历史 突飞猛进1950年阿兰·图灵出版《计算机与智能》。1956年约翰·麦卡锡在美国达特矛斯电脑大会上“创造”“人工智能 ”一词。1956年美国卡内基·梅隆大学展示世界上第一个人工智能软件的工作。1958年约翰·麦卡锡在麻省理工学院发明Lisp语言———一种A.I.语言。1964年麻省理工学院的丹尼·巴洛向世人展示,电脑能掌握足够的自然语言从而解决了开发计算机代数词汇程序的难题。1965年约瑟夫·魏岑堡建造了ELIZA———一种互动程序,它能以英语与人就任意话题展开对话。1969年斯坦福大学研制出Shakey————一种集运动、理解和解决问题能力于一身的机器人。1979年第一台电脑控制的自动行走器“斯坦福车”诞生。1983年世界第一家批量生产统一规格电脑的公司“思考机器”诞生。1985年哈罗德·科岑编写的绘图软件Aaron在A.I.大会亮相。90年代A.I.技术的发展在各个领域均展示长足发展————学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。1997年IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。90年代末以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。现在 流行挡不住商业上的成功,成为实验室研究工作的催化剂。A.I.的边界正一步步向人类智慧逼进。全球的高科技实验室不约而同盯上了A.I.大脑,这其中响当当的名字包括卡内基·梅隆大学,IBM和日本的本田汽车公司。在比利时,Starlab(星实验室)正开发种能取代真猫大脑工作的人工大脑。据“人工大脑网站”报道,它将拥有约7500个人工脑神经细胞。它将能自如地操控猫咪行走,玩耍毛线球。据估计它将在2002年完成。软件在将复杂决策程序化整为零方面取得突破。像外貌识别等看似简单的人类能力实际涉及广泛、复杂的认知和判断步骤。今天的电脑软件越来越精于模仿人类最精细的思维。而计算机硬件在追赶人脑能力方面亦不遗余力。目前世界上最快的超级电脑————位于美国加利福利亚州劳伦斯·立弗摩尔国家实验室的IBM制“ASCI白色”已经是有人脑0·1%的运算能力。IBM正在研制的“蓝色牛仔”(BlueJean)的每秒运算能力估计将与人脑相当。IBM研发部主管保罗·霍恩说BlueJean将在4年后开始运行。斯坦福大学A.I.领域的首席专家埃里克·霍维兹及其许多同行相信,A.I.技术迎来突破发展的日子近在眼前,那时,A.I.将细分并派生出跨越出广泛领域的学科。未来 聪明过人?关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。
【1950-1956年是人工智能的诞生年】图灵测试1950Dartmouth 会议1956(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)【1956-1974 年是人工智能的黄金年】第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)LISP编程语言1958(约翰麦卡锡)用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)模式识别-第一个机器学习论文发表(1963)Dendral 专家系统1965基于规则的Mycin医学诊断程序1974【1974-1980年是人工智能第一个冬天】人工智能:综合调查1973(来特希尔)项目失败,列强削减科研经费【1980-1987年是人工智能繁荣期】AAAI在斯坦福大学召开第一届全国大会1980日本启动第五代计算机用于知识处理1982决策树模型带动机器学习复苏1980中期ANN及多层神经网络1980中期【1987-1993年是人工智能第二个冬天】Lisp机市场崩溃1987列强再次取消科研经费1988专家系统滑翔谷底1993日本第五代机退场1990年代【1993-现在突破期】IBM深蓝战胜卡斯帕罗夫1997斯坦福大学Stanley 赢得无人驾驶汽车挑战赛2005深度学习论文发表2006IBM的沃森机器人问答比赛夺魁2011谷歌启动谷歌大脑2011苹果公司的Siri上线2012微软通用实时翻译系统2012微软Cortana 上线2014百度度秘2015IBM发布truenorth芯片2014阿尔法狗打败人类棋手2016
【1950-1956年是人工智能的诞生年】图灵测试1950Dartmouth 会议1956(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)【1956-1974 年是人工智能的黄金年】第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)LISP编程语言1958(约翰麦卡锡)用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)模式识别-第一个机器学习论文发表(1963)Dendral 专家系统1965基于规则的Mycin医学诊断程序1974【1974-1980年是人工智能第一个冬天】人工智能:综合调查1973(来特希尔)项目失败,列强削减科研经费【1980-1987年是人工智能繁荣期】
第九届国际计算机与人工智能会议论文投稿截止时间为2002-10-13。天津市图象图形学学会和天津市体视学学会支持的2023年第九届计算与人工智能国际会议将于2023年3月17-20日在中国天津市举行。
第九届国际计算机与人工智能会议论文投稿截止时间为2002-10-13。天津市图象图形学学会和天津市体视学学会支持的2023年第九届计算与人工智能国际会议将于2023年3月17-20日在中国天津市举行。
人工智能的第一个浪潮是由著名的英国数学家、逻辑学家和计算机科学家阿兰·图灵(Alan Turing)掀起的。
1936年,阿兰·图灵在英国伦敦大学学院发表了一篇论文,他提出了一个抽象的计算机模型,即图灵机。他用这个模型来探索计算机的可能性。他提出,计算机可以完成任何人类可以完成的任务,这一想法引发了人工智能的研究。
此后,阿兰·图灵发表了一系列论文,其中最重要的是1950年发表的《计算机与智能》,他在这篇论文中提出了“图灵测试”的概念,即一个机器能够像人一样思考。这一概念引发了人工智能的第一个浪潮,人们开始研究如何让机器具有人类智能。
因此,可以说,人工智能的第一个浪潮是由阿兰·图灵掀起的,他的论文开创了人工智能的先河,为人工智能的发展奠定了基础。
AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 `
阿兰-图灵(Alan Turing)英国数学家、逻辑学家,被称为计算机之父,人工智能之父。1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。1912年6月23日,出生于英国伦敦。1931年-1934年,在英国剑桥大学国王学院(King’s College)学习。 1932年-1935年,主要研究量子力学、概率论和逻辑学。 1935年,年仅23岁的图灵,被选为剑桥大学国王学院院士。 1936年,主要研究可计算理论,并提出“图灵机”的构想。 1936年-1938年,主要在美国普林斯顿大学做博士研究,涉及逻辑学、代数和数论等领域。 1938-1939年,返回剑桥从事研究工作,并应邀加入英国政府破译二战德军密码的工作。 1940年-1942年,作为主要参与者和贡献者之一,在破译纳粹德国通讯密码的工作上成就杰出,并成功破译了德军U-潜艇密码,为扭转二战盟军的大西洋战场战局立下汗马功劳。 1943年-1945年,担任英美密码破译部门的总顾问。 1945年,应邀在英国国家物理实验室从事计算机理论研究工作。 1946年,这个时候,图灵在计算机和程序设计原始理论上的构思和成果,已经确定了他的理论开创者的地位。由于图灵的杰出贡献,年轻的他被英国皇室授予OBE爵士勋衔。 1947年-1948年,主要从事计算机程序理论的研究,并同时在神经网络和人工智能领域做出开创性的理论研究。 1948年,应邀加入英国曼彻斯特大学从事研究工作,担任曼彻斯特大学计算实验室副主任。 1949年,成为世界上第一位把计算机实际用于数学研究的科学家。 1950年,发表论文“计算机器与智能”,为后来的人工智能科学提供了开创性的构思。提出著名的“图灵测试”理论。 1951年,从事生物的非线性理论研究。年仅39岁的图林,被选为英国皇家学会会员。 1952年,在当年保守愚昧和冷战的时代,当警察得知图灵与同性朋友密切交往的消息之后,同性恋倾向的图灵被逮捕入狱。在法庭审判过程中,图灵明确告知人们,他认为自己没有做错什么事。在那个观念落后的年代,为了避免被判刑入狱,图灵被迫选择了为期一年的雌性激素注射的所谓“治疗”,才得以重新返回研究工作。 1953年-1954年,继续在生物和物理学等方面的研究。被迫承受的对同性恋倾向的“治疗”,致使原本热爱体育运动的图灵在身心上受到极大的伤害。 1954年6月7日,图灵被发现死于家中的床上。死因是氰化物中毒,警方调查结论是自杀。一代英灵,就此过早离去,成为人类科学史上的一大遗憾。
个人认为是——骨灰瓷。这种东西可是英国贵族中最为推崇的。只是从这一个方面来说,其他的重大发明我还真不知道
历史 突飞猛进1950年阿兰·图灵出版《计算机与智能》。1956年约翰·麦卡锡在美国达特矛斯电脑大会上“创造”“人工智能 ”一词。1956年美国卡内基·梅隆大学展示世界上第一个人工智能软件的工作。1958年约翰·麦卡锡在麻省理工学院发明Lisp语言———一种A.I.语言。1964年麻省理工学院的丹尼·巴洛向世人展示,电脑能掌握足够的自然语言从而解决了开发计算机代数词汇程序的难题。1965年约瑟夫·魏岑堡建造了ELIZA———一种互动程序,它能以英语与人就任意话题展开对话。1969年斯坦福大学研制出Shakey————一种集运动、理解和解决问题能力于一身的机器人。1979年第一台电脑控制的自动行走器“斯坦福车”诞生。1983年世界第一家批量生产统一规格电脑的公司“思考机器”诞生。1985年哈罗德·科岑编写的绘图软件Aaron在A.I.大会亮相。90年代A.I.技术的发展在各个领域均展示长足发展————学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。1997年IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。90年代末以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。现在 流行挡不住商业上的成功,成为实验室研究工作的催化剂。A.I.的边界正一步步向人类智慧逼进。全球的高科技实验室不约而同盯上了A.I.大脑,这其中响当当的名字包括卡内基·梅隆大学,IBM和日本的本田汽车公司。在比利时,Starlab(星实验室)正开发种能取代真猫大脑工作的人工大脑。据“人工大脑网站”报道,它将拥有约7500个人工脑神经细胞。它将能自如地操控猫咪行走,玩耍毛线球。据估计它将在2002年完成。软件在将复杂决策程序化整为零方面取得突破。像外貌识别等看似简单的人类能力实际涉及广泛、复杂的认知和判断步骤。今天的电脑软件越来越精于模仿人类最精细的思维。而计算机硬件在追赶人脑能力方面亦不遗余力。目前世界上最快的超级电脑————位于美国加利福利亚州劳伦斯·立弗摩尔国家实验室的IBM制“ASCI白色”已经是有人脑0·1%的运算能力。IBM正在研制的“蓝色牛仔”(BlueJean)的每秒运算能力估计将与人脑相当。IBM研发部主管保罗·霍恩说BlueJean将在4年后开始运行。斯坦福大学A.I.领域的首席专家埃里克·霍维兹及其许多同行相信,A.I.技术迎来突破发展的日子近在眼前,那时,A.I.将细分并派生出跨越出广泛领域的学科。未来 聪明过人?关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。
《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人工智能其他学科等等。另外,这本期刊就是一本开源期刊,与传统期刊相比,采用了同行评审的方法审稿,具体开源期刊的特点可以百度了解更多;而且发表了的文章传播范围更广,受众更多,文章的影响力也更大。
在倡导智能化的信息时代,人工智能在新世纪科学体系中占有重要的地位,以下是我精心整理的人工智能的论文的相关资料,希望对你有帮助!人工智能的论文篇一 开启人工智能时代 也许你压根没听说过一个叫乔布斯的人,这没关系;也许你并不打算成为苹果iPhone的果粉,这也没关系;但你要是对Siri表示毫不知情,那就危险了,这会导致你在一个即将到来的时代无法立足。 《纽约时报》拍摄了一支让Siri同真人助理比赛办事效率的视频;YouTube上有人手抱吉他和Siri深情对唱;哥伦比亚广播公司的科技记者Larry Magid甚至采访了Siri,虽然采访只有四分钟的时间,但Siri回答了Larry提出的大部分问题,甚至还向Larw解释了生命的含义。 Siri到底是什么呢?它是苹果iPhone 4S里面内置的一款虚拟个人助理软件,通过自然语言处理技术来实现人机交互功能。这意味着,Siri既能听懂我们说的话,也能以 我们听得懂的语言来回答。单独拆开来看,Siri所包含的语音指令、搜索等功能并不是什么全新的技术。但 只有在Siri那里,1+1才真正大于2。对计算机研究人员来说,一台能真正实现与人对话的设备就像是圣杯一样,是Siri让他们离梦想又近了一步。 自从iPhone 4S开始发售,关于Siri的传说就开始了。随便在网上一搜,你会看到海量有关Siri的真机评测视频,里面除了让Siri完成诸如查收短信和创建备忘录等任务外,有人开始问Siri的姓名、年龄、最喜欢的手机等怪问题;有人向Siri各种倾诉:“我觉得很累”、“我要怎样挽回女友的芳心”、“生命的意义是什么”;有人让Siri讲几个冷笑话或者唱首歌来 听;还有人直接向Siri示爰甚至求婚,而Siri都能够一本正经跟人侃上半天,回答足够机智,有时候还很萌。甚至有人把两部iPhone 4S放在一起,两位Siri竟然开始喋喋不休聊起天来。 如果你认为Siri仅仅是一个陪你说废话打发时间的话痨,那你就大错特错了。Siri所展示出的在准确语音识别的基础之上进行语义的智能分析判断,并且实现系统功能和后代数据,包括个人偏好和历史记录的调 用,实现所答即所问与服务即所想——真正实现助理的功能,从识别,执行,再到互动之间的飞跃,这些才是Siri的革命性所在。 在Siri之前,人与机器之间的交流就像一部默片。无论借助的是键盘、鼠标或触摸屏,我们总是以无言的方式向电脑传递我们的喜怒哀乐。Siri却可以真正理解你所表达的意思,并结合当前话题做出回答。比如询问天气,你可以不用一字一字说出标准问题,而是像和朋友闲聊一样问Siri:“我明天需要带雨伞出门吗?”Siri照样能理解并且给你答复。 无论是谷歌还是百度,你只能按照严格的语法输入需要搜索的关键词,对于“离我当前最近的餐厅在 哪里”这样的问题根本无从下手。而Siri首先通过卫星定位找到你当下所处位置,再搜索出附近的各色餐厅,甚至顺带还帮你找到打折和团购的信息 “有一家意大利餐厅就在拐角处,很多人评价说味道不错,6点以后牛排还打5折。” 我们可以想象在不久的将来,Siri将应用在更多的领域,目前宝马公司已经表示要将Siri整合到他们的车载系统里。未来的电脑、电视甚至洗衣机、冰箱都可以植入S九与iPhone等手持设备形成一个偌大的智能网络。你只需要告诉Siri“帮我录下明天曼联跟皇马的比赛,并提醒我后天晚上8点收看。”“明天的早餐是一杯豆浆和2片土司,在7点前做好并叫醒我。” Siri归根到底是三个技术领域的完美结合对话式界面、个体情景感知和服务委托。换句话说,Siri要能够明白你说的话,再结合你的个人背景进行运算,最后提供你所需要的信息。这个过程不仅要求移动设备有强大的运算能力处理前端任务,还需要足够的带宽以保证与云端服务器的数据交换。所以目前的Siri还处于beta测试版,离全方位的个人生活应用还有很长的路要走,但毫无疑问,这是一个伟大的开始,人工智能,已经来到我们身边。
【1950-1956年是人工智能的诞生年】图灵测试1950Dartmouth 会议1956(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)【1956-1974 年是人工智能的黄金年】第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)LISP编程语言1958(约翰麦卡锡)用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)模式识别-第一个机器学习论文发表(1963)Dendral 专家系统1965基于规则的Mycin医学诊断程序1974【1974-1980年是人工智能第一个冬天】人工智能:综合调查1973(来特希尔)项目失败,列强削减科研经费【1980-1987年是人工智能繁荣期】
【1950-1956年是人工智能的诞生年】图灵测试1950Dartmouth 会议1956(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)【1956-1974 年是人工智能的黄金年】第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)LISP编程语言1958(约翰麦卡锡)用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)模式识别-第一个机器学习论文发表(1963)Dendral 专家系统1965基于规则的Mycin医学诊断程序1974【1974-1980年是人工智能第一个冬天】人工智能:综合调查1973(来特希尔)项目失败,列强削减科研经费【1980-1987年是人工智能繁荣期】AAAI在斯坦福大学召开第一届全国大会1980日本启动第五代计算机用于知识处理1982决策树模型带动机器学习复苏1980中期ANN及多层神经网络1980中期【1987-1993年是人工智能第二个冬天】Lisp机市场崩溃1987列强再次取消科研经费1988专家系统滑翔谷底1993日本第五代机退场1990年代【1993-现在突破期】IBM深蓝战胜卡斯帕罗夫1997斯坦福大学Stanley 赢得无人驾驶汽车挑战赛2005深度学习论文发表2006IBM的沃森机器人问答比赛夺魁2011谷歌启动谷歌大脑2011苹果公司的Siri上线2012微软通用实时翻译系统2012微软Cortana 上线2014百度度秘2015IBM发布truenorth芯片2014阿尔法狗打败人类棋手2016
2017年7月5日。2017百度AI开发者大会(英文名称:BaiduCreate2017)于2017年7月5日在中国北京国家会议中心召开。
AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 `