金属热处理和材料无损检测等主要专业课程。这些主要专业课程均设置有实验内容,同时优化了验证性实验,增加了综合性和设计性实验的数量,使本科生动手能力得到提高。巩固科研教学资源化的成果,进一步完善校内实践实训基地的建设,创造学生动手操作的条件,培养学生的工程实践能力。此外,金属材料工程专业每年投入一定的资金对现有实验设备进行改造,更新部分专业实验,增加创新性实验硬件条件,增加开放实验室公用设备的种类及台套数。进一步开放实验室,一周至少两天全天开放实验室,保证本科生根据需要自主进行实验。

3加强校企合作,强化实习管理

原有认识实习、生产实习、毕业实习的企业很多设备比较陈旧,几乎没有先进的设备和技术,实习效果大打折扣,为此,近年来金属材料工程专业增加个性化实习,采用校企合作,结合学生的 兴趣 爱好 、就业方向、教师的科研课题以及就业单位的培训等等,分别送学生到企业去学习实践,为方便学生到企业实习,金属材料工程专业先后建立了与沈阳铸锻工业有限公司、富奥辽宁汽车弹簧有限公司、抚顺机械设备制造有限公司等十余家企业的实习基地。通过实习基地,加强了与相关企事业单位的合作,利用其设备开展金属材料工程专业的实践教学,结合企业实际进行企业课程教学、现场教学和案例教学,这样也促使本科生了解金属材料及其相关材料最新的科技发展动态,使本科生具有分析和解决生产中的实际问题的能力。对于本科生毕业论文和设计结合企业实际项目或在实践教育基地、企业开展,校内校外指导教师共同指导,以强化学生综合运用所学知识进行独立分析问题和解决问题的能力。为保证实习效果,加强本科生对实习的重视,金属材料工程专业主任及全体实习指导教师参加实习动员,强调实习过程安全问题,明确每次实习的集合时间、地点、着装和注意事项等。在实习期间,每到一个车间,先请车间主任介绍该车间的典型设备和工艺流程,使本科生在参观前对参观内容有大概了解。实习成绩评定主要依据实习期间的出勤、纪律、实习笔记、 实习 报告 等。通过各方的努力,大大增强了本科生实习的主动性。

4开展创新活动,推进实践教学

鼓励本科生积极开展多样化的科技创新活动[4-5],例如参加教师的科研项目以及各类大学生竞赛等。通过组织各种类型、各种形式和不同层次的课外活动,将各类工程实践活动、创新实践训练、学科竞赛活动、学术前沿讲座、 社会实践 、公益活动等课外活动作为第二课堂课程模块纳入到课程体系中统一实施和管理。近年来,金属材料工程专业参赛学生项目获第三届全国机械创新设计大赛国家二等奖一项;“第十一届挑战杯”全国大学生课外学术科技作品竞赛国家三等奖一项;2011年、2013年分别获全国大学生英语竞赛三等奖、二等奖各一项;省级奖项几十多项。通过创新竞赛的开展,培养了学生的创新能力,同时也提高了教师指导学生创新的积极性,活跃了创新教育的氛围,为金属材料工程专业学生的个性发展提供平台,为学生毕业后从事科学研究活动奠定了一定的基础。

5结论

当今,素质教育快速发展[6-7],金属材料在化工行业中占有举足轻重的地位,为培养二十一世纪化工行业合格的金属材料专业人才的需要,我们将继续优化实践课程建设,建设具有化工行业特点及金属材料工程专业特色、科学合理的实践教学内容,努力培养学生创新能力,使其毕业后能在化工企业、高等学校或科研院所从事金属材料及金属基复合材料的研究、成分-工艺及设备设计、组织和性能检验、生产制造、技术开发和经营管理等方面工作的高素质应用型人才。

参考文献

[1]胡宗智,吴敏,王燕,等.依托地域优势开展金属材料工程专业生产实习的创新实践[J].中国电力教育,2011(2):129-130.

[2]甄睿,蔡璐.应用型本科院校金属材料工程专业人才培养和教学改革的思考[J].南京工程学院学报:社会科学版,2009,9(4):65-68.

[3]胡宗智,邹隽,孙小华,等.金属材料工程专业创新型人才培养实践教学体系研究[J].中国电力教育,2013(26):98-99.

[4]王荣,杨爱民,张骁勇,等.关于我校金属材料工程专业建设的思考[J]. 人力资源管理 ,2010(1):46.

[5]王生朝,蔡素莉,高泽平,等.金属材料工程专业实践性教学改革研究[J].湖南工业大学学报,2011(5)98-101.

[6]孙建春,陈登明.金属材料工程专业实习教学的改革实践[J].中国冶金教育,2009(4)55-57,60.

[7]孙小华,胡宗智,黄才华,等.金属材料专业综合实验教学改革与实践[J].中国电力教育,2013(14)118-119.

材料工程毕业论文范文二:高分子材料工程硕士创新实验能力培养

摘要:

结合国内外的工程硕士教学现状,通过分析国内工程硕士的课题研究方向和企业需要解决的问题存在脱轨现象、上理论课时间不足等问题,在借助于国外先进 经验 的基础上,提出了双导师制、灵活培养模式,确保创新实验能力培养的效果,为企业培养“留得住,用得上”的高分子材料工程实践实力和创新能力的应用型高级人才。通过对工程硕士创新实验能力培养模式的实践与探索,使工程硕士研究生在理论知识和动手能力及 创新思维 积累方面得到一定的提高。

关键词:工程硕士;创新实验能力;培养模式

研究生培养作为高校培养人才的重要一环,其培养模式的探索与研究一直都受到高度重视[1,2]。在我国经济体制转型期,高层次复合人才在传统工矿企业和工程建设部门需求非常大,国家为了弥补学术型硕士实际操作能力相对较弱的特点,1997年国务院学位委员会正式批准设置工程硕士专业学位,而工程硕士创新实验能力培养又成了该领域的重要研究课题。

1国内外研究现状分析

美国的工程类硕士教育起源,可追溯到第二次世界大战以后。二战后,新知识、新技术、新材料、新工艺层出不穷,工程活动的涉及层面迅速拓宽,复杂性与日俱增,对工程教育产生了极大的影响[3]。其工程类硕士培养的最大特点就是面向专业实践应用而非学术研究,培养目标是未来设计和开发的工程师。美国自开展工程硕士教育以来,逐步形成了独特的、多样性的培养模式[4]。在美国学校工程类硕士培养的模式主要为培养方式的不同,如本硕连读制、远程教育三年制等,但其课程标准与学位要求是统一的,都必须遵循美国工程技术鉴定委员会(ABET)和各专业学会(协会)提供的统一的专业认证标准[5]。英国的硕士学位教育分成两种类型[6]。一种是给予课程学习的硕士,称为MSC(MSCourse);另一种是基于研究工作的硕士,称为MSphil(MSphilosophy)。此外,还有一种类似我国工程硕士的研究工程师学位。英国工程教育是以让毕业生取得专业头衔(即专业资格)为主要目标。经过20多年的发展,英国的专业资格已经把学术资格和职业资格融为一体。严格的入门要求、多样化的候选资格,加上灵活的注册路线,保证了专业资格的质量。我国工程硕士教育从1984年提出,经历了从试点到奠定工程硕士人才培养模式的阶段。自从奠定了人才培养模式后,工程硕士教育从9个培养单位、10个工程领域、年招生1千多人,发展到2004年的180个培养单位、38个工程领域、年招生3万多人、在校生10万余人。从发展的势头看,工程硕士教育充满着活力。为使工程硕士专业学位规范管理、稳步发展,经中华人民共和国国务院学位委员会考核验收,已下发(1997)57号文批准全国70多所高校具有工程硕士学位授予权,如清华大学、哈尔滨工业大学、华中科技大学、中南大学、北京航空航天大学、华南理工大学等。总的来说,大多数高校都形成了自己的办学特色[7,8],以培养高级应用型工程技术人员为目标,经过多年发展经验[9],目前工程硕士培养模式。相比国外,现在国内开设工程硕士培养点的高校数量在大幅度增加,但在实际培养过程中很多高校对工程硕士资格认证标准重视不够[10,11]。就目前高分子材料工程工程领域来说,工程硕士研究生专业人才培养模式的主要缺点是:没有将工程硕士的课题研究方向和企业需要解决的问题有机的结合起来,存在脱轨的问题,在定课题方向时,把企业摆在可有可无的位置上,研究生研究的课题与生源单位生产技术不搭。学生在企业工作很忙,无法保证上理论课时间等问题。针对出现的这些问题,我们高分子材料加工硕士点拟逐步摸索出一种新型的双导师制、灵活培养模式。让学生充分利用学校与企业资源平台,培养出符合社会需求的创新性人才。本课题以高分子材料加工领域工程硕士人才培养模式为样本进行研究,课题完成鉴定后推广到我校 其它 研究生专业。

2主要研究内容

本课题拟通过课程体系改革、授课方式改革、学位论文形式改革、课题来源研究内容改革等进行研究,培养出在高分子材料工程领域创新实践能力强的应用型高级专门人才。其主要研究内容。

2.1课程设置体系研究

由于工程硕士自身特点即能够来上课的时间很少,生产实际经验丰富。本项目改革是想在时间少的情况下,使学员学到更多的东西,并发挥各自的长处。在课程设置体系设置上改革以往只注重在理论教学,必修课多的特点(至少17学分)。根据学生所在生产岗位需要多增加一些选修课(原来是11学分)。并在传授专业理论知识过程中,加强对学生创新思维的培养。

2.2授课形式及方式研究

目前的工程硕士大多都在生产岗位作领导工作,工作很忙,集中上课存在的难度很大,本项目拟采取的办法:远程网络上课(视频和师生互动交流上课),即课件点播、在线答疑、在线辅导、同步和异步讨论、在线测试、专家讲座等方式。即用时下流行的BBS进行提问和沟通。

2.3学位论文形式改革

由于目前工程硕士学位论文形式比较单一,通常采用撰写“大论文”方式。依据此问题本次改革拟采取的办法为:学位论文形式:产品研发、工程设计、应用研究、工程/项目管理、 调研报告 。

2.4课题来源研究内容改革研究

现在学生的课题大多源于校内导师课题,这与研究生所从事的专业严重脱节,针对这一问题本项目拟采取的办法:校企联合培养,针对企业具体问题,进行研究。校企联合培养模式是一种以培养学生的全面素质、综合能力与就业竞争能力为重点,利用学校与企业两种不同的教育环境和教育资源,采取课堂教学与学生参加实践有机结合的方式,培养适合不同用人单位需要的、具有全面素质与创新能力人才的教育模式。而校企联合培养模式与传统高校培养模式的根本区别在于,校企联合办学的人才培养目标是以应用能力培养为主线,依托行业发展,构建适应新材料发展的以生产技术为导向的“零距离”实践教学体系、与生产“零距离”接轨的教材体系、基于解决生产实际问题需求的“零距离”素质拓展培养体系,能实现学校、企业、学生三方共赢。由此,我们将努力尝教授走进企业,老板走进校园,企业员工(学生)走进实验室的目的。

2.5导师管理改革

学位论文是综合衡量工程硕士培养质量的重要标志,应在导师的指导下,由攻读工程硕士学位者本人独立完成。学位论文由学校具有工程实践经验的硕士导师与工程单位选派的责任心强的具有高级技术职称的技术人员联合指导。

3创新实验能力培养模式

工程硕士学位研究生教育的科学发展取决于其适应社会需求的程度,而如何深化高校与企业之间的互动关系则是目前症结之所在。材料学院就这一问题采取了如下 措施 :

(1)聚焦企业需求,创新工程硕士教育的办学理念随着工程硕士培养规模的不断扩大,我们不断更新工程硕士教育的办学理念,将以服务企业为宗旨贯穿于工程硕士培养之中,为企业培养“留得住,用得上”的高层次应用型人才。对于校企合作培养的研究生,可以自带科研课题。即工程硕士可以带自己单位的科研课题,课题的完成可以利用学校和企业的现有实验条件完成。学校具有良好的实验教学基础条件和高水平教师,实验室开放运行,资源共享。

(2)量身定做相比于一般的研究生,工程硕士生的知识背景更具多样性,在培养过程中应力争实现“量身定做、量体裁衣”,针对不同的行业和学生,学生可以选择自己从事工作领域的课题。从而更好地满足企业需要,满足各领域工程建设和发展需要。如我们2011级有名学生来自于威海碳纤维厂,他做的课题是“PAN。

材料工程毕业论文相关 文章 :

1. 材料工程学论文

2. 工程硕士毕业论文范文

3. 化工专业毕业论文范文

4. 建筑工程毕业论文范文

5. 优秀毕业论文范文

材料专业论文发表

期刊发表 有问题可以追问我

1首先要通过你的领导和老板许可后才能投稿,不能乱投!2按照《材料科学与工程学报》期刊要求的格式编辑你的论文,论文格式要求在他们网站就能找得到。3根据要求编辑好你的论文后发到指定邮箱,如果他们对你的论文感兴趣会跟你联络的。

可以发表的刊物很多,主要看你对期刊级别有什么要求。普通期刊像《科教导刊》《文教资料》等等刊物可以

材料类专业论文发表

比较难。其对稿件有比较严格的要求:1、论文初稿,先经过编辑部严格甄选,然后送交合作编辑初审,预审通过后方可安排,2、内容应为原创未曾发表过或被其他出版物刊载过,且无一稿多投,3、引用他人成果时,请按《著作权法》有关规定说明出处,作者提交时需确保无版权纠纷,4、期刊论文参考文献最近三年应占60%以上,且不低于10条,5、论文重复率低于20%。建议一般用自己老师的账号和密码登录投稿,因为审稿时,系统可以检索通讯作者己发表的论文,如果你的导师是大佬,会立马送审。如果是一个小白投稿,立马拒稿。

材料科学啊,现代物理啊都行

1首先要通过你的领导和老板许可后才能投稿,不能乱投!2按照《材料科学与工程学报》期刊要求的格式编辑你的论文,论文格式要求在他们网站就能找得到。3根据要求编辑好你的论文后发到指定邮箱,如果他们对你的论文感兴趣会跟你联络的。

相关百科

热门百科

首页
发表服务