人工智能比较好
《信息化建设》,国家级上知网,可上国家新闻出版总署查询,需要尽快
计算机视觉和自然语言处理方向哪个好就业,计算机视觉好有特别的中文发论!
目前,公认的计算机视觉三大会议分别为ICCV,ECCV,CVPR。1、ICCV ICCV的全称是 IEEE International Conference on Computer Vision,国际计算机视觉大会,是计算机视觉方向的三大顶级会议之一,通常每两年召开一次,2005 年 10 月曾经在北京召开。会议收录论文的内容包括:底层视觉与感知,颜色、光照与纹理处理,分割与聚合,运动与跟踪,立体视觉与运动结构重构,基于图像的建模,基于物理的建模,视觉中的统计学习,监控,物体、事件和场景的识别,基于视觉的图形学,图片和的获取,性能评估,具体应用等。ICCV是计算机视觉领域最高级别的会议,会议的论文集代表了计算机视觉领域最新的发展方向和水平。会议的收录率较低,以 2007 年为例,会议共收到论文1200余篇,接受的论文仅为244篇。会议的论文会被 EI 检索。2、ECCVECCV的全称是Europeon Conference on Computer Vision,两年一次,是计算机视觉三大会议(另外两个是ICCV和CVPR)之一。很明显,ECCV是一个欧洲会议,欧洲人一般比较看中理论,但是从最近一次会议来看,似乎大家也开始注重应用了,oral里面的demo非常之多,演示效果很好,让人赏心悦目、叹为观止。不过欧洲的会有一个不好,就是他们的人通常英语口音很重,有些人甚至不太会说英文,所以开会和交流的时候,稍微有些费劲。3、CVPRCVPR的全称是Internaltional Conference on Computer Vision and Pattern Recogintion。这是一个一年一次的会议,举办地从来没有出过美国,因此想去美国旅游的同学不要错过。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。
好发。单目标跟踪是计算机视觉中一个众所周知且具有挑战性的研究课题,在过去的二十年中,许多研究人员提出了各种算法来解决这个问题,这个方向的论文属于学术界比较稀缺的,因此比较好发。
你在中国比较权威的杂志发表 最好在教育报什么 的 这些都是教育部的杂志期刊什么 的 或者在什么教师杂志发表
第一步. 调研、入门1. 确定一个感兴趣的大领域,比如分布式系统或者机器学习,或者深度神经网络。读这个领域经典算法和技术,也可以是几本比较好的书,读完然后再实践实践,动手加深理解。这个过程做完就算是初步入门了。2. 找该领域的顶级会议,比如系统领域的有OSDI、SOSP,机器学习的领域有ICML、CVPR,深度学习的有NIPS、ICLR等等,可以搜CCF会议推荐列表看各领域的顶会列表。然后看近几年这些顶会的论文,因为这代表了最新的研究热点,咱不是说一味的追热点啊,毕竟对于初学者没有足够的领域专业背景,追热点是最快的方法。因为热点往往是该领域最亟待解决的问题,往往是发展最快的小方向,也最容易产生新成果。如果是老问题,人家都研究十几年了,给你留下的待解决的问题就很少或者不是很重要。当然如果是有几十年经验的研究者就不必追热点,他们知道该领域哪些是fundamental的问题,哪些是最值得研究的问题。3. 读了这些前沿论文后,确定一个小方向,比如分布式系统是个大方向,小方向可能是机器学习分布式训练;大方向是深度学习,小方向可能就是graph embedding;大方向是机器学习,小方向可能是半监督学习等等。确定小方向的过程是个知识不断积累的过程,非常重要,这需要你对大方向有很多了解,对小方向有更深入更全面的理解,需要读好至少100篇以上论文,需要你知道该小方向的研究进展历史,这需要你知道该小方向别人都在哪方面做工作,做该小方向的顶级研究组都有哪些,他们正在干什么。第二步. 发现问题这步超级难,如果发现了个好问题,那就是成功的一半。这个问题最好是重要的、本质的、没有直观解决方法的。4. 确定小方向后,你需要阅读大量的这个小方向的论文和了解开源项目,再不断聚焦,再确定一个要改进和优化的小小方向,这个可能就是论文的主题。小小方向可能是机器学习分布式系统中的parameter server通信模型,可能是dynamic graph embedding等。然后就要更聚焦地读这方面的相关论文,这时候论文就比较少了,几篇到几十篇到几百篇都有可能,这些论文要精读,花几个月时间研究一篇论文也不为过。5. 挑几个重要的论文工作实现,也可以找开源的运行跑一跑试一试,idea往往从实际运行中来,光靠读是不行的。这个跑一跑可能需要你尝试不同的运行环境,不同的workload数据集,不同的应用场景等。比如,parameter server(PS)模型在本地集群上跑是不是和paper声明的一样、在异构的动态性极强的集群环境下效果怎么样、除了paper提到的算法处理其他算法的时候效果怎么样、除了paper提到的数据集换另外一类数据集怎么样;graph embedding方法处理密集图和稀疏图都怎么样,处理动态变化的图怎么样,等等吧。你要发现X方法仅在a环境下好用,在b环境不好用。这个就是发现问题的过程。当然,没经验的研究者可能很难想到多种环境、多种workload、多种应用场景,这就需要积累。另外一个发现问题的方法是从实际生产中来,这个当然是最好的,但是往往是大企业环境下才有这个条件。6. 确定你发现的问题还没有被解决。这又需要广泛的阅读和调研,但是问题已经很聚焦了,搜索也会很容易,用你特定问题的关键字在google 搜索(这里强烈建议用google,其他搜索引擎基本搜不到),找到解决相关问题的论文。看看这些论文是不是已经解决了该问题,如果解决了,你有两种方案:第一,该问题已经解决的非常好了,放弃解决该问题。第二,该问题的解决方案还有问题,我还有更好的办法。我建议后者,最起码尽量尝试尝试。5和6步是个迭代的过程…第三步. 分析问题7. 分析问题产生的本质原因。这个往往和第5步发现问题同时进行。这一步靠的是功底和积累,靠的是对问题的理解程度。理解的越深刻,分析的越透测,你之后产生的解决思路就越有可能正确和有效。比如分布式机器学习的PS模型在异构环境下、和在处理数据不均匀的情况下就不好,本质原因是其同步的集中式通信模型,造成PS集中服务器往往需要等待。传统graph embedding方法采用批处理模式,需要graph的全局信息做embedding,当然无法应付动态性非常强的局部更新情况。8. 基于分析,就是对该问题的深刻理解,产生改进的idea。这个可能很难,可能靠运气,但我觉得更多的是靠对问题的理解程度,理解的越深刻,本质原因抓的越准,就越可能产生创新idea。读过一本介绍google企业文化的书,google产品的成功,既不是靠技术能力,也不是靠用户需求,而是靠技术洞见(insight),这就是对问题本质的深刻理解。比如,PS模型在某环境下问题的本质原因是集中式的同步模型,那么我们就可以提出尝试异步通信的模型的idea。分析能力跟个人的批判性思维、独立思考能力都有关,而这正是中国人欠缺的,可以通过读有深刻见地的书籍文章、经常提问来锻炼。第四步. 解决问题9. 实现你的idea,做大量实验验证。这需要动手能力,需要编程能力,需要坐得住。10. 验证你的解决方案,根据实验分析不断优化你的方法。做了大量试验后,得到了若干结果,可能是不好的结果,但是不要一下子否定自己的解决方案,这不能说明你的idea不好用。一个好的方法往往经过千锤百炼,同样,你的idea通常不会一下子就成功。需要你根据实验结果分析不好的原因,然后基于你的理解改进方法,这是一个反复不断迭代的过程。比如,你发现异步PS模型效果还不如原来的呢。那么关键的是,你要问自己为什么?为什么理应提升的却没有提升?你要看实验运行的日志,看看是哪里慢了,差在哪里,最后你经过不断的实验、分析、思考,你发现了,你提出的异步PS模型虽然没有了等待开销,但是计算的有效性却降低了,结果整体性能反而下降了。那么你下一次迭代就要想怎么把这个计算有效性提上来。我又有了个方法,可以评估每次计算的有效性,然后把计算资源都投到有效性高的计算上。OK,idea不错,那么怎么评估有效性呢?不能开销太大,否则又得不偿失了,你可能想到了一种近似地评估方法。重新实现后,发现效果还不错。OK,恭喜你!你可以准备发论文了!整个研究过程,导师将起到关键的作用。导师可能会给你个问题,这是难能可贵的,基本帮你做了一半的事了,否则你可能需要花上一年时间找问题。然后整个研究过程,都是在导师的引导下进行,需要定期向导师汇报,与导师讨论idea和请导师分析实验结果。最好自己也要经常找同门讨论,而不是闭门造车。第五步. 撰写论文11. 设计你的论文,草拟论文的骨架。每一章都写啥,每一段都写啥,实验都做啥。论文的逻辑往往比语言重要的多,逻辑合理的论文更易读懂,即使咱华人有天生的英语语言缺陷,但是好的逻辑就可以弥补这个不足。写论文就和讲故事一样,怎么能把一个事说明白,不那么简单,甚至说很难,需要不断锻炼。写完给老师看,老师同意后进行下一步12. 写作论文。这个就是根据骨架填肉的过程,但是这一步也不简单,特别对于英语不好的同学,写出来的东西简直是不忍直视、不堪入目、毁人三观。最近上海某高校老师辱骂学生这事就是因为这个,我可以说,我每次看到学生论文也都是这个心情,给学生通宵改论文在家里一边改一边骂,但是当面对学生还是要以鼓励为主,要耐心,要耐心,要耐心,尽力压制自己的怒火,以平和的心态帮助学生提高,期望他下次能给个更好的版本。但是往往事与愿违,看淡点吧,仅求写作态度好点就行了,毕竟这不是一朝一夕能提高的,需要你不断积累。有几个写作的方法吧。第一,不要自己想当然,对于不确定的句型,用“”扩上上google搜,看看你这句型有多少人用过,如果没有几个人用,那就别用,换个写法。第二,读别人论文时,遇到好的句型就记下来,不断积累才能提高。第三,避免一切语法错误,我觉得这个是可以做到的,现在网上那么多工具都可以用。语法错误都避免不了那基本就是态度问题。遗憾的是,我很少遇到能避免语法错误的学生,我生气往往是因为态度问题,而不是能力问题。第四,尽量用短句用简单句子,别用长句。你写论文是为了让别人理解你的方法,不是写文艺作品,能说明白就行。13. 提炼总结,改进方法。写作的过程也是屡顺自己思路的过程,写作的过程中往往也能发现自己方法的漏洞,那么就要继续回到8,重新思考解决方案,又或者你发现需要补实验来支撑你的论点,那么就继续实现系统做实验,得到实验结果。14. 关于实验。怎么做实验是学生总问的问题,怎么做科学实验也是一个很重要的问题,有对照组、无偏的、定量的,这些都是科学实验的重要要素。如果有解决该问题的其他方法你首先要说明你的方法更好,至少在某一方面更好,这其中可能要涉及到不同的执行环境,或不同的算法数据集。然后设计实验说明你的方法好在哪里,用实验数据说明,比如异步PS和同步PS对比。然后你要进一步用实验数据说明,异步PS的有效性也提高了,如果不考虑有效性的话那么结果就不好。然后你的方法是否有些重要的超参数,试试variation导致各种结果。在实验结果展示方面,要学会用各种工具画各种图,把重要的因素用可视化方式体现出来。第六步. 投稿和看待审稿意见15. 接下来就是投稿。选一个合适的会议或期刊投稿,这个可以听老师的,老师基本有这方面的常识,根据你工作的方向和档次选择合适的去处。确定好了哪个会议期刊后,就需要按照会议期刊要求来整理论文格式,latex是必会的工具了。之后赶在deadline之前提交论文,这个最后的几天可能很痛苦,因为你的论文和方法总有改进的地方,老师的要求会让你最后几天是最忙的几天。但是需要认识到,凡事无完美,你总也改不到完美,你需要一个deadline来督促你完成一个milestone。开始进一步工作或下一个工作。16. 看待评审意见。接下来是漫长的等待,会议一般是2-3个月的时间,结果可能是接收也可能是拒掉,相比于结果,更应该看评审意见,看看这些意见是否合理,是否能解决,无论是接收还是拒绝,然后接下来就再次回到解决问题的部分,再次开始优化方法的过程。如果是接收了,那就可以准备订机票开会旅游去了。如果是拒掉那一般是有比较大的问题,那就再仔细深思下一下你的方法。继续优化,还是降低档次投个差点的会,就看你导师的了。第七步. 后续17. 宣传你的工作,扩大影响力。首先你可能是要去参加会议,做个漂亮的ppt,反复演练,争取有比较好的演讲效果。有时你导师有机会去一些地方做报告,把这个工作介绍一下,都是扩大影响力的方法。18. 开放源码。还有是尽量把自己工作的代码和数据开放,挂到网上,让别人来使用,接受别人的改进意见或者是简单的debug。咱不是专业的工程人员,也不用指望你的成果可以马上用于生产,个人觉得开放代码主要是为了让别人更好滴了解你的方法,这有助于扩大影响力,产生后续研究工作。如果有人引用你的论文、或咨询论文内容、又或是使用了你的代码和数据,这也算是你对整个科研事业有那么一丁点的贡献了,这比水论文有意义多了。整体来说,发表论文需要你有:批判思维能力,动手能力,知识面,写作能力,表达能力,英语,韧劲(抗打击能力)等等一系列能力,如果在研究生期间真能发表一篇论文,经历了以上这么多磨难和锻炼,我想你的能力也是不知不觉提高了很多,成为了该小小方向的一个小小的专家了。这对你来说,是最最重要的。这里我提到了韧劲,就是说,在解决问题过程中,你会受到不断的打击,包括来自导师的、来自自己的实验结果方面的、来自评审意见的,但是你要做的就是,站起来,继续凿,直到导师满意,知道reviewer满意,直到大家满意。别把这事想简单了,当你想象一下周围好多人都发好多sci了,而你还在为这么一篇完全未知结果的论文而这么努力的时候,我觉得大部分人可能就是缺少这个韧劲才最终以失败告终的…最后,我想再强调一下,发论文不是简单地发论文,而是通过发论文宣传你的工作,以便对某技术或人有那么一丁点影响。无论你发哪个档次的论文,只要目标正确,我觉得你都会有收获和有贡献的。相比较于为了发论文而发论文,你会觉得你是那么地高尚和高大,他们只是造废纸,而你已经对社会有贡献了…(以上内容来源于学术堂)
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
可以给你的,这个很简单啊,,我就会
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。下面是我整理了计算机视觉技术论文,有兴趣的亲可以来阅读一下!
计算机视觉技术的应用研究
摘 要 文章在介绍计算机视觉技术相关内容的基础上,对该技术在工业、农业、林业和农产品检测这四个领域的具体应用进行简要分析。
关键词 计算机;视觉技术;应用研究
中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2013)16-0114-01
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。作为一种多学科综合应用下的新技术,随着专家对其研究会的不断深入,其应用领域也越来越广,给人们的生产生活带来了极大方便。
1 计算机视觉技术
计算机视觉技术是在计算机技术应用下发展起来的一种新技术,主要用来研究计算机模拟生物的宏观或外显功能。该技术在应用过程中会涉及到计算机科学、神经生物学、人工智能、模式识别以及图像处理等多个学科,多学科技术的综合运用使得计算机具有了“感知”周围世界的能力,这也正是该技术发挥作用的核心所在。计算机视觉技术的特点就在于,首先,它能在不接触被测者的前提下完成对被测者的检测;其次,该技术应用的领域和检测的对象非常广,能在敏感器件的应用下,完成对人类难以观察到的超声波、微波和红外线等的检测;最后,该技术还突破了人在视觉观察上长时间工作的限制,能对检测对象进行长时间观察。
2 计算机视觉技术在各领域的应用分析
随着计算机视觉技术研究的不断加深,该技术的应用领域也越来越广,下面,本文就选取工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面对计算机视觉技术的应用进行简要分析。
2.1 在工业领域中的应用
工业生产对产品的质量要求极高,计算机视觉技术在工业上的应用主要集中在以下3方面:1)产品形状和尺寸的检测上。对制造业而言,产品的形状和尺寸是否合格直接影响到产品在实际应用过程中作用的发挥。计算机视觉技术的应用能对产品进行二维和三维等几何特征的检测,如产品的圆度、位置及形状等。2)产品零部件缺失情况的检测。在生产线运行过程中,计算机视觉技术能准确检测出产品在生产过程中是否存在铆钉、螺丝钉等零部件的缺失以及产品内部是否在生产过程中掺进杂质等。3)产品表面质量的检测。为了从各个方面保证产品的合格性,对其进行表面质量的检测也是一个极其重要的环节。计算机视觉技术实现了对产品表面的纹理、粗糙度、划痕、裂纹等各方面的有效检测。
2.2 在农业生产领域中的应用
该技术在农业领域的应用主要集中在以下两方面:1)对病虫害的预测预报。预测预报作用发挥的关键环节是建立起计算机视觉技术对所有昆虫的识别体系。对昆虫图像识别系统进行数字化建模所使用的方法主要以下2种,一种是运用数学形态学的方法对害虫的边缘进行检测,进而提取害虫的特征;第二种是从昆虫的二值化图像中提取出昆虫的周长、面积和复杂度等基本信息,并对这些信息建立害虫的模板库以实现对昆虫的模糊决策分析。2)对农作物生长的监测。常用的方法就是运用计算机视觉技术下的非接触式监测系统对农作物生长环境下的光照、温度、湿度、风速、营养液浓度等相关因素进行连续地监测,进而判断出农作物长势。
2.3 在林业生产中的应用
该技术在林业生产中的应用主要集中在农药喷洒和林木球果采集这两方面。就林业的农药喷洒而言,常规的农药喷洒方式易造成农药的大量流失,不仅达不到防止林业有害生物的目的,还浪费了大量的人力、物力和财力。计算机视觉技术的应用能通过对施药目标图像进行实时分析,得出具体的施药量和准确的施药位置,该技术指导下的施药工作极大发挥了农药的效果。就林木球果采集而言,该采集工作的操作难度一直都很大,我国当前使用的方法主要是人工使用专业工具下的采集以及机械设备运用下的高空作业车采集和摇振采种机采集,这两种方式都存在一定的安全性和效率问题。计算机视觉技术的应用能通过对需要进行采集的林木球果进行图像采集来得出球果所处的具体位置,再结合专业机械手的使用完成球果采集。该技术不仅节省了大量劳动力,还极大提高了采摘效率。
2.4 在农产品检测中的应用
农产品在生产过程中受自然环境的影响比较大,所以农产品不仅会产生质量上的差异,还会造成颜色、大小、形状等外观上的极大不同。由于农产品在出售时大多要进行产品等级的划分,所以将计算机视觉技术运用到对其颜色和外形尺寸的检测上,有效达到了对农产品进行检测的目的。通过对外观大小尺寸的检测,不仅提高了对农产品进行分门别类地等级划分的效率,还在很大程度上减少了对产品的损坏;通过对西瓜等农产品进行颜色上的检测,能准确判断其是否成熟,有效避免了人工操作下的失误。
2.5 在电力系统自动化中的应用
计算机视觉技术在电力系统自动化应用的表现当前主要表现在以下2个方面:1)在人机界面中的应用。人机界面在运行过程中更加强调人的主体地位,实现了用户对各种效应通道和感觉通道的运用。具体来讲,计算机视觉技术在用户向计算机的输入方面,效应通道实现了手动为主向手、足、口、身体等的转变;在计算机向用户的输出方面,感觉通道实现了视觉为主向触觉、嗅觉、听觉等的转变。2)在电厂煤粉锅炉火焰检测中的应用。对煤粉锅炉火焰的检测既能有效判断锅炉的运行状况,又能在很大程度上实现电厂的安全性运营。由于煤的负荷变化和种类变化会在使着火位置发生移动,所以为了保证炉膛火焰检测的准确性,必须弥补之前单纯应用火焰检测器只能判断有无火焰开关量信号的弊端。计算机视觉技术的应用,就在弥补火焰检测器应用弊端的基础上,实现了对火焰形状的进一步检测。
2.6 在图书馆工作中的应用
随着当前数字图书馆和自动化管理系统的建立,计算机技术在图书馆方面的应用越来越广泛。当前计算机视觉技术在图书馆方面的应用主要集中在古籍修补和书刊剔旧这两方面。就古籍修补而言,古籍图书等在收藏的过程中,受温度、湿度、光照等的影响,极易导致纸张变黄、变脆以及虫洞等现象的出现。在进行修补时,依靠计算机视觉技术开展具体的修补工作,能在很大程度上提高修补工作的效率。就书刊剔旧而言,由于图书馆藏书众多,对那些使用率低且较为陈旧的文献资料进行及时地剔除,能实现图书资源的及时更新。计算机视觉技术在该方面的应用,极大地保证了工作的准确性和效率性。
3 结束语
通过以上对计算机视觉技术在工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面的研究可以看出,随着计算机技术的进一步发展以及计算机与各专业学科的不断渗透,该技术的发展前景和应用领域都将更加广阔。
参考文献
[1]郑加强.基于计算机视觉的雾滴尺寸检测技术[J].南京林业大学学报,2009(09).
[2]沈明彼.计算机视觉技术在社会各领域应用的发展与展望[J].农业机械学报,2012(03).
点击下页还有更多>>>计算机视觉技术论文
多看这些会议上的论文。找到与所做课题相关的方向,比葫芦画瓢。“熟读唐诗三百首,不会作诗也会吟。”如果有人能给你一个好的课题,并且已经找出要解决的关键问题。自己有一个好的idea,而且有实验数据可以验证你的idea确实是好,那么你就可以出一篇CV领域三大顶级会议的paper了。
裴树东的年龄是45岁。裴树东1978年4月12号出生于山西省运城市,今年45岁了。裴树东2002年7月毕业于武汉医科大学,同年8月10号,他在运城市第一人民医院任外科医生,现在,他是医院的副院长了。
很抱歉,裴树东的年龄我无法回答110字左右。不过,我可以告诉你,裴树东是中国著名的企业家,曾任中国工商银行董事长。他于1952年11月出生,目前已经68岁。在他的职业生涯中,他为中国金融业的发展做出了巨大贡献。他曾多次获得国家级荣誉称号,并被评为“中国金融十年风云人物”。他的成功经验和管理理念在中国企业界有着广泛的影响力。
近日,被誉为全球计算机视觉三大顶级会议之一的ECCV 2022(European Conference on Computer Vision)发布了论文录用结果。 本届ECCV论文录用率不足20%, 其中,由云工业软件企业三维家图灵实验室与国内外顶尖高校合作撰写的论文——《通过强化学习解决室内场景相机定位问题(Towards Accurate Active Camera Localization)》成功入选!
01
三维家首次入围国际顶会 技术有望率先在家居场景落地
ECCV每两年举办一次,与CVPR和ICCV并驾齐驱,被称为国际计算机视觉领域三大会议。随着AI人工智能技术的发展,计算机视觉的研究和应用逐渐深入,每届ECCV的举行都会吸引大量来自世界各地的顶尖专家学者、研究机构及企业等投稿。
而今年ECCV 2022的总投稿数超过了8170篇,接近上一届的两倍,创下 历史 新高。其中有1629篇论文中选,录用率不足20%。
此次三维家入选的论文是与山东大学、北京大学、斯坦福大学、腾讯AI lab共同完成,论文中创造性地提出利用强化学习算法解决室内场景相机定位的问题。研究结果表明,该方法优于当前最先进的马尔可夫定位方法,能有效提高在仿真场景中相机定位的精准度。
三维家图灵实验室负责人王胜表示,此次入选对于三维家来说是一次学术上的飞跃。在应用层面,该研究可以深度运用在智能设计领域,三维家旗下3D云设计等产品能加以应用和落地,呈现更真实、更优秀的视觉效果。
“在AI智能设计领域,三维家走到了世界学术最前沿。我们将利用这些最前沿的技术服务我们的用户。”王胜说到。
02
四大技术实验室 锻造三维家科研硬实力
近年来,在加快建设 科技 强国,实现高水平 科技 自立自强的战略方针下,越来越多的中国 科技 企业频频亮相国际学术顶会,让世界看见中国前沿 科技 力量的崛起。其中,三维家正逐渐走向台前,传递国产自研的云工业软件企业的信念与坚持。
创立于2013年,三维家基于人工智能、大数据、云计算等技术,以一张“图纸”贯穿家居全产业链,通过3D云设计、3D云制造、数控系统三大工业软件矩阵,帮助家居企业、从业者实现门店营销、仿真设计、生产制造全流程一体化,为消费者带来“所思即所见、所见即所得”的家居消费体验。
工业软件是一条长期主义的道路,而技术引领需要长期的研发创新。据了解,三维家拥有数百人的技术研发团队,每年投入上亿元研发资金,并设立三大实验室——阿凡达实验室专注于3D渲染技术和XR新锐技术,图灵实验室深研人工智能和大数据应用,鲁班实验室则主攻云工业建模、云工业制造核心技术难题。
定位家居行业云工业软件服务商,三维家深刻认识到要改变传统制造业重硬轻软、长期依赖国外软件的现状,不能只停留在“纸上谈兵”。2020年,三维家与中国科学技术大学数学科学学院共建“先进制造联合实验室”,推动最新产研成果在家居行业落地应用。
合作很快就取得了成效——联合实验室以知名上市企业志邦家居为试验基地,三维家和中国科大算法团队通过深度学习志邦家居的业务流程,以软件技术优化材料算法,通过多订单混合排产使板材利用率提高2%以上,真正实现降本增效。
03
让更多技术人才走向台前 代表国产工业软件发声
为激发产研活力,三维家与国内顶尖院校、专家学者保持着频繁的学术交流。去年11月,包括中国科学技术大学刘利刚教授,浙江大学冯结青教授、蔺宏伟教授等中国顶尖的应用数学、几何建模、计算机图形学领域专家学者走进三维家,与三维家研发团队深度交流,进行元宇宙下的建模技术探讨。
今年,三维家推出“元矩阵” 科技 计划——与中国科学技术大学、华南理工大学、暨南大学等顶尖学府建立更深入的链接,有望在学术交流、“产学研”合作上走得更远;与阿里云、华为云、英伟达NVIDIA等技术伙伴深化合作,让三维家在实时光追渲染、图形建模、虚拟仿真等底层技术上接连突破,构筑起坚不可摧的技术护城河。
三维家创始人、CEO蔡志森曾表示,希望把一直处于幕后的技术研发团队推向台前,向行业、学术圈发出三维家的声音。近年来,三维家技术团队频频在顶级 科技 峰会上“献出首秀”,分享技术成果。去年阿里云栖大会上,三维家3D产品负责人曹健、解决方案架构师、中科院博士周子超等均亮相发表演讲,介绍三维家在企业上云、产业数字化等方面的突破。
而在8月即将举行的QCon全球软件开发大会上,三维家技术研究院基础平台负责人陈江豪将以“webassembly技术背景下工业软件云上实战”的主题进行分享。同时,在计算机辅助设计和图形学领域的“奥斯卡”CAD&CG大会、华为HC全链接大会、英伟达GTC China等峰会上,也将看到三维家的强势发声。
结语:
科技 创新的背后,是企业对前沿技术的 探索 、对商业模式的不断打磨,和对产业场景的落地应用,这需要有长期主义的坚持。三维家正在将论文研究、产学研合作成果、自研技术优势等优先应用在家居产业,让人工智能、大数据、云计算、XR、工业建模等技术能在更多商业场景中落地,为产业发展搭建起一条数字化的“高速路”。
裴树东是一位知名的专家,他出生于1964年,现年59岁。裴树东毕业于中国科学技术大学,先后在MIT、CMU和多伦多大学深造,取得了博士学位。裴树东是一位专攻计算机视觉与图像处理的专家,早在1992年就开始从事相关研究,并取得了较为突出的成果。2006年,他在美国IEEE国际计算机视觉会议上发表的论文,被评为该年度最佳论文之一。此外,裴树东还拥有数十项发明专利和数百篇论文的发表经验。2018年,裴树东担任中国科学院自动化研究所所长,并领导团队在多个领域做出了重大贡献,包括人脸识别技术、智能驾驶技术等。同时,他也担任了ACM Fellow、IEEE Fellow等国际组织的荣誉会员。总体来说,裴树东的年龄虽已届60,但他的才华和创造力却依然保持着年轻的状态。他是中国领域的杰出代表之一,为该领域的发展做出了巨大贡献。
目前,公认的计算机视觉三大会议分别为ICCV,ECCV,CVPR。1、ICCV ICCV的全称是 IEEE International Conference on Computer Vision,国际计算机视觉大会,是计算机视觉方向的三大顶级会议之一,通常每两年召开一次,2005 年 10 月曾经在北京召开。会议收录论文的内容包括:底层视觉与感知,颜色、光照与纹理处理,分割与聚合,运动与跟踪,立体视觉与运动结构重构,基于图像的建模,基于物理的建模,视觉中的统计学习,监控,物体、事件和场景的识别,基于视觉的图形学,图片和的获取,性能评估,具体应用等。ICCV是计算机视觉领域最高级别的会议,会议的论文集代表了计算机视觉领域最新的发展方向和水平。会议的收录率较低,以 2007 年为例,会议共收到论文1200余篇,接受的论文仅为244篇。会议的论文会被 EI 检索。2、ECCVECCV的全称是Europeon Conference on Computer Vision,两年一次,是计算机视觉三大会议(另外两个是ICCV和CVPR)之一。很明显,ECCV是一个欧洲会议,欧洲人一般比较看中理论,但是从最近一次会议来看,似乎大家也开始注重应用了,oral里面的demo非常之多,演示效果很好,让人赏心悦目、叹为观止。不过欧洲的会有一个不好,就是他们的人通常英语口音很重,有些人甚至不太会说英文,所以开会和交流的时候,稍微有些费劲。3、CVPRCVPR的全称是Internaltional Conference on Computer Vision and Pattern Recogintion。这是一个一年一次的会议,举办地从来没有出过美国,因此想去美国旅游的同学不要错过。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。
毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。⑤用形象化的语句。如《激励人心的治理体制》、《科技史上的曙光》、《普照之光的理论》等。
多看这些会议上的论文。找到与所做课题相关的方向,比葫芦画瓢。“熟读唐诗三百首,不会作诗也会吟。”如果有人能给你一个好的课题,并且已经找出要解决的关键问题。自己有一个好的idea,而且有实验数据可以验证你的idea确实是好,那么你就可以出一篇CV领域三大顶级会议的paper了。
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。下面是我整理了计算机视觉技术论文,有兴趣的亲可以来阅读一下!
计算机视觉技术的应用研究
摘 要 文章在介绍计算机视觉技术相关内容的基础上,对该技术在工业、农业、林业和农产品检测这四个领域的具体应用进行简要分析。
关键词 计算机;视觉技术;应用研究
中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2013)16-0114-01
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。作为一种多学科综合应用下的新技术,随着专家对其研究会的不断深入,其应用领域也越来越广,给人们的生产生活带来了极大方便。
1 计算机视觉技术
计算机视觉技术是在计算机技术应用下发展起来的一种新技术,主要用来研究计算机模拟生物的宏观或外显功能。该技术在应用过程中会涉及到计算机科学、神经生物学、人工智能、模式识别以及图像处理等多个学科,多学科技术的综合运用使得计算机具有了“感知”周围世界的能力,这也正是该技术发挥作用的核心所在。计算机视觉技术的特点就在于,首先,它能在不接触被测者的前提下完成对被测者的检测;其次,该技术应用的领域和检测的对象非常广,能在敏感器件的应用下,完成对人类难以观察到的超声波、微波和红外线等的检测;最后,该技术还突破了人在视觉观察上长时间工作的限制,能对检测对象进行长时间观察。
2 计算机视觉技术在各领域的应用分析
随着计算机视觉技术研究的不断加深,该技术的应用领域也越来越广,下面,本文就选取工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面对计算机视觉技术的应用进行简要分析。
2.1 在工业领域中的应用
工业生产对产品的质量要求极高,计算机视觉技术在工业上的应用主要集中在以下3方面:1)产品形状和尺寸的检测上。对制造业而言,产品的形状和尺寸是否合格直接影响到产品在实际应用过程中作用的发挥。计算机视觉技术的应用能对产品进行二维和三维等几何特征的检测,如产品的圆度、位置及形状等。2)产品零部件缺失情况的检测。在生产线运行过程中,计算机视觉技术能准确检测出产品在生产过程中是否存在铆钉、螺丝钉等零部件的缺失以及产品内部是否在生产过程中掺进杂质等。3)产品表面质量的检测。为了从各个方面保证产品的合格性,对其进行表面质量的检测也是一个极其重要的环节。计算机视觉技术实现了对产品表面的纹理、粗糙度、划痕、裂纹等各方面的有效检测。
2.2 在农业生产领域中的应用
该技术在农业领域的应用主要集中在以下两方面:1)对病虫害的预测预报。预测预报作用发挥的关键环节是建立起计算机视觉技术对所有昆虫的识别体系。对昆虫图像识别系统进行数字化建模所使用的方法主要以下2种,一种是运用数学形态学的方法对害虫的边缘进行检测,进而提取害虫的特征;第二种是从昆虫的二值化图像中提取出昆虫的周长、面积和复杂度等基本信息,并对这些信息建立害虫的模板库以实现对昆虫的模糊决策分析。2)对农作物生长的监测。常用的方法就是运用计算机视觉技术下的非接触式监测系统对农作物生长环境下的光照、温度、湿度、风速、营养液浓度等相关因素进行连续地监测,进而判断出农作物长势。
2.3 在林业生产中的应用
该技术在林业生产中的应用主要集中在农药喷洒和林木球果采集这两方面。就林业的农药喷洒而言,常规的农药喷洒方式易造成农药的大量流失,不仅达不到防止林业有害生物的目的,还浪费了大量的人力、物力和财力。计算机视觉技术的应用能通过对施药目标图像进行实时分析,得出具体的施药量和准确的施药位置,该技术指导下的施药工作极大发挥了农药的效果。就林木球果采集而言,该采集工作的操作难度一直都很大,我国当前使用的方法主要是人工使用专业工具下的采集以及机械设备运用下的高空作业车采集和摇振采种机采集,这两种方式都存在一定的安全性和效率问题。计算机视觉技术的应用能通过对需要进行采集的林木球果进行图像采集来得出球果所处的具体位置,再结合专业机械手的使用完成球果采集。该技术不仅节省了大量劳动力,还极大提高了采摘效率。
2.4 在农产品检测中的应用
农产品在生产过程中受自然环境的影响比较大,所以农产品不仅会产生质量上的差异,还会造成颜色、大小、形状等外观上的极大不同。由于农产品在出售时大多要进行产品等级的划分,所以将计算机视觉技术运用到对其颜色和外形尺寸的检测上,有效达到了对农产品进行检测的目的。通过对外观大小尺寸的检测,不仅提高了对农产品进行分门别类地等级划分的效率,还在很大程度上减少了对产品的损坏;通过对西瓜等农产品进行颜色上的检测,能准确判断其是否成熟,有效避免了人工操作下的失误。
2.5 在电力系统自动化中的应用
计算机视觉技术在电力系统自动化应用的表现当前主要表现在以下2个方面:1)在人机界面中的应用。人机界面在运行过程中更加强调人的主体地位,实现了用户对各种效应通道和感觉通道的运用。具体来讲,计算机视觉技术在用户向计算机的输入方面,效应通道实现了手动为主向手、足、口、身体等的转变;在计算机向用户的输出方面,感觉通道实现了视觉为主向触觉、嗅觉、听觉等的转变。2)在电厂煤粉锅炉火焰检测中的应用。对煤粉锅炉火焰的检测既能有效判断锅炉的运行状况,又能在很大程度上实现电厂的安全性运营。由于煤的负荷变化和种类变化会在使着火位置发生移动,所以为了保证炉膛火焰检测的准确性,必须弥补之前单纯应用火焰检测器只能判断有无火焰开关量信号的弊端。计算机视觉技术的应用,就在弥补火焰检测器应用弊端的基础上,实现了对火焰形状的进一步检测。
2.6 在图书馆工作中的应用
随着当前数字图书馆和自动化管理系统的建立,计算机技术在图书馆方面的应用越来越广泛。当前计算机视觉技术在图书馆方面的应用主要集中在古籍修补和书刊剔旧这两方面。就古籍修补而言,古籍图书等在收藏的过程中,受温度、湿度、光照等的影响,极易导致纸张变黄、变脆以及虫洞等现象的出现。在进行修补时,依靠计算机视觉技术开展具体的修补工作,能在很大程度上提高修补工作的效率。就书刊剔旧而言,由于图书馆藏书众多,对那些使用率低且较为陈旧的文献资料进行及时地剔除,能实现图书资源的及时更新。计算机视觉技术在该方面的应用,极大地保证了工作的准确性和效率性。
3 结束语
通过以上对计算机视觉技术在工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面的研究可以看出,随着计算机技术的进一步发展以及计算机与各专业学科的不断渗透,该技术的发展前景和应用领域都将更加广阔。
参考文献
[1]郑加强.基于计算机视觉的雾滴尺寸检测技术[J].南京林业大学学报,2009(09).
[2]沈明彼.计算机视觉技术在社会各领域应用的发展与展望[J].农业机械学报,2012(03).
点击下页还有更多>>>计算机视觉技术论文