首页

职称论文知识库

首页 职称论文知识库 问题

基因组投稿期刊有哪些内容

发布时间:

基因组投稿期刊有哪些内容

《基因组学与应用生物学》中国科技核心期刊、中国科学引文数据库来源期刊、《中文核心期刊要目总览》核心期刊及中国期刊方阵“双效”期刊、广西高校优秀学报。广西大学主管、主办。聘请李宁院士为主编;罗达博士、研究员为副主编;方宣钧、朱玉贤博士为执行主编以及 26名国内知名专家教授组成的编委会。实现优质管理,严把政治和学术质量关。《广西农业生物科学》由广西大学主管和主办, 是原广西农业大学主办的 《广西农业大学学报》变更而来, 创刊于 1982 年, 季刊, 国内外公开发行。二十一世纪, 基因组学已成为生物科学领域中的理论与技术的核心平台, 为了适应基于基因组时代的现代生物科学的发展, 经国家新闻出版总署批准, 从 2009 年开始, 《广西农业生物科学》更名为《基因组学与应用生物学》(《Genomics and Applied Biology》) 。更名后的期刊仍由广西大学主管和主办, 公开发行, 双月刊, 双月 28 日出版。由中国科学院院士及美国国家科学院外籍院士张启发博士任主编, 北京大学教授朱玉贤博士和海南省热带农业资源研究所所长方宣钧博士任执行主编。《基因组学与应用生物学》将面向基因组学、分子遗传学、生化与分子生物学、生物信息学等基础学科领域, 着重刊登农林科学、医药科学、动物科学、环境与生态科学以及生物学实验技术与方法等应用生物学领域的最新研究进展和成果。将开设综述与专论、研究论文、新技术新基因新种质等栏目。《基因组学与应用生物学》承载着《广西农业生物科学》的悠久历史与荣誉, 进一步开拓奋进,为现代生命科学和应用生物学的研究与发展提供学术交流的平台, 使之成为中国科学家走向世界的桥梁。《广西农业生物科学》自创刊以来, 得到各级领导、国内外学术单位以及广大科研人员的支持和厚爱,受到来自全国30多个省、市、自治区及国外的科研院所、大专院校的两千多名作者的支持与厚爱,刊发了研究论文、研究报告、评述与展望等类型的科研论文共400余篇,内容涵盖基因组学、分子遗传学、生化与分子生物学、生物信息学以及应用生物学等基础学科与应用学科。 值此更名之际, 我们向支持和厚爱本刊的科研院所、大专院校及广大科技工作者表示衷心的感谢! 更名后, 我们将不辜负大家的信任和期望, 以十分鲜明的特色, 为广大的科学家服务。

转自:

基因组(Denovo sequencing),即基因组从头测序,指在不依赖参考基因组的情况下绘制该物种的全基因组序列图谱,从而获取该物种的全部遗传信息。高连续性基因组的获得,对后续功能基因定位,结构变异检测具有重要的意义。结合近几年的文章我们不难发现,基因组研究主要以下面几种方向为出发点开展: 1)大型/多倍体/超复杂物种基因组破译,技术创新改革; 2)0 Gap基因组/单体型基因组构建,序列优化打磨; 3)未知基因组破译联合多组学分析,经济价值挖掘; 4)品种泛基因组构建解析功能变异,覆盖多样表型; 5)科属水平谱系基因组构建与分析,探索进化功能; 6)多种基因组联合多组学比对剖析,解析性状特征。 ... ...

前5种好理解,第6种方向能做什么呢?其实我们想要了解一个物种,往往单一基因组难以完整解析,例如

等等棘手但是却又热门的研究话题。

接下来我将通过百迈客最近三篇动植物上的成功案例带大家看看,如何通过数个材料基因组结合多组学的手段解析性状特征。

合作单位:中科院南海海洋研究所 发表期刊:Science Advances 影响因子:14.131 发表时间:2021.08 研究材料:Denovo:雌性与雄性草海龙(Phyllopteryx taeniolatus);雌性与雄性绿海龙(Syngnathoides biaculeatus) 个体重测序:2只雄性草海龙 RNA-seq:脑、眼、鳃、肝、肠、肌肉、鳍、皮肤和附叶 测序方案

Denovo:雌性、雄性草海龙与雄性绿海龙PacBio平台;雌性绿海龙Nanopore平台,雌性、雄性草海龙与雄性绿海龙进行Hi-C测序。三代测序技术对应测序数据如下表所示: 个体重测序:~30X PacBio

草海龙最终组装大小为~659 Mb(♂)与 ~663Mb(♀), contig N50分别为10.0 Mb与12.1 Mb。绿海龙分别组装~637 Mb(♂)与~648 Mb(♀),contig N50分别为18.0Mb与21.0 Mb。4个基因组BUSCO评估显示范围在94.00- 94.40%。并分别在草海龙和绿海龙中确定了31个和33个发生 扩张的基因家族 。通过19条鳍鱼类全基因组数据集进行 系统发育分析 ,明确草海龙与绿海龙在系统发育地位上属于海龙亚科(Syngnathinae)的姊妹群,并于 27.3 百万年前 左右发生分化。

草海龙的头部、颈部、腹部、背部和尾部区域有叶子状的附属物,可以与周围环境相融合,使草海龙以完美拟态隐匿于海草床中。这些结构是该物种的一种适应性进化产物,主要由骨基质和富含胶原纤维的结缔组织组成。

通过转录组学分析,发现其表达基因(如msx,dlx,fgf)主要从皮肤和鳍等器官募集而来,暗示了相关基因对新器官产生和维持的重要作用。而“附叶”与鳍相比缺乏肢体发育特异性的hox基因。草海龙的附叶在捕食者的袭击中经常受到损伤,为了研究相关机制,作者通过转录组分析研究发现在其附叶中炎症和损伤修复相关基因表现出高表达水平, 说明这些基因可能与其附叶的快速愈合和再生能力相关 。 同时草海龙特异性扩张的MHC I基因也在附叶中显著高表达,能为其提供额外的免疫保护。

通过雄性和雌性叶海龙Illumina reads正反比对雄性和雌性的全基因组序列,来确定叶海龙中假定的性染色体和性别基因座。结果显示 Chr4上的一个~47-kb区域仅在雄性中存在 , 且reads覆盖度为Chr4平均值的一半,该片段经Hi-C互作分析结果支持。

注释及比较分析发现草海龙和绿海龙的性别决定基因均为amhr2的雄性特异性拷贝amhr2y,但两者的基因座不相同。系统发育分析表明,amhr2y起源于它们最近共同祖先的重复事件,而黄鲈amhr2y是从其谱系中的独立重复事件进化而来。研究发现amhr2y比amhr2受到的选择压力更强,其整体结构与amhr2相似。

草海龙与其他海龙科物种一样具有缺乏牙齿的管状吻。 研究表明,大部分富含P/Q的分泌型钙结合磷蛋白(SCPP)基因的缺失可能是导致syngnathids无牙的原因。 为了验证海龙科中因 假基因化丧失功能 这一点,作者使用CRISPR-Cas9技术构建了两个斑马鱼scpp5突变系,发现scpp5-/-突变体斑马鱼牙齿的数量减少且颌骨中存在用于附着牙齿的凹坑。

研究结论 该研究通过雌雄性海龙基因组的破译,结合 重测序分析、转录分析、比较基因组分析 等研究揭示了海龙科物种性别决定基因的产生和演化历程,为海洋鱼类的环境适应性进化研究提供了重要理论依据。

合作单位:浙江大学 发表期刊:Plant Biotechnology Journal 影响因子:9.801 发表时间:2021.08 研究材料:Denovo:Brassica juncea菜用芥菜T84-66、油用芥菜AU213; 个体重测序:12个油菜品种; 遗传进化:183份油用与菜用芥菜; 测序方案: Denovo:菜用芥菜分别146 Gb Illumina(~150X)+ 251 Gb PacBio( 200X)+Hi-C( 200X );油用芥菜147 Gb Illumina(~150X)+205 Gb PacBio( 200X)+Hi-C( 200X ) 个体重测序:~20X Nanopore 遗传进化与GWAS:~10X illumina

研究内容

在着丝粒附近的异染色质状态中具有相对较低的基因表达模式。

系统地鉴定了T84-66 和AU213的A和B亚基因组中的全基因组单核苷酸多态性(SNP)、插入/缺失(InDels)和存在/缺失变异(PAV)。在T84-66和AU213之间的A和B亚基因组中鉴定了24,768个PAV(> 100 bp), 其中3,634个PAV导致6,425个基因的变异。随机选择了几个PAV并使用PCR来确保这些PAV的保真度。其中一些基因组变异位于基因区域内,预计会影响T84-66和AU213作物中涉及生物和非生物胁迫的基因功能。

为了破译芥菜基因组菜用和油用品种之间SVs衍生的功能差异,作者基于Nanopore重测序技术,系统比较了菜用和油用芥菜群体基因组结构变异(structural variation,SV) ,挖掘到包括1, 354个高可信度的插入、缺失、重复、倒位、易位等变异。其中两个重要的基因位点TGA1和HSP20在ChrA06和ChrB08,可能与B.juncea基因组的菜用与油用品种之间对生物和生物应力的反应的自然变异有关。 这些变异研究为菜用芥和油用芥两个典型分化群体的演化提供了基因组变异基础。

使用T84-66作为参考基因组,对183份油用与菜用芥菜进行进化关系分析,并通过SGS-GWAS(scored genomic SNPs based GWAS)基因定位,在A02和A09中发现了两个参与控制芥菜硫苷(GSL)积累变异的关键遗传位,并首次发现A09中的MYB28与B. jucnea中GSL的积累有关。经过进一步研究并同过ONT验证发现,MYB28基因的拷贝数变异(copy number variations,CNVs)是导致芥菜种群中硫苷积累差异的原因,该基因的拷贝数变异在低硫苷芥菜群体中普遍存在。

研究小结 该研究将为多倍基因组进化研究和精确基因组选择研究提供重要研究信息,对芥菜风味品质和油脂质量的分子遗传改良具有重要科学和应用价值。

合作单位:华中农业大学 发表期刊:Molecular Biology And Evolution 影响因子:16.241 发表时间:2021.05 研究材料:基因组、Hi-C:圆叶棉G. rotundifolium(K2)、亚洲棉G. arboreum(A2)、雷蒙德氏棉G. raimondii(D2)新鲜叶片

测序方案 denovo:illumina K2、A2和D5分别108×, 118×, 132×;Nanopore K2、A2和D5分别124×, 131×, 167× Hi-C挂载:6碱基酶HindⅢ;K2、A2和D5分辨率分别为20kb、20kb、10kb Hi-C互作:4碱基酶DpnⅡ;分辨率20 Kb, 50 Kb, 100 Kb

研究内容

利用Nanopore测序技术组装了圆叶棉( K2 )基因组,组装大小为2.44Gb(contigN50 = 5.33 Mb);提升了亚洲棉( A2 )和雷蒙德氏棉( D5 )的基因组,组装大小分别为1.62 Gb (contigN50 = 11.69 Mb)和0.75 Gb(contigN50 =17.04 Mb )。Hi-C挂载率均超过99%,BUSCO结果分别为92.5%, 93.9%,及95.4%。

重复序列注释表明,相对于D5,K2和A2中棉种 特异的反转录转座子扩增是造成这三个基因组大小三倍变化的原因,特别是Gypsy和DIRS类型。全长转座子插入时间分析表明K2基因组中转座子插入最为古老,A2基因组有更多新的转座子。

比较基因组分析表明,A2和K2基因组在Chr01与Chr02染色体间存在一个大的易位;K2和D5基因组在Chr13与Chr05染色体间存在一个大的易位。三个棉种在57-71百万年前存在一次共同的全基因组复制事件,并在5.1-5.4百万年前发生物种分化,基因共线性分析表明每个基因组大约有15%特异的基因家族。

通过HiC染色质互作数据揭示三个棉种染色体大小的规律,A2与K2比D5多了约7000个基因,三个基因组中17%的共线性同源基因表现为A/B区室的染色质状态改变,这与活跃的转座子扩增相关。

K2与A2及与D5相比更多的倾向于A向B的转化。K2和A2中有更多的基因处于A compartment,D5中有更多的基因处于B compartment。

大约60%的拓扑结构域(TAD)在三个基因组中发生了重新组织,K2基因组中有更多特异的TAD。基于边界TE覆盖度,边界TE表达以及TE插入时间分析,发现K2不保守的TAD边界存在特异的和较新的转座子(物种分化后爆发的TE)插入。这些结果表明最近在K2和A2基因组中表达的TEs的扩增可能有助于在三个物种分化后形成谱系特异性TAD边界。基于这些结果,作者提出了三个棉种分化过程中,基因组扩张-转座子扩增介导的A/B区室转换和TAD重组的进化模型。

研究小结

本次研究首次公布了棉属中二倍体圆叶棉基因组,并对亚洲棉和雷蒙德氏棉基因组进行了升级,解析了转座子活动驱动的基因组大小进化特征,从转座子扩增和染色质空间结构角度为棉花物种进化提供新的见解,为植物中转座子活动介导的转录调控进化研究提供参考。

2001年人类基因组的草图发表在《自然》(Nature)杂志期刊。

2001年2月12日,由6国的科学家共同参与的国际人类基因组公布了人类基因组图谱及初步分析结果。这个被誉为生命科学“登月计划”的研究项目取得重大进展,为人类揭开自身奥秘奠定了坚实的基础。

美、英、法、德、日和中国6国先后参加人类基因组对23对染色体DNA大规模测序的国际合作,最终绘制了一张类似化学元素周期表的人类基因组精确图谱。人类基因组计划中最实质的内容,就是人类基因组的DNA序列图。

人类基因组计划起始、争论焦点、主要分歧、竞争主战场等都是围绕序列图展开的。在序列图完成之前,其他各图都是序列图的铺垫。也就是说,只有序列图的诞生才标志着整个人类基因组计划工作的完成。人类基因组图谱的绘就,是人类探索自身奥秘史上的一个重要里程碑。

它被很多分析家认为是生物技术世纪诞生的标志,也就是说,21世纪是生物技术主宰世界的世纪。正如一个世纪前量子论的诞生被认为揭开了物理学主宰的20世纪一样。

作用

人类基因组精确图谱将成为21世纪生命科学领域的领头学科,这一点在国际上已得到认同,我们今天站在新世纪的门槛上,回想20世纪初,物理学在自然科学领域占绝对的领导地位,那时候的物理学如此风光。

源于它在理论上的重大突破,牛顿力学、热力学第二定律、量子力学以及随后的相对论等等这些理论,给物理学的发展、物理学的冒尖打下了基础,这些理论是过去没有的,是人类创新性的理论,这就是物理学能在20世纪初成为自然科学领头学科的最根本的原因。

基因组投稿期刊有哪些

转自:

基因组(Denovo sequencing),即基因组从头测序,指在不依赖参考基因组的情况下绘制该物种的全基因组序列图谱,从而获取该物种的全部遗传信息。高连续性基因组的获得,对后续功能基因定位,结构变异检测具有重要的意义。结合近几年的文章我们不难发现,基因组研究主要以下面几种方向为出发点开展: 1)大型/多倍体/超复杂物种基因组破译,技术创新改革; 2)0 Gap基因组/单体型基因组构建,序列优化打磨; 3)未知基因组破译联合多组学分析,经济价值挖掘; 4)品种泛基因组构建解析功能变异,覆盖多样表型; 5)科属水平谱系基因组构建与分析,探索进化功能; 6)多种基因组联合多组学比对剖析,解析性状特征。 ... ...

前5种好理解,第6种方向能做什么呢?其实我们想要了解一个物种,往往单一基因组难以完整解析,例如

等等棘手但是却又热门的研究话题。

接下来我将通过百迈客最近三篇动植物上的成功案例带大家看看,如何通过数个材料基因组结合多组学的手段解析性状特征。

合作单位:中科院南海海洋研究所 发表期刊:Science Advances 影响因子:14.131 发表时间:2021.08 研究材料:Denovo:雌性与雄性草海龙(Phyllopteryx taeniolatus);雌性与雄性绿海龙(Syngnathoides biaculeatus) 个体重测序:2只雄性草海龙 RNA-seq:脑、眼、鳃、肝、肠、肌肉、鳍、皮肤和附叶 测序方案

Denovo:雌性、雄性草海龙与雄性绿海龙PacBio平台;雌性绿海龙Nanopore平台,雌性、雄性草海龙与雄性绿海龙进行Hi-C测序。三代测序技术对应测序数据如下表所示: 个体重测序:~30X PacBio

草海龙最终组装大小为~659 Mb(♂)与 ~663Mb(♀), contig N50分别为10.0 Mb与12.1 Mb。绿海龙分别组装~637 Mb(♂)与~648 Mb(♀),contig N50分别为18.0Mb与21.0 Mb。4个基因组BUSCO评估显示范围在94.00- 94.40%。并分别在草海龙和绿海龙中确定了31个和33个发生 扩张的基因家族 。通过19条鳍鱼类全基因组数据集进行 系统发育分析 ,明确草海龙与绿海龙在系统发育地位上属于海龙亚科(Syngnathinae)的姊妹群,并于 27.3 百万年前 左右发生分化。

草海龙的头部、颈部、腹部、背部和尾部区域有叶子状的附属物,可以与周围环境相融合,使草海龙以完美拟态隐匿于海草床中。这些结构是该物种的一种适应性进化产物,主要由骨基质和富含胶原纤维的结缔组织组成。

通过转录组学分析,发现其表达基因(如msx,dlx,fgf)主要从皮肤和鳍等器官募集而来,暗示了相关基因对新器官产生和维持的重要作用。而“附叶”与鳍相比缺乏肢体发育特异性的hox基因。草海龙的附叶在捕食者的袭击中经常受到损伤,为了研究相关机制,作者通过转录组分析研究发现在其附叶中炎症和损伤修复相关基因表现出高表达水平, 说明这些基因可能与其附叶的快速愈合和再生能力相关 。 同时草海龙特异性扩张的MHC I基因也在附叶中显著高表达,能为其提供额外的免疫保护。

通过雄性和雌性叶海龙Illumina reads正反比对雄性和雌性的全基因组序列,来确定叶海龙中假定的性染色体和性别基因座。结果显示 Chr4上的一个~47-kb区域仅在雄性中存在 , 且reads覆盖度为Chr4平均值的一半,该片段经Hi-C互作分析结果支持。

注释及比较分析发现草海龙和绿海龙的性别决定基因均为amhr2的雄性特异性拷贝amhr2y,但两者的基因座不相同。系统发育分析表明,amhr2y起源于它们最近共同祖先的重复事件,而黄鲈amhr2y是从其谱系中的独立重复事件进化而来。研究发现amhr2y比amhr2受到的选择压力更强,其整体结构与amhr2相似。

草海龙与其他海龙科物种一样具有缺乏牙齿的管状吻。 研究表明,大部分富含P/Q的分泌型钙结合磷蛋白(SCPP)基因的缺失可能是导致syngnathids无牙的原因。 为了验证海龙科中因 假基因化丧失功能 这一点,作者使用CRISPR-Cas9技术构建了两个斑马鱼scpp5突变系,发现scpp5-/-突变体斑马鱼牙齿的数量减少且颌骨中存在用于附着牙齿的凹坑。

研究结论 该研究通过雌雄性海龙基因组的破译,结合 重测序分析、转录分析、比较基因组分析 等研究揭示了海龙科物种性别决定基因的产生和演化历程,为海洋鱼类的环境适应性进化研究提供了重要理论依据。

合作单位:浙江大学 发表期刊:Plant Biotechnology Journal 影响因子:9.801 发表时间:2021.08 研究材料:Denovo:Brassica juncea菜用芥菜T84-66、油用芥菜AU213; 个体重测序:12个油菜品种; 遗传进化:183份油用与菜用芥菜; 测序方案: Denovo:菜用芥菜分别146 Gb Illumina(~150X)+ 251 Gb PacBio( 200X)+Hi-C( 200X );油用芥菜147 Gb Illumina(~150X)+205 Gb PacBio( 200X)+Hi-C( 200X ) 个体重测序:~20X Nanopore 遗传进化与GWAS:~10X illumina

研究内容

在着丝粒附近的异染色质状态中具有相对较低的基因表达模式。

系统地鉴定了T84-66 和AU213的A和B亚基因组中的全基因组单核苷酸多态性(SNP)、插入/缺失(InDels)和存在/缺失变异(PAV)。在T84-66和AU213之间的A和B亚基因组中鉴定了24,768个PAV(> 100 bp), 其中3,634个PAV导致6,425个基因的变异。随机选择了几个PAV并使用PCR来确保这些PAV的保真度。其中一些基因组变异位于基因区域内,预计会影响T84-66和AU213作物中涉及生物和非生物胁迫的基因功能。

为了破译芥菜基因组菜用和油用品种之间SVs衍生的功能差异,作者基于Nanopore重测序技术,系统比较了菜用和油用芥菜群体基因组结构变异(structural variation,SV) ,挖掘到包括1, 354个高可信度的插入、缺失、重复、倒位、易位等变异。其中两个重要的基因位点TGA1和HSP20在ChrA06和ChrB08,可能与B.juncea基因组的菜用与油用品种之间对生物和生物应力的反应的自然变异有关。 这些变异研究为菜用芥和油用芥两个典型分化群体的演化提供了基因组变异基础。

使用T84-66作为参考基因组,对183份油用与菜用芥菜进行进化关系分析,并通过SGS-GWAS(scored genomic SNPs based GWAS)基因定位,在A02和A09中发现了两个参与控制芥菜硫苷(GSL)积累变异的关键遗传位,并首次发现A09中的MYB28与B. jucnea中GSL的积累有关。经过进一步研究并同过ONT验证发现,MYB28基因的拷贝数变异(copy number variations,CNVs)是导致芥菜种群中硫苷积累差异的原因,该基因的拷贝数变异在低硫苷芥菜群体中普遍存在。

研究小结 该研究将为多倍基因组进化研究和精确基因组选择研究提供重要研究信息,对芥菜风味品质和油脂质量的分子遗传改良具有重要科学和应用价值。

合作单位:华中农业大学 发表期刊:Molecular Biology And Evolution 影响因子:16.241 发表时间:2021.05 研究材料:基因组、Hi-C:圆叶棉G. rotundifolium(K2)、亚洲棉G. arboreum(A2)、雷蒙德氏棉G. raimondii(D2)新鲜叶片

测序方案 denovo:illumina K2、A2和D5分别108×, 118×, 132×;Nanopore K2、A2和D5分别124×, 131×, 167× Hi-C挂载:6碱基酶HindⅢ;K2、A2和D5分辨率分别为20kb、20kb、10kb Hi-C互作:4碱基酶DpnⅡ;分辨率20 Kb, 50 Kb, 100 Kb

研究内容

利用Nanopore测序技术组装了圆叶棉( K2 )基因组,组装大小为2.44Gb(contigN50 = 5.33 Mb);提升了亚洲棉( A2 )和雷蒙德氏棉( D5 )的基因组,组装大小分别为1.62 Gb (contigN50 = 11.69 Mb)和0.75 Gb(contigN50 =17.04 Mb )。Hi-C挂载率均超过99%,BUSCO结果分别为92.5%, 93.9%,及95.4%。

重复序列注释表明,相对于D5,K2和A2中棉种 特异的反转录转座子扩增是造成这三个基因组大小三倍变化的原因,特别是Gypsy和DIRS类型。全长转座子插入时间分析表明K2基因组中转座子插入最为古老,A2基因组有更多新的转座子。

比较基因组分析表明,A2和K2基因组在Chr01与Chr02染色体间存在一个大的易位;K2和D5基因组在Chr13与Chr05染色体间存在一个大的易位。三个棉种在57-71百万年前存在一次共同的全基因组复制事件,并在5.1-5.4百万年前发生物种分化,基因共线性分析表明每个基因组大约有15%特异的基因家族。

通过HiC染色质互作数据揭示三个棉种染色体大小的规律,A2与K2比D5多了约7000个基因,三个基因组中17%的共线性同源基因表现为A/B区室的染色质状态改变,这与活跃的转座子扩增相关。

K2与A2及与D5相比更多的倾向于A向B的转化。K2和A2中有更多的基因处于A compartment,D5中有更多的基因处于B compartment。

大约60%的拓扑结构域(TAD)在三个基因组中发生了重新组织,K2基因组中有更多特异的TAD。基于边界TE覆盖度,边界TE表达以及TE插入时间分析,发现K2不保守的TAD边界存在特异的和较新的转座子(物种分化后爆发的TE)插入。这些结果表明最近在K2和A2基因组中表达的TEs的扩增可能有助于在三个物种分化后形成谱系特异性TAD边界。基于这些结果,作者提出了三个棉种分化过程中,基因组扩张-转座子扩增介导的A/B区室转换和TAD重组的进化模型。

研究小结

本次研究首次公布了棉属中二倍体圆叶棉基因组,并对亚洲棉和雷蒙德氏棉基因组进行了升级,解析了转座子活动驱动的基因组大小进化特征,从转座子扩增和染色质空间结构角度为棉花物种进化提供新的见解,为植物中转座子活动介导的转录调控进化研究提供参考。

《基因组学与应用生物学》中国科技核心期刊、中国科学引文数据库来源期刊、《中文核心期刊要目总览》核心期刊及中国期刊方阵“双效”期刊、广西高校优秀学报。广西大学主管、主办。聘请李宁院士为主编;罗达博士、研究员为副主编;方宣钧、朱玉贤博士为执行主编以及 26名国内知名专家教授组成的编委会。实现优质管理,严把政治和学术质量关。《广西农业生物科学》由广西大学主管和主办, 是原广西农业大学主办的 《广西农业大学学报》变更而来, 创刊于 1982 年, 季刊, 国内外公开发行。二十一世纪, 基因组学已成为生物科学领域中的理论与技术的核心平台, 为了适应基于基因组时代的现代生物科学的发展, 经国家新闻出版总署批准, 从 2009 年开始, 《广西农业生物科学》更名为《基因组学与应用生物学》(《Genomics and Applied Biology》) 。更名后的期刊仍由广西大学主管和主办, 公开发行, 双月刊, 双月 28 日出版。由中国科学院院士及美国国家科学院外籍院士张启发博士任主编, 北京大学教授朱玉贤博士和海南省热带农业资源研究所所长方宣钧博士任执行主编。《基因组学与应用生物学》将面向基因组学、分子遗传学、生化与分子生物学、生物信息学等基础学科领域, 着重刊登农林科学、医药科学、动物科学、环境与生态科学以及生物学实验技术与方法等应用生物学领域的最新研究进展和成果。将开设综述与专论、研究论文、新技术新基因新种质等栏目。《基因组学与应用生物学》承载着《广西农业生物科学》的悠久历史与荣誉, 进一步开拓奋进,为现代生命科学和应用生物学的研究与发展提供学术交流的平台, 使之成为中国科学家走向世界的桥梁。《广西农业生物科学》自创刊以来, 得到各级领导、国内外学术单位以及广大科研人员的支持和厚爱,受到来自全国30多个省、市、自治区及国外的科研院所、大专院校的两千多名作者的支持与厚爱,刊发了研究论文、研究报告、评述与展望等类型的科研论文共400余篇,内容涵盖基因组学、分子遗传学、生化与分子生物学、生物信息学以及应用生物学等基础学科与应用学科。 值此更名之际, 我们向支持和厚爱本刊的科研院所、大专院校及广大科技工作者表示衷心的感谢! 更名后, 我们将不辜负大家的信任和期望, 以十分鲜明的特色, 为广大的科学家服务。

基因组投稿期刊有哪些专利

American Journal of Preventive Medicine《美国预防医学杂志》美国ISSN:0749-3797,1984年创刊,全年8期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子3.167。刊载预防医学基础和应用研究论文。涉及的学科包括流行病学、遗传学、营养学、毒理学和社会科学;应用的领域包括卫生管理、传染病防治、职业医学、环境卫生、航空航天医学、老年病、母婴保健、计划生育等。Annales de Génétique《遗传学纪事》法国ISSN:0003-3995,1958年创刊,全年4期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子0.625。法国遗传学会的会刊。刊载遗传学研究论文、技术札记、文摘和消息。Biochimie《生物化学》法国ISSN:0300-9084,1914年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.461。刊载有关酶学、遗传学、免疫学、微生物学和高分子结构等方面的研究论文及评论。Biomolecular Engineering《生物分子工程》荷兰ISSN:1389-0344,1983年创刊,全年6期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子1.435,2005年EI收录30篇。研究分子生物学、细胞生物学、免疫学、生物化学和遗传学中使用的新技术、材料及器械。刊载研究论文和综论。Cancer Genetics and Cytogenetics《癌遗传学与细胞遗传学》美国ISSN:0165-4608, 1979年创刊,全年16期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子1.640。刊载癌细胞与分子的基础研究论文。反映癌遗传学和细胞遗传学领域的最新研究进展。Current Opinion in Genetics & Development《遗传学与发育新见》英国ISSN: 0959-437X, 1991年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子9.361。著名遗传学权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、疾病遗传学、遗传组织与变异、细胞繁殖、发育模式与机理等方面的研究进展评论。附近期有关学科主要论文索引。Developmental Biology《发育生物学》美国ISSN:0012-1606,1959年创刊,全年24期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子5.234。著名生物学权威专业性学术期刊,从分子、细胞和遗传的水平上研究动植物发育、变异、生长、再生和组织修复的机能。发表论文。European Journal of Medical Genetics《欧洲医学遗传学》ISSN: 1769-7212,2005年创刊,Elsevier Science出版社,主要刊载关于给类人研究和医学遗传学以及基因实验模型方面的论文。European Journal of Pharmacology: Molecular Pharmacology《欧洲药理学杂志:分子药理浙江工业大学图书馆信息咨询部编 Elsevier Science 出版社期刊投稿指南 60学分册》荷兰ISSN:0922-4106,1989年创刊,全年12期,Elsevier Science出版社,刊载分子水平的药理学、药效学、神经系统药理学等方面的研究论文和简报,内容涉及分子神经传递,信号转导机理,蛋白质受体的遗传反应等。Human Immunology《人类免疫学》美国ISSN:0198-8859,1980年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.467。刊载人类免疫系统和其他脊椎动物模拟系统的研究论文。侧重于组织适应性和免疫遗传学的研究。Infection, Genetics and Evolution《传染、遗传和进化》荷兰ISSN:1567-1348,2001年创刊,全年4期,Elsevier Science出版社。主要刊载遗传学领域,包括疾病等的传染、遗传、进化等方面的论文。Journal of Molecular Biology《分子生物学杂志》英国ISSN:0022-2836,1959年创刊,全年50期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子5.229。刊载原始论文,论述分子生物学的各个方面,涉及基因结构、复制及解译机理、蛋白质、核酸等大分子的结构和性质、细胞和发育生物学、分子遗传学等。Molecular Genetics and Metabolism《分子遗传学与新陈代谢》美国ISSN:1096-7192,1976年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子2.678。1998年前刊名为Biochemical and Molecular Medicine,从生物化学和分子生物学角度对人体正常代谢和代谢病进行研究。发表原始论文、短评和简讯。Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis《突变研究-突变原理与分子结构》荷兰ISSN:1388-2112,1964年创刊,Elsevier Science出版社。主要刊载关于包括遗传变异基因的作用,并体现突变,可变化合物的代谢方式到以不同的身份和修复受损DNA的细胞复制等方面的论文。Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。Mutation Research/Reviews in Mutation Research《突变研究-突变研究评论》荷兰ISSN:1383-5742,1964年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子5.333。主要刊载突变和疾病的关系,涵盖人类基因组研究进展(包括演变和功能基因突变检测技术)与临床应用遗传学、基因治疗、环境健康风险评估,遗传毒理学和环境突变(包括遗传因素调节活性剂环境)等方面的论文。Trends in Genetics《遗传学趋势》英国ISSN:0168-9525,1985年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子12.047。权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、变异、发育方面的评论、札记和书评,涉及临床遗传学、遗传学与社会、应用技术与人口遗传学等问题。

5分以上的杂志:

control release、Adv Drug Deliv Rev 、Annu Rev Pharmacol Toxicol   、Nature Communications

Elife——国人文章作者一般为国内科研大牛或科研团队,国人发文占比约6%

Elife是一本起点很高的综合期刊,旨在向读者提供最前沿的生命科学和生物科技研究。从该期刊最新文章进行分析来看,其收录范围非常广,有关生命科学和生物医学的论著和综述均可投稿。但注意这本期刊严谨而又大胆创新的编辑共同审稿模式,不仅缩短了审稿周期,也对稿件质量把控得更加严格。据说投稿到该期刊超过2/3的文章都会在外审前被编辑退稿。

基因组投稿期刊有哪些网站

没有期刊接受基因组序列,基因组序列都是提交到NCBI的gene bank(目前是google提供服务器管理)。基因组测序数据的文章,大可以发CNS,小的0.1的也能发

声明利益冲突的证明可以在网上下载,例如,您可以在美国国家图书馆的网站上下载,或者在其他网站上搜索“声明利益冲突的证明”,您也可以在美国国家图书馆的网站上搜索“声明利益冲突的证明”,以获取更多信息。

2001年人类基因组的草图发表在《自然》(Nature)杂志期刊。

2001年2月12日,由6国的科学家共同参与的国际人类基因组公布了人类基因组图谱及初步分析结果。这个被誉为生命科学“登月计划”的研究项目取得重大进展,为人类揭开自身奥秘奠定了坚实的基础。

美、英、法、德、日和中国6国先后参加人类基因组对23对染色体DNA大规模测序的国际合作,最终绘制了一张类似化学元素周期表的人类基因组精确图谱。人类基因组计划中最实质的内容,就是人类基因组的DNA序列图。

人类基因组计划起始、争论焦点、主要分歧、竞争主战场等都是围绕序列图展开的。在序列图完成之前,其他各图都是序列图的铺垫。也就是说,只有序列图的诞生才标志着整个人类基因组计划工作的完成。人类基因组图谱的绘就,是人类探索自身奥秘史上的一个重要里程碑。

它被很多分析家认为是生物技术世纪诞生的标志,也就是说,21世纪是生物技术主宰世界的世纪。正如一个世纪前量子论的诞生被认为揭开了物理学主宰的20世纪一样。

作用

人类基因组精确图谱将成为21世纪生命科学领域的领头学科,这一点在国际上已得到认同,我们今天站在新世纪的门槛上,回想20世纪初,物理学在自然科学领域占绝对的领导地位,那时候的物理学如此风光。

源于它在理论上的重大突破,牛顿力学、热力学第二定律、量子力学以及随后的相对论等等这些理论,给物理学的发展、物理学的冒尖打下了基础,这些理论是过去没有的,是人类创新性的理论,这就是物理学能在20世纪初成为自然科学领头学科的最根本的原因。

基因组投稿期刊有哪些类型

《基因组学与应用生物学》中国科技核心期刊、中国科学引文数据库来源期刊、《中文核心期刊要目总览》核心期刊及中国期刊方阵“双效”期刊、广西高校优秀学报。广西大学主管、主办。聘请李宁院士为主编;罗达博士、研究员为副主编;方宣钧、朱玉贤博士为执行主编以及 26名国内知名专家教授组成的编委会。实现优质管理,严把政治和学术质量关。《广西农业生物科学》由广西大学主管和主办, 是原广西农业大学主办的 《广西农业大学学报》变更而来, 创刊于 1982 年, 季刊, 国内外公开发行。二十一世纪, 基因组学已成为生物科学领域中的理论与技术的核心平台, 为了适应基于基因组时代的现代生物科学的发展, 经国家新闻出版总署批准, 从 2009 年开始, 《广西农业生物科学》更名为《基因组学与应用生物学》(《Genomics and Applied Biology》) 。更名后的期刊仍由广西大学主管和主办, 公开发行, 双月刊, 双月 28 日出版。由中国科学院院士及美国国家科学院外籍院士张启发博士任主编, 北京大学教授朱玉贤博士和海南省热带农业资源研究所所长方宣钧博士任执行主编。《基因组学与应用生物学》将面向基因组学、分子遗传学、生化与分子生物学、生物信息学等基础学科领域, 着重刊登农林科学、医药科学、动物科学、环境与生态科学以及生物学实验技术与方法等应用生物学领域的最新研究进展和成果。将开设综述与专论、研究论文、新技术新基因新种质等栏目。《基因组学与应用生物学》承载着《广西农业生物科学》的悠久历史与荣誉, 进一步开拓奋进,为现代生命科学和应用生物学的研究与发展提供学术交流的平台, 使之成为中国科学家走向世界的桥梁。《广西农业生物科学》自创刊以来, 得到各级领导、国内外学术单位以及广大科研人员的支持和厚爱,受到来自全国30多个省、市、自治区及国外的科研院所、大专院校的两千多名作者的支持与厚爱,刊发了研究论文、研究报告、评述与展望等类型的科研论文共400余篇,内容涵盖基因组学、分子遗传学、生化与分子生物学、生物信息学以及应用生物学等基础学科与应用学科。 值此更名之际, 我们向支持和厚爱本刊的科研院所、大专院校及广大科技工作者表示衷心的感谢! 更名后, 我们将不辜负大家的信任和期望, 以十分鲜明的特色, 为广大的科学家服务。

转自:

基因组(Denovo sequencing),即基因组从头测序,指在不依赖参考基因组的情况下绘制该物种的全基因组序列图谱,从而获取该物种的全部遗传信息。高连续性基因组的获得,对后续功能基因定位,结构变异检测具有重要的意义。结合近几年的文章我们不难发现,基因组研究主要以下面几种方向为出发点开展: 1)大型/多倍体/超复杂物种基因组破译,技术创新改革; 2)0 Gap基因组/单体型基因组构建,序列优化打磨; 3)未知基因组破译联合多组学分析,经济价值挖掘; 4)品种泛基因组构建解析功能变异,覆盖多样表型; 5)科属水平谱系基因组构建与分析,探索进化功能; 6)多种基因组联合多组学比对剖析,解析性状特征。 ... ...

前5种好理解,第6种方向能做什么呢?其实我们想要了解一个物种,往往单一基因组难以完整解析,例如

等等棘手但是却又热门的研究话题。

接下来我将通过百迈客最近三篇动植物上的成功案例带大家看看,如何通过数个材料基因组结合多组学的手段解析性状特征。

合作单位:中科院南海海洋研究所 发表期刊:Science Advances 影响因子:14.131 发表时间:2021.08 研究材料:Denovo:雌性与雄性草海龙(Phyllopteryx taeniolatus);雌性与雄性绿海龙(Syngnathoides biaculeatus) 个体重测序:2只雄性草海龙 RNA-seq:脑、眼、鳃、肝、肠、肌肉、鳍、皮肤和附叶 测序方案

Denovo:雌性、雄性草海龙与雄性绿海龙PacBio平台;雌性绿海龙Nanopore平台,雌性、雄性草海龙与雄性绿海龙进行Hi-C测序。三代测序技术对应测序数据如下表所示: 个体重测序:~30X PacBio

草海龙最终组装大小为~659 Mb(♂)与 ~663Mb(♀), contig N50分别为10.0 Mb与12.1 Mb。绿海龙分别组装~637 Mb(♂)与~648 Mb(♀),contig N50分别为18.0Mb与21.0 Mb。4个基因组BUSCO评估显示范围在94.00- 94.40%。并分别在草海龙和绿海龙中确定了31个和33个发生 扩张的基因家族 。通过19条鳍鱼类全基因组数据集进行 系统发育分析 ,明确草海龙与绿海龙在系统发育地位上属于海龙亚科(Syngnathinae)的姊妹群,并于 27.3 百万年前 左右发生分化。

草海龙的头部、颈部、腹部、背部和尾部区域有叶子状的附属物,可以与周围环境相融合,使草海龙以完美拟态隐匿于海草床中。这些结构是该物种的一种适应性进化产物,主要由骨基质和富含胶原纤维的结缔组织组成。

通过转录组学分析,发现其表达基因(如msx,dlx,fgf)主要从皮肤和鳍等器官募集而来,暗示了相关基因对新器官产生和维持的重要作用。而“附叶”与鳍相比缺乏肢体发育特异性的hox基因。草海龙的附叶在捕食者的袭击中经常受到损伤,为了研究相关机制,作者通过转录组分析研究发现在其附叶中炎症和损伤修复相关基因表现出高表达水平, 说明这些基因可能与其附叶的快速愈合和再生能力相关 。 同时草海龙特异性扩张的MHC I基因也在附叶中显著高表达,能为其提供额外的免疫保护。

通过雄性和雌性叶海龙Illumina reads正反比对雄性和雌性的全基因组序列,来确定叶海龙中假定的性染色体和性别基因座。结果显示 Chr4上的一个~47-kb区域仅在雄性中存在 , 且reads覆盖度为Chr4平均值的一半,该片段经Hi-C互作分析结果支持。

注释及比较分析发现草海龙和绿海龙的性别决定基因均为amhr2的雄性特异性拷贝amhr2y,但两者的基因座不相同。系统发育分析表明,amhr2y起源于它们最近共同祖先的重复事件,而黄鲈amhr2y是从其谱系中的独立重复事件进化而来。研究发现amhr2y比amhr2受到的选择压力更强,其整体结构与amhr2相似。

草海龙与其他海龙科物种一样具有缺乏牙齿的管状吻。 研究表明,大部分富含P/Q的分泌型钙结合磷蛋白(SCPP)基因的缺失可能是导致syngnathids无牙的原因。 为了验证海龙科中因 假基因化丧失功能 这一点,作者使用CRISPR-Cas9技术构建了两个斑马鱼scpp5突变系,发现scpp5-/-突变体斑马鱼牙齿的数量减少且颌骨中存在用于附着牙齿的凹坑。

研究结论 该研究通过雌雄性海龙基因组的破译,结合 重测序分析、转录分析、比较基因组分析 等研究揭示了海龙科物种性别决定基因的产生和演化历程,为海洋鱼类的环境适应性进化研究提供了重要理论依据。

合作单位:浙江大学 发表期刊:Plant Biotechnology Journal 影响因子:9.801 发表时间:2021.08 研究材料:Denovo:Brassica juncea菜用芥菜T84-66、油用芥菜AU213; 个体重测序:12个油菜品种; 遗传进化:183份油用与菜用芥菜; 测序方案: Denovo:菜用芥菜分别146 Gb Illumina(~150X)+ 251 Gb PacBio( 200X)+Hi-C( 200X );油用芥菜147 Gb Illumina(~150X)+205 Gb PacBio( 200X)+Hi-C( 200X ) 个体重测序:~20X Nanopore 遗传进化与GWAS:~10X illumina

研究内容

在着丝粒附近的异染色质状态中具有相对较低的基因表达模式。

系统地鉴定了T84-66 和AU213的A和B亚基因组中的全基因组单核苷酸多态性(SNP)、插入/缺失(InDels)和存在/缺失变异(PAV)。在T84-66和AU213之间的A和B亚基因组中鉴定了24,768个PAV(> 100 bp), 其中3,634个PAV导致6,425个基因的变异。随机选择了几个PAV并使用PCR来确保这些PAV的保真度。其中一些基因组变异位于基因区域内,预计会影响T84-66和AU213作物中涉及生物和非生物胁迫的基因功能。

为了破译芥菜基因组菜用和油用品种之间SVs衍生的功能差异,作者基于Nanopore重测序技术,系统比较了菜用和油用芥菜群体基因组结构变异(structural variation,SV) ,挖掘到包括1, 354个高可信度的插入、缺失、重复、倒位、易位等变异。其中两个重要的基因位点TGA1和HSP20在ChrA06和ChrB08,可能与B.juncea基因组的菜用与油用品种之间对生物和生物应力的反应的自然变异有关。 这些变异研究为菜用芥和油用芥两个典型分化群体的演化提供了基因组变异基础。

使用T84-66作为参考基因组,对183份油用与菜用芥菜进行进化关系分析,并通过SGS-GWAS(scored genomic SNPs based GWAS)基因定位,在A02和A09中发现了两个参与控制芥菜硫苷(GSL)积累变异的关键遗传位,并首次发现A09中的MYB28与B. jucnea中GSL的积累有关。经过进一步研究并同过ONT验证发现,MYB28基因的拷贝数变异(copy number variations,CNVs)是导致芥菜种群中硫苷积累差异的原因,该基因的拷贝数变异在低硫苷芥菜群体中普遍存在。

研究小结 该研究将为多倍基因组进化研究和精确基因组选择研究提供重要研究信息,对芥菜风味品质和油脂质量的分子遗传改良具有重要科学和应用价值。

合作单位:华中农业大学 发表期刊:Molecular Biology And Evolution 影响因子:16.241 发表时间:2021.05 研究材料:基因组、Hi-C:圆叶棉G. rotundifolium(K2)、亚洲棉G. arboreum(A2)、雷蒙德氏棉G. raimondii(D2)新鲜叶片

测序方案 denovo:illumina K2、A2和D5分别108×, 118×, 132×;Nanopore K2、A2和D5分别124×, 131×, 167× Hi-C挂载:6碱基酶HindⅢ;K2、A2和D5分辨率分别为20kb、20kb、10kb Hi-C互作:4碱基酶DpnⅡ;分辨率20 Kb, 50 Kb, 100 Kb

研究内容

利用Nanopore测序技术组装了圆叶棉( K2 )基因组,组装大小为2.44Gb(contigN50 = 5.33 Mb);提升了亚洲棉( A2 )和雷蒙德氏棉( D5 )的基因组,组装大小分别为1.62 Gb (contigN50 = 11.69 Mb)和0.75 Gb(contigN50 =17.04 Mb )。Hi-C挂载率均超过99%,BUSCO结果分别为92.5%, 93.9%,及95.4%。

重复序列注释表明,相对于D5,K2和A2中棉种 特异的反转录转座子扩增是造成这三个基因组大小三倍变化的原因,特别是Gypsy和DIRS类型。全长转座子插入时间分析表明K2基因组中转座子插入最为古老,A2基因组有更多新的转座子。

比较基因组分析表明,A2和K2基因组在Chr01与Chr02染色体间存在一个大的易位;K2和D5基因组在Chr13与Chr05染色体间存在一个大的易位。三个棉种在57-71百万年前存在一次共同的全基因组复制事件,并在5.1-5.4百万年前发生物种分化,基因共线性分析表明每个基因组大约有15%特异的基因家族。

通过HiC染色质互作数据揭示三个棉种染色体大小的规律,A2与K2比D5多了约7000个基因,三个基因组中17%的共线性同源基因表现为A/B区室的染色质状态改变,这与活跃的转座子扩增相关。

K2与A2及与D5相比更多的倾向于A向B的转化。K2和A2中有更多的基因处于A compartment,D5中有更多的基因处于B compartment。

大约60%的拓扑结构域(TAD)在三个基因组中发生了重新组织,K2基因组中有更多特异的TAD。基于边界TE覆盖度,边界TE表达以及TE插入时间分析,发现K2不保守的TAD边界存在特异的和较新的转座子(物种分化后爆发的TE)插入。这些结果表明最近在K2和A2基因组中表达的TEs的扩增可能有助于在三个物种分化后形成谱系特异性TAD边界。基于这些结果,作者提出了三个棉种分化过程中,基因组扩张-转座子扩增介导的A/B区室转换和TAD重组的进化模型。

研究小结

本次研究首次公布了棉属中二倍体圆叶棉基因组,并对亚洲棉和雷蒙德氏棉基因组进行了升级,解析了转座子活动驱动的基因组大小进化特征,从转座子扩增和染色质空间结构角度为棉花物种进化提供新的见解,为植物中转座子活动介导的转录调控进化研究提供参考。

相关百科

热门百科

首页
发表服务