首页

职称论文知识库

首页 职称论文知识库 问题

量子科学论文发表时间

发布时间:

量子科学论文发表时间

作者 | 陈欢欢

近日,光量子计算和大尺度光量子信息处理两项成果双双入选中国科学院“率先行动”计划第一阶段59项重大 科技 成果及标志性进展。

8月16日,世界首颗量子科学实验卫星“墨子号”迎来4岁生日。在距离地球500公里的轨道上,这颗超期服役2年的“老”卫星仍然捷报频传。

6月15日,中国科学院院士、中国科学技术大学教授潘建伟领衔的合作团队在《自然》发表论文,在国际上首次实现了基于纠缠的无中继千公里级量子保密通信。这也是“墨子号”4年间产生的第5篇《自然》《科学》论文。

随着一项项科学实验的成功,卫星量子通信的应用前景日益清晰。

战略布局占先机

7月23日,美国能源部公布报告,规划了美国“量子互联网”战略蓝图。欧盟早在2016年也提出过“欧洲量子技术旗舰计划”,打算用10年建成量子互联网。

可喜的是,我国在这一领域,相关基础研究和工程技术水平都处于国际引领地位。

今年3月,我国科学家刚刚创造了光纤量子通信509公里的新纪录。同时,“墨子号”保持着星地之间1200公里量子通信的世界纪录。“墨子号”和“京沪干线”的成功实施,构建了国际首个天地一体的广域量子通信网络雏形。

之所以能“起个大早、赶个早集”,得益于潘建伟的战略眼光与布局。

量子 科技 研究主要集中在量子通信、量子计算和量子精密测量等领域,有多光子纠缠、光量子计算、超冷原子量子模拟、光晶格量子模拟、量子中继器等诸多方向。

这么多学科方向,一个人不可能包打天下。从单枪匹马到带领一支近百人的团队,潘建伟用了10多年时间。

本世纪初,量子 科技 在中国还颇为冷门。潘建伟也面临着学科方向不被理解、申请经费四处碰壁的困境。

在人手紧缺的情况下,他却果断地把优秀学生纷纷送走。德国海德堡大学、奥地利因斯布鲁克大学、美国斯坦福大学、英国剑桥大学、瑞士日内瓦大学……这些量子科学和技术顶尖团队所在地,都留下了潘建伟弟子学习的身影。

如今,各研究室独当一面的负责人正是当年那些漂流四海的年轻人。

“墨子号”量子纠缠源分系统主任设计师印娟的成长路线却略有不同。

2002年,大二结束的暑假,印娟来到潘建伟实验室,成为实验室第一位女生,从此再没有离开。

2017年,“墨子号”千公里级星地双向量子纠缠分发实验成功,以封面论文的形式发表在《科学》,印娟成为团队里第一个同时拥有《自然》和《科学》第一作者身份的科学家。

善于布局,也安心等待。这样的一支团队,一出手就是“大”成果不足为奇。

敢想敢干出奇迹

“墨子号”科学应用系统主任设计师任继刚,至今仍清楚地记得读博时第一次听潘建伟作报告的情景。“太神奇了,就像听一个科幻故事。”他回忆说。

在场的很多人可能也跟任继刚一样,把量子 科技 当成科幻故事。而作报告的那个人却是认真的。

2003年,潘建伟陷入量子通信研究瓶颈。由于光子在光纤传输时损耗太大,传输100公里只剩下1%的信号到达接收端。而外太空因为几乎真空,光信号损耗非常小,潘建伟破天荒地提出了“上天”这个“大胆且疯狂”的方案。

当时,他向博士生彭承志科普量子通信的发展前景,当说到需要通过太空实现长距离传输时,彭承志认为“这是一个遥不可及的梦想”。他问潘建伟:“这个事,是不是挺牛的?”潘建伟想了想,很肯定地回答:“肯定牛,是世界上最牛的,至少是之一。”

带着这样的信念,他们在合肥大蜀山山顶开始了第一个实验,于2005年实现了13公里的量子纠缠分发。这个传输距离超过了大气层的等效厚度,从而证实了远距离自由空间量子通信的可行性。

2009年,团队在青海湖开展百公里量子纠缠分发实验。当时,团队里的3位主力——2007年博士毕业的任继刚、2009年博士毕业的印娟、2010年将要博士毕业的廖胜凯,后来分别成为“墨子号”3个分系统主任设计师。

岛上通信信号极差,几位年轻人没什么消遣,晚上做实验,白天借着搭建的无线网桥开例会。2012年,团队在国际上首次实现百公里量级的自由空间量子隐形传态和纠缠分发。

2017年,利用“墨子号”,他们将量子纠缠分发的距离再提高一个量级,达到1200公里。

从大蜀山的13公里到天地间的上千公里,潘建伟团队一步一个脚印,从无到有地验证了量子通信的可行性。

“率先行动”很给力

中国科学院院士、 科技 部原部长徐冠华曾公开指出,我国对自身科学研究能力不自信,“在 科技 项目的确定过程中,习惯于拒绝支持有争议的项目,排斥没有国外先例的研究”。

当年的潘建伟,面对的就是这样的窘境。

2003年,潘建伟首次提出利用卫星实现自由空间量子通信的构想。这个“前无古人、闻所未闻”的想法立即遭到多方质疑:量子信息科学,欧洲美国都刚刚起步,我们为什么现在要做?

这个“不靠谱”的计划却获得了中国科学院的支持。2011年底,中国科学院空间科学先导专项正式立项“量子科学实验卫星”,自此打开了量子世界的大门。

2014年,中国科学院启动实施“率先行动”计划,给“墨子号”研制团队带来了“集团军”的支持。

当年10月,中国科学院量子信息与量子 科技 前沿卓越创新中心率先成立,2017年5月更名为量子信息与量子 科技 创新研究院。

这使得中国科学技术大学同中国科学院上海技术物理研究所、微小卫星创新研究院、光电技术研究所等都有了更加紧密的合作关系。

中国科学院上海技术物理研究所研究员、量子科学实验卫星工程常务副总师王建宇曾比喻称:星地间量子纠缠分发的难度,就像在太空中往地面的一个存钱罐里扔硬币,而且天空中的“投掷者”相对地面上的“存钱罐”还在高速运动。

在“率先行动”计划的支持下,这样一项看似“不可能的任务”最终顺利完成。“我们的合作体现出了创新研究院的价值,那就是集中力量干大事。”潘建伟说。

中国科学院院长、党组书记白春礼评价称,“墨子号”为中国在国际上抢占了量子 科技 创新制高点,成为了国际同行的标杆,实现了“领跑者”的转变。

天时、地利、人和,量子团队的下一个“惊喜”也许很快就会到来。

《中国科学报》 (2020-09-10 第1版 要闻)

量子理论是普朗克提出来的。

1900年,德国柏林大学教授普朗克首先提出了“量子论”。 1900年12月14日,普朗克在柏林的物理学会上发表了题为《论正常光谱的能量分布定律的理论》的论文,提出了著名的普朗克公式,这一天被普遍地认为是量子物理学诞生的日子。

马克斯·普朗克(1858年-1947)在1900年首先形成了他的量子论。这一理论如同5年后爱因斯坦发表的相对论一样,对物理学产生了深远的影响。

量子力学要点

基本描述:波函数。系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。

粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图像,而采纳一种模糊的概率图像,这也是量子力学的核心。

量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。 1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。 1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。 在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。 由于观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式,海森堡还提出了测不准原理。1926年,苏黎世大学的奥地利物理学家薛定谔发展了另一种形式的量子力学—波动力学。1925年10月,薛定谔得到了一份德布罗意的关于物质波的博士论文,从中受到启发。将电子的运动看作是波动的结果,其运动的方程应该是波动方程,方程决定着电子的波动属性。1926年薛定谔连续发表了4片关于量子力学的论文,标志着波动力学的建立。薛定谔的理论一提出来就受到物理学奖的普遍关注和赞赏虽然海森堡的矩阵力学和薛定谔的波动力学出发点不同,从不同的思想发展而来,但它们解决同一问题是得到的结果确实一样的。两种体系的等价性也由薛定谔等人所证明,当然更高层次的证明是由英国物理学家狄拉克进行的,这将在后面有所涉及。由于海森堡和薛定谔在量子力学建立开创性的工作,他们分别获得了1932年、1933年的诺贝尔物理学奖。1926年,玻恩把薛定谔的波动方程用于量子力学的散射过程,从而提出了波函数的统计解释,量子力学才真正从一大堆的假设中找到了科学道理。玻恩认为只有薛定谔的那种形式才能对非周期性的现象给出简单的描述。经过充分的研究后,玻恩指出薛定谔的波函数是一种概率的振幅,它的模的平方对应于侧到的电子的概率的分布这个解释的确给我们一个清晰的图像,在电子衍射时,后面的屏上电子的分布确实是电子的波函数叠加的结果,电子射到某点的概率完全可以计算出来。实验的结果与理论符合的很好。量子力学到此可以说是基本的框架已经建立,后面还有很多需要完善的地方。狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式;希尔伯特在1927年4月发表的一片文章中,将狄拉克和约尔丹观念表述的更为清楚;海森堡在1927,又提出了微观现象的测不准原理;1929年海森堡和泡利提出相对论性量子场论等。到现在量子力学理论已经相当丰富,然而完善工作还在由世界各地的理论物理学家们继续进行着。在将来,或许会有更好的理论代替量子理论,这需要我们以后的理论工作进一步辛勤无私的奉献。

量子力学论文发表时间

樱井纯(Jun John Sakurai, 1933年1月–1982年11月),日裔美籍理论物理学家。1933年出生于东京, 1949年以高中生的身份来到美国。1955年取得哈佛大学学士学位,1958年在康奈尔大学获得博士学位。之后担任芝加哥大学物理系助理教授,并于1964年成为教授,1970年转到加州大学洛杉矶分校担任教授。1982年在日内瓦欧洲核子研究中心(CERN)做访问教授期间不幸遭遇车祸,英年早逝。《现代量子力学》是樱井纯的一部遗作,他只完成了三章,剩余手稿由夏威夷大学的段三复教授整理续写完成。该书自第1版问世至今,相继被世界各地的多所高校用作量子力学和高等量子力学的研究生教材,广受好评。

量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。 1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。 1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。 在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。 由于观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式,海森堡还提出了测不准原理。1926年,苏黎世大学的奥地利物理学家薛定谔发展了另一种形式的量子力学—波动力学。1925年10月,薛定谔得到了一份德布罗意的关于物质波的博士论文,从中受到启发。将电子的运动看作是波动的结果,其运动的方程应该是波动方程,方程决定着电子的波动属性。1926年薛定谔连续发表了4片关于量子力学的论文,标志着波动力学的建立。薛定谔的理论一提出来就受到物理学奖的普遍关注和赞赏虽然海森堡的矩阵力学和薛定谔的波动力学出发点不同,从不同的思想发展而来,但它们解决同一问题是得到的结果确实一样的。两种体系的等价性也由薛定谔等人所证明,当然更高层次的证明是由英国物理学家狄拉克进行的,这将在后面有所涉及。由于海森堡和薛定谔在量子力学建立开创性的工作,他们分别获得了1932年、1933年的诺贝尔物理学奖。1926年,玻恩把薛定谔的波动方程用于量子力学的散射过程,从而提出了波函数的统计解释,量子力学才真正从一大堆的假设中找到了科学道理。玻恩认为只有薛定谔的那种形式才能对非周期性的现象给出简单的描述。经过充分的研究后,玻恩指出薛定谔的波函数是一种概率的振幅,它的模的平方对应于侧到的电子的概率的分布这个解释的确给我们一个清晰的图像,在电子衍射时,后面的屏上电子的分布确实是电子的波函数叠加的结果,电子射到某点的概率完全可以计算出来。实验的结果与理论符合的很好。量子力学到此可以说是基本的框架已经建立,后面还有很多需要完善的地方。狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式;希尔伯特在1927年4月发表的一片文章中,将狄拉克和约尔丹观念表述的更为清楚;海森堡在1927,又提出了微观现象的测不准原理;1929年海森堡和泡利提出相对论性量子场论等。到现在量子力学理论已经相当丰富,然而完善工作还在由世界各地的理论物理学家们继续进行着。在将来,或许会有更好的理论代替量子理论,这需要我们以后的理论工作进一步辛勤无私的奉献。

狄拉克(1902—1984)是英国物理学家。1902年8月8日诞生在英格兰布里斯托尔。 狄拉克在职业学校上中学,1918年毕业后考入布里斯托尔大学电机系。1921年大学毕业,获电气工程学士学位。1923年考入剑桥大学圣约翰学院当数学研究生。1925年开始研究由海森伯等人创立的量子力学,1926年发表题为《量子力学》的论文,获剑桥大学物理学博士学位,应邀任圣约翰学院研究员。1929年周游各国,作学术访问,先在美国逗留了五个月,后来和海森伯一起访问日本,再横贯西伯利亚,回到英格兰。1930年选为英国伦敦皇家学会会员。1932到1969年,狄拉克任剑桥大学数学教授。他还担任过美国威斯康星大学、密执安大学、普林斯顿大学、迈阿密大学等有名学府的访问教授。1933年狄拉克和薛定谔一起分享当年度诺贝尔物理学奖金。1971年起任剑桥大学荣誉教授,兼任美国佛罗里达州立大学物理学教授。 1984年10月24日逝世。终年82岁。 二、科学成就 狄拉克对物理学的主要贡献是发展了量子力学,提出了著名的狄拉克方程,并且从理论上预言了正电子的存在。 狄拉克原来从事相对论动力学的研究,自从1925年海森伯访问剑桥大学以后,狄拉克深受影响,把精力转向量子力学的研究。1928年他把相对论引进了量子力学,建立了相对论形式的薛定谔方程,也就是著名的狄拉克方程。这一方程具有两个特点:一是满足相对论的所有要求,适用于运动速度无论多快电子;二是它能自动地导出电子有自旋的结论。这一方程的解很特别,既包括正能态,也包括负能态。狄拉克由此做出了存在正电子的预言,认为正电子是电子的一个镜像,它们具有严格相同的质量,但是电荷符号相反。狄拉克根据这个图象,还预料存在着一个电子和一个正电子互相湮灭放出光子的过程;相反,这个过程的逆过程,就是一个光子湮灭产生出一个电子和一个正电子的过程也是可能存在的。1932年,美国物理学家安德森(1923-)在研究宇宙射线簇射中高能电子径迹的时候,奇怪地发现强磁场中有一半电子向一个方向偏转,另一半向相反方向偏转,经过仔细辨认,这就是狄拉克预言的正电子。后来很快又发现了γ射线产生电子对,正、负电子碰撞“湮灭”成光子等现象,全面印证了狄拉克预言的正确性。狄拉克的工作,开创了反粒子和反物质的理论和实验研究。 狄拉克是量子辐射理论的创始人,曾经和费米各自独立发现了费米-狄拉克统计法。狄拉克还在美国佛罗里达州立大学发表过大量有关宇宙学方面的论文,推动宇宙学研究的发展。特别值得一提的是,狄拉克早在本世纪三十年代,就从理论上提出可能存在磁单极的预言。近年来有关磁单极的理论研究和实验探测取得了迅速发展。1982年国外已有报道,宣称有人发现了磁单极存在的证据。当然,假如真能从实验上证实磁单极存在,一定会引起物理理论的深刻变化。 他的主要著作有《量子力学原理》于1929年出版。

撒苦辣,是中文的发音,意思是樱花的意思。我们现在就在学这个老男人的书,所以我算是知道。但是这个时隔4年,不知道你还能看见不。他在加州大学洛杉矶分校当教授,知道突然去世。他老婆帮他整理遗物的时候,看到这《现代量子力学》的遗稿。他只写了三章,剩下的就是草稿和精心修改的备课笔记。他朋友以他的名义,出了书。就是以狄拉克符号为思想的量子力学书。用量子力学方式来思考的书。

量子科学论文发表

量子通信到底是咋回事呢?首先,量子通信的基础是量子力学,而量子力学的叠加、测量、纠缠三个特性是反直觉的,令我们难以理解,其实当年的科学家们对此也有过激烈的争论。随着研究的深入,量子力学的这三个特性被无数次实验所证实,在铁证面前科学家们放弃了歧见,开始共同探究其背后的科学原理。在普朗克、爱因斯坦、玻尔、德布罗意、海森堡、薛定谔、狄拉克等顶级科学家的共同努力下,完整的量子力学体系得以建立。量子力学与信息学相结合产生了量子信息科学,量子信息科学又分为量子计算和量子通信两个学科方向。中国人在量子通信领域的研究和实践处于世界领先地位,领军人物是中国科技大学的潘建伟教授。潘建伟在《自然》上发表过《实验量子隐形传态》(“Experimental quantum teleportation”),入选了《自然》杂志的“百年物理学21篇经典论文”。在《自然》上发表了《单个光子的多个自由度的量子隐形传态》(“Quantum teleportation of multiple degrees of freedom of a single photon”),被英国物理学会评为2015年十大物理学突破之首

爱因斯坦在1905年发表了四篇论文。

1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。

1921年演讲中的爱因斯坦。

这时间完全长于现今的通用时间,欧洲攻读博士学位的五年时间很长,尽管这在当时并不罕见但如今平均时间却为三年。

爱因斯坦于1902年开始在瑞士专利局工作,您会注意到这年他刚刚获得博士学位。 他之所以这样做,是因为他找不到让满意的教学岗位,所以他需要另一个收入来源来维持生计。

有的人或许是出于妒忌

可能是他之前的口碑不是很好。

量子搜索最新论文发表时间

爱因斯坦在1905年发表了四篇论文。

1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。

1921年演讲中的爱因斯坦。

这时间完全长于现今的通用时间,欧洲攻读博士学位的五年时间很长,尽管这在当时并不罕见但如今平均时间却为三年。

爱因斯坦于1902年开始在瑞士专利局工作,您会注意到这年他刚刚获得博士学位。 他之所以这样做,是因为他找不到让满意的教学岗位,所以他需要另一个收入来源来维持生计。

继“九章”量子计算机原型机发布后,我国首个可操纵的超导量子计算机体系“祖冲之号”问世。该成果将为促进中国在超导量子系统上实现量子优越性奠定了技术基础,也为后续具有重大实用价值的通用量子计算的研发提供支持。 中国科学技术大学潘建伟院士团队近日成功研制出全球超导量子比特数量最多的量子计算原型机 “祖冲之号”,宣告全球最大量子比特数的超导量子体系的诞生。这篇名为《在可编程二维62比特量子处理器上的量子行走》( Quantum walks on a programmable two-dimensional 62-qubit superconducting processor )的论文5月7日发表在《科学》杂志。 量子计算机是全球 科技 前沿的重大挑战之一,也是世界各国角逐的焦点。超导量子计算已成为最具希望的候选者之一,它的核心目标是增加 “可操纵” 的量子比特数量,通过提升操纵精度来实现落地应用。 “祖冲之号” 可操纵的超导量子比特多达62个,而此前谷歌实现 “量子优越” 的“悬铃木”53个量子比特。研究团队在大尺度晶格上首次实现了量子行走的实验观测,并实现对量子行走构型的精准调控,构建了可编程的双粒子量子行走。 量子行走是经典随机行走的量子力学模拟,是实现量子模拟、量子搜索算法甚至通用量子计算极为强大的工具。研究团队表示:“在我们的工作中,我们设计和制造了一个由62个功能性量子位比特组成的8x8二维方形超导量子位阵列。我们使用该设备演示了高保真单粒子和两个粒子的量子步态。” 由于量子处理器的高度可编程性,研究者还实现了一个被称为马赫-曾德尔(Mach-Zehnder)的干涉仪。“通过调整进化路径上的障碍,我们观察到了单行和双行的干扰条纹。”研究团队在论文中写道,“我们的工作是该领域的重要里程碑,使未来的大规模量子应用更接近在这些嘈杂的中型量子处理器上实现。” 之所以命名为 “祖冲之号”,研究团队共同通讯作者、中国科学技术大学上海研究院教授朱晓波表示,这是为了纪念我国杰出的数学家祖冲之。祖冲之首次将圆周率精算到小数第七位,他提出的“祖率”对数学研究有重大贡献。 潘建伟和朱晓波、彭承志等带头的团队多年来专注于研究超导量子计算,此次“祖冲之号”的最新成果是建立在12个比特超导量子芯片、24个比特的高性能超导量子处理器等成果之上。 不过上述研究仍为科学实验阶段,仅演示了系统功能,尚未实现所谓的“量子优越”,这区别于此前谷歌的量子计算机悬铃木。朱晓波表示,目前团队正在开展相关工作,以实现“量子优越性”。 2019年9月,美国谷歌公司推出53个量子比特的计算机“悬铃木”,对一个数学算法的计算只需200秒,并宣称相较于当时世界最快的超级计算机“顶峰”实现了“量子优越性”。 一位量子计算领域专家在接受采访时表示:“祖冲之号和悬铃木都是使用了超导量子比特,但是祖冲之号执行的任务是相对简单的,对于操纵精度等要求仍然低于悬铃木。” 量子计算和经典计算的竞争是一个长期的动态过程。量子计算机与经典计算机的显著差异在于,传统的计算机存储数据的方式是0或者1,这就好比一个开关,只有“开”和“关”两种状态;而量子计算机存储数据方式是依赖量子比特,可以是介于0和1之间的任何状态,这令其速度更快。 超导量子计算具备较好的工艺可扩展性,因此也被广泛认为是最有可能率先实现通用量子计算的方案之一。在原理上,量子计算机具备超快的并行计算能力,未来有望通过特定算法,提供高于传统计算机指数级别的加速能力,并有望用于天气预报、材料设计、密码破译、大数据优化、药物分析等领域。 来 源 | 第一 财经 商务合作: 请致电 / 或致件 电子技术应用官方微店小程序版上线啦 欢迎逛店 一键下单

编译 | 未玖

Nature , 11 February 2021, VOL 590, ISSUE 7845

《自然》 2021年2月11日,第590卷,7845期

物理学 Physics

A quantum enhanced search for dark matter axions 量子增强搜索暗物质轴子 作者:K. M. Backes, D. A. Palken, S. Al Kenany, B. M. Brubaker, S. B. Cahn, A. Droster, et al. 链接: 摘要 在暗物质轴子搜索中,量子不确定性表现为一个基本噪声源,限制了用于探测的正交可观测值的测量。对暗物质的研究很少接近这个极限,到目前为止也无人超越。研究组利用真空压缩来突破量子极限寻找暗物质。通过制备一个压缩状态下的微波频率电磁场,并以近乎无噪声的方式读出压缩正交曲线,研究组可在质量范围内将轴子的搜索速度提高一倍。在16.96-17.12和17.14-17.28微伏的轴子剩余能量窗口中,研究组没有发现暗物质存在的证据。突破量子极限带来了一个基础物理 探索 的时代,与接近量子极限的收益递减相比,降噪技术将带来极大益处。

A universal 3D imaging sensor on a silicon photonics platform 基于硅光子学平台的通用三维成像传感器 作者:Christopher Rogers, Alexander Y. Piggott, David J. Thomson, Robert F. Wiser, Ion E. Opris, Steven A. Fortune, et al. 链接: 摘要 精确的三维(3D)成像对于机器绘制地图和与物理世界交互至关重要。由于难以为每个像素提供电子和光子连接,以前的系统限制在20个像素以下。研究组演示了一个由512个像素组成的大规模相干探测器阵列在3D成像系统中的操作。利用光子和电子电路单片集成的最新进展,将密集的光学外差探测器阵列与集成的电子读出结构相结合,可直接扩展到任意大的阵列。双轴固态光束转向消除了视野和距离之间的任何权衡。在量子噪声极限下,研究组的系统仅使用4毫瓦的光时,在75米的距离可达到3.1毫米的精度,比现有固态系统在该距离内的精度高出一个数量级。未来使用最先进的组件缩小像素尺寸,可为消费者相机传感器大小的阵列提供超过2000万像素的分辨率。该研究成果为低成本、紧凑和高性能的3D成像相机的开发和普及铺平了道路,这些相机可应用于从机器人技术和自主导航到增强现实和医疗保健等领域。

材料科学 Materials Science

Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene 魔角扭曲三层石墨烯中可调谐的强耦合超导 作者:Jeong Min Park, Yuan Cao, Kenji Watanabe, Takashi Taniguchi & Pablo Jarillo-Herrero 链接: 摘要 魔角扭曲双层石墨烯仍然是唯一一种可重现强超导性的体系。研究组在魔角扭曲三层石墨烯(MATTG)中实现了莫尔超导体,它比魔角扭曲双层石墨烯具有更好的电子结构和超导性能。测量霍尔效应和量子振荡作为密度和电场的函数,研究组能够确定系统在正常金属状态下的可调谐相界。零磁场电阻率测量表明,超导性的存在与每个莫尔晶胞中两个载流子所形成的破缺对称相密切相关。研究组发现超导相被抑制,并被限制在部分环绕着破缺对称相的范霍夫奇点处,这很难与弱耦合Bardeen-Cooper-Schrieffer理论相吻合。此外,该系统广泛的原位可调谐性使其能够达到超强耦合状态,其特征是金兹堡-朗道相干长度达到平均粒子间距离,以及非常大的TBKT/TF值,超过0.1。观察结果表明,MATTG可电调谐至接近二维玻色-爱因斯坦凝聚体的交叉点。研究结果建立了一系列可调谐莫尔超导体,它们有可能彻底改变人们对强耦合超导的基本认识和应用。

Facile route to bulk ultrafine-grain steels for high strength and ductility 一种大规模制备高强度高塑性超细晶钢的简易方法 作者:Junheng Gao, Suihe Jiang, Huairuo Zhang, Yuhe Huang, Dikai Guan, Yidong Xu, et al. 链接: 摘要 亚微米晶粒尺寸的钢通常具有较高的韧性和强度,这使其在轻量化技术和节能战略方面具有广阔的应用前景。迄今为止,超细晶(UFG)合金的工业制备通常依赖于扩散相变的控制,因此仅限于制备奥氏体-铁素体相变的钢。此外,这些UFG钢有限的加工硬化和均匀延伸阻碍了其广泛应用。研究组报道了一种在Fe-22Mn-0.6C孪晶诱导塑性钢中大量制备UFG结构的简易方法,即通过微量铜合金化,以及30秒内相干无序富Cu相的晶内纳米析出控制再结晶过程。快速而大量的纳米析出不仅阻止了新的亚微米级再结晶晶粒的生长,而且还通过齐纳钉扎机制提高了所获得的UFG结构的热稳定性。此外,由于析出相完全的相干性和无序性,在载荷条件下,析出相与位错的相互作用较弱。这种方法能够制备晶粒尺寸为800 400纳米的完全再结晶UFG结构,而不会引入有害的晶格缺陷,如脆性颗粒和晶界偏析。与未添加Cu的钢相比,UFG结构的屈服强度提高了一倍,达到710兆帕左右,均匀延展性为45%,抗拉强度为2000兆帕左右。这种晶粒细化的概念亦可扩展到其他合金系统,并且制造工艺较易应用到现有的工业生产线。

Thermally reconfigurable monoclinic nematic colloidal fluids 热可重构单斜向列相胶体液 作者:Haridas Mundoor, Jin-Sheng Wu, Henricus H. Wensink & Ivan I. Smalyukh 链接: 摘要 迄今为止,除简单结构外,具有很少或没有对称操作的结构已被证明仅是固体的一种性质,而不是它们的完全流体凝聚态对应物的性质,尽管这种对称性在理论上被考虑并在磁胶体中被观察到。研究组证明了在由分子棒组成的向列相主体中分散高各向异性的带电胶体盘,为观察许多低对称相提供了一个平台。根据盘的温度、浓度和表面电荷,研究组发现向列相、近晶相和柱状组织的对称性从单轴转向正交和单斜。随着温度的升高,研究组观察到了从低序状态到高序状态、以及重入相的异常转变。最重要的是,研究组证明了可重构单斜相胶体向列相序的存在,以及低对称性自组装的热控制和磁控制的可能性。研究组的实验结果得到了向列相主体中圆盘间胶体相互作用的理论模型的支持,并有望为在具有不同形状和尺寸的构建块的系统中实现许多低对称凝聚相及其技术应用提供一条途径。

化学 Chemistry

Complex structures arising from the self-assembly of a simple organic salt 简单有机盐自组装形成的复杂结构 作者:Riccardo Montis, Luca Fusaro, Andrea Falqui, Michael B. Hursthouse, Nikolay Tumanov, Simon J. Coles, et al. 链接: 摘要 虽然分子自组装已经被广泛研究,但理解控制这种现象的规则仍具有挑战性。研究组报道了一种简单的氨吡啶盐酸盐结晶为四种不同的结构,其中两种采用了不寻常的自组装组成了氯离子和吡啶离子的多面体团簇。这两种结构代表了刚性有机小分子的Frank–Kasper(FK)相。尽管FK相在60多年前就已在金属合金中发现,但最近已在几类超分子软物质和金纳米晶体超晶格中观察到FK相,并持续至今。在这些体系中,原子或分子的球形组件被组装成配位数为12、14、15或16的多面体。该文报道的两种FK结构是从致密液相结晶出来的,显示出一种在刚性有机小分子中通常无法观察到的复杂性。通过低温电子显微镜对前驱体致密液相的研究,揭示了球形聚集体的存在,其尺寸在1.5到4.6纳米之间。这些结构,连同用于制备它们的实验程序,引起了人们对其形成的有趣猜测,并为有机晶体材料的设计开辟了不同的视角。

中国量子通信论文发表时间

量子通信详见前些年发射上天的墨子号,大概也就是独步全球的水平,量子计算也走在世界前列

这对我们今后的信息化建设有着很大的推进作用,我们网络通信会越来越通畅,越来越方便。

这意味着我国在量子通讯领域得到了迅速的发展,处于国际发展的前沿地位,是我国迈向科技强国的一个重要标志。

中国科学技术大学合肥微尺度物质科学国家实验室的潘建伟教授及其同事,利用冷原子量子存储技术在国际上首次实现了具有存储和读出功能的纠缠交换,建立了由300米光纤连接的两个冷原子系综之间的量子纠缠。这种冷原子系综之间的量子纠缠可以被读出并转化为光子纠缠以进行进一步的传输和量子操作。该实验成果完美地实现了长程量子通信中亟需的“量子中继器”,向未来广域量子通信网络的最终实现迈出了坚实的一步。2010年,中国科学技术大学和清华大学的研究人员完成了一项创举,他们的自由空间量子通信实验将通信距离从先前的数百米记录一步跨越到16公里。此刻,中国科学技术大学上海研究院的研究人员再次创造了新纪录,他们将通信距离扩大到了97公里,横跨中国的一个湖泊。报告发表在预印本网站上。研究人员在海拔约4000米的青海刚察湖上完成了这次自由空间信道量子实验,他们不是在湖这边发射光子,然后让它在湖对岸重新出现,而是利用量子纠缠——即两个量子态互相影响的粒子——在新地点重新创造出相同的量子比特。他们在四个多小时内向97公里外远距传输了1100多个光子。将量子通信距离延长到100公里意味着可以从地面与卫星进行通信,全球范围的量子通信正在变成现实。量子信息因其传输高效和绝对安全等特点,被认为可能是下一代IT技术的支撑性研究,并成为全球物理学研究的前沿与焦点领域。基于我国2001年以来在量子纠缠态、纠错、存储等核心领域的系列前沿性突破,中科院于2011年启动了空间科学战略性先导科技专项,力争在2015年左右发射全球首颗“量子通讯卫星”。中国科学技术大学教授潘建伟、彭承志、陈宇翱等人,与中科院上海技术物理研究所王建宇、光电技术研究所黄永梅等组成联合团队,于2011年10月在青海湖首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。实验证明,无论是从地面指向卫星的上行量子隐形传态,还是卫星指向两个地面站的下行双通道量子纠缠分发均可行,为基于卫星的广域量子通信和大尺度量子力学原理检验奠定了技术基础 。在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将可以达到1000公里以上,基本上解决了量子通讯卫星的远距离信息传输问题。已量子通讯卫星核心技术的突破,也表明未来构建全球量子通信网络具备技术可行性。2013年10月,中国科学技术大学郭光灿 院士领导的中科院量子信息重点实验室在高维量子信息存储方面取得重要进展:该实验室史保森教授领导的研究小组在国际上首次实现了携带轨道角动量、具有空间结构的单光子脉冲在冷原子系综中的存储与释放。这项研究成果在线发表在《自然·通讯》上。 类比于传统的电子通信中为了补偿电信号衰减而进行整形和放大的电子中继器,奥地利科学家在理论上提出,可以通过量子存储技术和量子纠缠交换和纯化技术的结合来实现量子中继器,从而最终实现大规模的长程量子通信。量子存储的实验实现却一直存在着很大的困难。为了解决量子存储问题,国际上人们做了大量的研究工作。比如段路明及其奥地利、美国的合作者就曾于2001年提出了基于原子系综的另一类量子中继器方案。由于这一方案具有易于实验实现的优点,受到了学术界的广泛重视。然而,随后的研究表明,由于这一类量子中继器方案存在着诸如纠缠态对信道长度抖动过于敏感、误码率随信道长度增长过快等严重问题,无法被用于实际的长程量子通信中。为了解决上述困难,潘建伟、陈增兵和赵博等在理论上提出了具有存储功能、并且对信道长度抖动不敏感、误码率低的高效率量子中继器方案。同时,潘建伟研究小组与德国、奥地利的科学家经过多年的合作研究,在逐步实现了光子—原子纠缠、光子比特到原子比特的量子隐形传态等重要阶段性成果的基础上,最终实验实现了完整的量子中继器基本单元。重要进展:中科大网站2013年10月报道,中国科学技术大学郭光灿 院士领导的中科院量子信息重点实验室在高维量子信息存储方面取得重要进展,该实验室史保森教授领导的研究小组在2013年首次成功地实现了携带轨道角动量、具有空间结构的单光子脉冲的存储与释放,证明了高维量子态的存储是完全可行的。该小组通过两个磁光阱制备了两个冷原子团,利用其中一个冷原子团通过非线性过程制备标记单光子,并通过螺旋相位片使该光子携带一定的轨道角动量,具有特殊的空间结构。而后利用电磁诱导透明效应将其存储于另一个作为存储介质的冷原子团中,实验结果清楚地证明了单光子携带的轨道角动量可以高保真地被存储。同时该小组借助于精心设计的Sagnac干涉仪,通过量子层析技术和干涉技术成功地证明了单光子轨道角动量的叠加性也可以在存储过程中很好地保持,而态的叠加特性是量子信息之所以不同于经典信息的根本之处。 从而在国际上首次实现了携带轨道角动量、具有空间结构的单光子脉冲在冷原子系综中的存储与释放,证明了建立高维量子存储单元的可行性,迈出了基于高维量子中继器实现远距离大信息量量子信息传输的关键一步。 作为新一代通信技术,量子通信基于量子信息传输的高效和绝对安全性,成为近几年来国际科研竞争中的焦点领域之一。合肥城域量子通信试验示范网于2010年7月启动建设,投入经费6000多万元。经过中国科学技术大学和安徽量子通信技术有限公司科研人员历时1年多的努力,项目建成后试运行,各项功能、指标均达到设计要求。该项目2012年3月29日通过安徽省科技厅组织的专家组验收,30日正式投入使用。具有46个节点的量子通信网覆盖合肥市主城区,使用光纤约1700公里,通过6个接入交换和集控站,连接40组“量子电话”用户和16组“量子视频”用户。此刻主要用户为对信息安全要求较高的政府机关、金融机构、医疗机构、军工企业及科研院所,如合肥市公安局、合肥市应急指挥中心、中国科学技术大学、合肥第三人民医院及部分银行网点等。合肥量子通信网的建成使用,标志着我国继量子信息基础研究跻身全球一流水平后,在量子信息先期产业化竞争中也迈出了重要一步。此刻,我国北京、济南、乌鲁木齐等城市的城域量子通信网也在建设之中,未来这些城市将通过量子卫星等方式联接,形成我国的广域量子通信体系。

相关百科

热门百科

首页
发表服务