要想在Nature 或者Science (以下简称NS)上发表文章,首先要对自己领域最近10年有哪些文章发表在这些刊物上,并进行分类。以氧化物燃料电池领域为例,在2002-2012年区间总共有8篇文章发表在这两个杂志上。如果你研究的小领域没有文章在NS或者Nature的子刊上,那说明杂志编辑认为你的领域不具有很广的关注度。同时,要分析是些什么样的突破发表在NS上。比如在这8篇文章,有6篇文章直接与燃料电池的阳极材料有关。这说明如果你能在阳极的研究中有所突破,存在在NS上发表的可能性。再进一步分析其细节,你会发现更多的规律。比如,燃料电池阳极的最主要的问题是碳氢燃料在高温下的裂解导致碳沉积和硫在镍表面吸附导致阳极硫中毒。早前的SN上的文章主要关注怎样防止在阳极上的碳沉积,在2006年首先出现了一个新的阳极材料同时有抗碳沉积和抗硫中毒。这篇文章给了我一个启发,说明现有的阳极材料必须能够同时解决这两个问题,才有可能在NS上出现。当然这也是合理的,因为碳氢燃料包含碳和硫。 当然,并不是说你知道这些趋势,你一定能够在这样上面有所突破,但是能够给你一个非常具有指引性的思路。比如说,当时我的研究课题是做电解质的,因为师兄毕业需要移交阳极的课题,我学习了一段时间。我把我所研究的新电解质去做阳极的抗硫测试,发现具有不可思议的抗硫性能。在我多次重复加以确认之后,我意识到了其重要性。其实当时有人建议说可以用这个结果在Advanced Materials上投一篇文章,但是在我分析这些年在SN上发表的氧化物燃料电池文章,我决定继续研究该阳极的抗碳沉积特性,然后进一步优化。这个做法非常重要,为后来冲击Science奠定了重要的基础。 二、系统性的设计实验 据我了解,很多最为关键或者突破的实验数据都是意外得到的,或者超过自己预期的 (当然也存在像Goodenough教授这种牛人能够从理论上设计材料)。当你获得比以前文献中更好的性能时,就要开始考虑怎么设计一系列系统的试验,以能够将来写出一篇有完整故事情节的文章。因为现在已经不是“酒香不怕巷子深”的年代了,除非你的结果能够改变人类的认知,否则都需要思考围绕该突破的实验设计。其工作量大约是一般长文的2~3倍。除了最为关键的4个图放在正文,其余的将放到补充材料里面。 实验该怎么设计才会对主编和审稿人的口味?当然不同领域有不同的文章结构。一个简单的方法就是你尽可能把自己领域中不同小方向在Journal of the American Chemical Society, Angewandte Chemie International Edition 和Advanced Materials 上面的文章综合起来。比如,这些杂志上有专注于合成的、有专注于表征的或者专注机理理解的文章。你如果能够把这些文章的最有特色的东西有机的糅合在一起,你的文章就已经高于这些杂志的档次了。以催化和表面化学为例,SN上的实验设计思路一般来说就是一个比较新颖的纳米结构,比较高档的表征(如STM或同步辐射)、优异的性能和分子动力学的理论计算。如果你去详细比较SN上某一篇文章每一小部分和JACS上类似的的全文,你会发现其实JACS上的水平更专。根据这个思路,你就可以设计完整的实验,寻找合作对象,相互促进,最终达到一个完美的实验结论。我的那篇Nature Communications 就是以这种思路设计的。当时需要对我们现有性能的理论解释,我们寻求了与布鲁克海文国家实验室的合作。他们给我们提供了很好的思路,继续优化实验,与他们的理论达到了较好的融合。虽然在投Nature主刊40多天后被拒,但是审稿人对实验设计非常肯定:This paper has really nice science;The science is top notch等等。这篇文章本身的实验结果没有我Science上那篇文章的突破大,但是好的实验设计让这篇文章被子刊接受。 三、撰写完整且吸引人的文章 当你做完大部分实验或计算之后,就要开始着手写论文了。对于Natured子刊、JACS和Advanced Materials这类杂志来说,论文撰写的重要性我觉得至少占40%。也就是说如果你能够切入一个非常有吸引力的角度,你可以让你的实验结果发到更好的杂志。对于NS来说,我觉得实验的设计更为重要。如何能够写好一篇文章,我认为首先应该抛弃两个错误的看法。第一:不要鄙视烂的结果都能够发在好杂志上。你需要思考如果你拿这些数据能够把文章写成怎样。你要学习你没有想到的“点”。比如说,性能可能并没有非常突出,但是他/她提出了一个非常有启发性的假设。第二:不要认为审稿人误会你的评语愚蠢。我知道审稿人在审阅时(包括我在审Advanced Materials时)速度是非常快的。如果一个领域的评审人在短时间内都没有看出你的创新点,说明你没有表达清楚。我经常听到有人抱怨“我这篇文章其实和以前不一样,审稿人却认为没有新东西”或者“我的性能明显要比别人的文章好,不知道为什么审稿人没有注意到”等等。出现这种情况后,要重新审视自己的文章。思考怎样写别人不会忽视我的重点,怎样写不会让人误解。一个小窍门是让你的同学(大方向一致但不是一个小领域的)快速浏览一下你的文章,让他指出不确定的东西,然后加以改正。 我觉得写文章最重要也最难写的就是Introduction。这是审稿人看得比较认真而且容易理解的部分。而且我发现一个规律,越好的杂志,审稿人越喜欢攻击introduction。可能是因为你的实验设计已经很好,不太容易有问题。但是对于introduction,审稿人却非常容易下手。比如这篇文章没有新意,或者你在introduction提到的问题,在正文中没有解决等等。在读好文章时一定要学习他们在组织introduction时的思路。其次,一定要有一个吸引人的标题。不要过于中立。我以前投一篇文章的时候,刚开始拟定为Sulfur Poisoning Behavior of .。后来偶然看到Berkeley物理系的一片不相干的文章,用了New Insights into ..。我就把这个模式套用到我的文章上,我导师认为这个标题立马让文章档次提高。我的一个经验,经常收集那些好文章的title (不需要局限你的领域),以备将来时灵活运用。至于正文,只要围绕你的Introduction,反复强调你的创新性(一定要“反复”,因为审稿人会忽视),一般没有什么问题。另外,因为审稿人是带着寻找问题的模式去评判文章的,所以在正文中的每一句话不要过度发散,否则很容易招致不严谨或者补充数据的评语。 后记:这三个部分分享了很多关于提升自己成果的经验,但是大家不要进入一个误区:为了发文章而做实验。 发牛文更多是因为你的研究热情和辛勤付出,因为科研成果的内核还是你能否真正解决前人未能解决的问题。当然,从营销学角度,我们去探寻并运用这些规律也是无可厚非的。
nature是有计算机的,不过占比非常小,而且要与自然科学相结合才有可能发表
你好,可以的。nature是接受这方面文章的,但占量比较小,而且一般要与自然科学相结合才有比较大的发表可能!当然,最主要还是要看你的创新和带来的效应。有比较多的算法研究论文(比如生物信息)就有很多发表在nature上!自然出版集团(NPG)以出版高质量的科学和医学信息而闻名。NPG出版的期刊,在线数据库及服务广泛覆盖生命科学,物理,化学,应用科学和临床医学领域。 自然出版集团是麦克米伦出版集团(Macmillan Publishing Ltd.)的重要组成部分。集团旗下创刊于1869年的《自然》,一直在致力于满足科研工作者的需求,现已成为最重要的国际学术周刊。除《自然》之外,NPG还出版了自然系列研究类期刊和综述类期刊,以及高端学术期刊与学会刊物。在互联网上, nature.com每月为超过600万访问者提供阅读NPG出版物和使用在线数据库的服务。 这些服务包括阅读《自然》的新闻和社论。
不是。nature是有计算机的,不过占比非常小,而且要与自然科学相结合才有可能发表。
你好,可以的。nature是接受这方面文章的,但占量比较小,而且一般要与自然科学相结合才有比较大的发表可能!当然,最主要还是要看你的创新和带来的效应。有比较多的算法研究论文(比如生物信息)就有很多发表在nature上!自然出版集团(NPG)以出版高质量的科学和医学信息而闻名。NPG出版的期刊,在线数据库及服务广泛覆盖生命科学,物理,化学,应用科学和临床医学领域。 自然出版集团是麦克米伦出版集团(Macmillan Publishing Ltd.)的重要组成部分。集团旗下创刊于1869年的《自然》,一直在致力于满足科研工作者的需求,现已成为最重要的国际学术周刊。除《自然》之外,NPG还出版了自然系列研究类期刊和综述类期刊,以及高端学术期刊与学会刊物。在互联网上, nature.com每月为超过600万访问者提供阅读NPG出版物和使用在线数据库的服务。 这些服务包括阅读《自然》的新闻和社论。
有的。2021年1月新推出的子刊,自然-计算科学(Nature Computational Science)是一本2021年1月推出的新刊。本刊的推出是对计算机科学(包括科学计算和数据科学)、数学和自然科学之间联系的兴趣日益增长,相关文献不断增加这一趋势的回应。期刊关注包括计算科学领域的基础研究和应用研究。
选自Nature
作者:Jeffrey M. Perkel
机器之心编译
机器之心编辑部
2019 年,「事件视界望远镜」团队拍下了第一张黑洞照片。这张照片并非传统意义上的照片,而是计算得来的——将美国、墨西哥、智利、西班牙和南极多台射电望远镜捕捉到的数据进行数学转换。该团队公开了所用代码,使科学社区可以看到,并基于此做进一步的 探索 。
而这逐渐成为一种普遍模式。从天文学到动物学,每一个伟大的现代科学发现背后都有计算机的身影。斯坦福大学计算生物学家、2013 年诺贝尔化学奖获得主 Michael Levitt 表示,现在的笔记本电脑在内存和时钟速度方面是 1967 年其实验室计算机的一万倍。「今天,我们拥有大量算力。但问题是,这仍然需要人类的思考。」
如果没有能够处理研究问题的软件以及知道如何编写和使用软件的研究人员,计算机再强大也是无用。「现在的研究与软件紧密相关,软件已经渗透到科研的方方面面。」软件可持续性研究所(Software Sustainability Institute)负责人 Neil Chue Hong 如是说。
最近,Nature 上的一篇文章试图揭示科学发现背后的重要代码,正是它们在过去几十年中改变了科研领域。这篇文章介绍了对科学界带来重大影响的十个软件工具,其中就包括与人工智能领域密切相关的 Fortran 编译器、arXiv、IPython Notebook、AlexNet 等。
语言先驱:Fortran 编译器(1957)
首批出现的现代计算机对用户并不友好。编程实际上是由手工完成的,通过电线连接一排排电路。后来的机器语言和汇编语言允许用户使用代码进行计算机编程,但这两种语言依然要求使用者对计算机架构有深入了解,导致很多科学家无法使用它们。
20 世纪 50 年代,随着符号语言的发展,尤其是「公式翻译」语言 Fortran 的出现,上述境况发生了改变。Fortran 语言由 IBM 的约翰 · 巴科斯(John Backus)团队开发。借助 Fortran,用户可以使用 x = 3 + 5 等人类可读的指令进行计算机编程,之后编译器将这类指令转化为快速高效的机器码。
这台使用 Fortran 编译器编程的 CDC 3600 计算机于 1963 年移送至美国国家大气研究中心。(图源:美国大气科学研究大学联盟 / 科学图片库。)
在早期,编程人员使用穿孔卡片(punch card)输入代码,复杂的模拟可能需要数万张穿孔卡片。不过,Fortran 使得并非计算机科学家的研究者也能够进行编程。普林斯顿大学气候学家 Syukuro Manabe 表示:「我们第一次靠自己进行编程。」他和同事使用 Fortran 语言开发了首批成功的气候模型之一。
60 多年过去了,Fortran 依然广泛应用于气候建模、流体动力学、计算机化学,以及其他涉及复杂线性代数并需要强大计算机快速处理数字的学科。Fortran 代码运行速度很快,仍然有很多编程人员知道如何写 Fortran。古老的 Fortran 代码库依然活跃在世界各地的实验室和超级计算机上。
信号处理器:快速傅里叶变换(1965)
当天文学家扫描天空时,他们捕捉到了随时间变化的复杂信号的杂音。为了理解这些无线电波的性质,他们需要观察这些信号作为频率函数的样子。一种被称为傅里叶变换(Fourier transform)的数学过程允许科学家实现这一点。但问题在于傅里叶变换并不高效,对大小为 N 的数据集它需要进行 N 次运算。
1965 年,美国数学家 James Cooley 和 John Tukey 开发了一种加速傅里叶变换过程的方法。借助递归(recursion)这种「分而治之」的编程方法(其中算法可以实现重复地再运用),快速傅里叶变换(fast Fourier transform, FFT)将计算傅里叶变换问题简化为 N log_2(N) 个步骤。速度也随着 N 的增加而提升。对于 1000 个点,速度提升约 100 倍;对于 100 万个点,速度提升约 5 万倍。
牛津大学数学家 Nick Trefethen 表示,FFT 的发现实际上是一种「再发现」,因为德国数学家卡尔 · 弗里德里希 · 高斯在 1805 年就完成了该发现,不过从未发表。但是,James Cooley 和 John Tukey 开启了 FFT 在数字信号处理、图像分析和结构生物学等领域中的应用。Trefethen 认为 FFT「是应用数学与工程领域伟大的发现之一。」FFT 已经在代码中实现了很多次,其中一种流行的变体是 FFTW(「西方最快的傅里叶变换」)。
默奇森天文望远镜,使用快速傅里叶变换来收集数据。
劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)分子生物物理学和综合生物成像部门主任 Paul Adams 回忆称,当他在 1995 年改进细菌蛋白 GroEL 的结构时,即使使用 FFT 和一台超级计算机,也需要「很多很多个小时,甚至是几天」的计算。但要没有 FFT,很难想象这件事要怎么做,花的时间将难以估量。
线性代数运算标准接口:BLAS(1979)
科学计算通常涉及使用向量和矩阵的数学运算,这些运算相对简单,但计算量大。20 世纪 70 年代,学界并没有出现一套普遍认可的执行此类运算的工具。因此,科研工作者不得不花费时间设计高效的代码来做基础的数学运算,导致无法专注于科学问题本身。
编程世界需要一个标准。1979 年,基础线性代数子程序库(Basic Linear Algebra Subprograms, BLAS)应运而生。直到 1990 年,该标准仍然在发展变化,定义了数十条涵盖向量和矩阵运算的基本程序。
田纳西州大学计算机科学家、BLAS 开发团队成员之一 Jack Dongarra 表示,BLAS 实际上将矩阵和向量运算简化成了像加减法一样的基础计算单元。
Cray-1 超级计算机。(图源:科学 历史 图像 / Alamy)
德州大学奥斯汀分校计算机科学家 Robert van de Geijn 表示:「BLAS 可能是为科学计算而定义的最重要接口。」除了为常用函数提供标准名称之外,研究者可以确保基于 BLAS 的代码能够以相同的方式在任何计算机上运行。该标准也使得计算机制造商能够优化 BLAS 实现,以实现硬件上的快速运行。
40 多年来,BLAS 代表了科学计算堆栈的核心,使得科学软件持续发展。乔治华盛顿大学机械与航空航天工程师 Lorena Barba 将 BLAS 称为「五层代码内的核心机制」。
预印本平台:arXiv.org(1991)
20 世纪 80 年代末,高能物理领域的研究者往往会把自己提交的论文邮寄给同行审阅,这是一种礼仪,但只邮寄给少数几个人。「那些处于食物链底端的人依赖于顶端人的施舍,这往往会把非精英机构中有抱负的研究者完全排除在特权圈之外,」物理学家 Paul Ginsparg 曾在 2011 年的一篇文章中写道。
1991 年,洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)的 Ginsparg 写了一个电子邮件自动回复器,以建立公平的竞争环境。邮件订阅者每天都会收到一份预印本列表,每份论文都带有标识符。如此一来,世界各地的用户都可以通过一封电子邮件提交或检索来自上述实验室计算机系统的论文。
Ginsparg 原本计划将文章保留三个月,将范围限制在高能物理社区,但他的同事劝他去掉了这些限制。「就是在那一刻,它从布告栏转变成了档案库,」Ginsparg 表示。在这之后,大批论文开始涌入,其学科之广远远超出了 Ginsparg 的预期。1993 年,Ginsparg 把这个系统移植到互联网上。1998 年,他正式将该系统命名为 arXiv.org。
如今,30 岁的 arXiv 收录了 180 万份预印本文章,且全部免费阅读,其每月论文提交量超过 15000 份,每月下载量高达 3000 万次。「不难看出 arXiv 为何如此受欢迎,」Nature Photonics 的编辑曾表示,「该系统为研究者提供了一种快捷、方便的科研方式,可以告诉大家你在做什么、什么时间做的,省去了传统期刊同行评审的繁琐。」
该网站的成功还对生物学、医学、 社会 学等其他学科类似存储库的建立起到了助推作用,成千上万份新冠病毒相关研究预印本的发布就是一个例证。
数据 探索 器:IPython Notebook (2011)
Fernando Pérez 在 2001 年决定「探寻拖延症」,当时他是一名研究生,决定采用 Python 的核心组件。
Python 是一种解释型语言,意味着程序会一行一行地执行。编程人员可以使用一种被称为「读取 - 求值 - 输出循环(REPL)」的计算型调用和响应(call-and-response)工具,他们可以键入代码,然后由解释器执行代码。REPL 允许快速 探索 和迭代,但 Pérez 指出 Python 并不是为科学构建的。例如,它不允许用户轻松地预加载代码模块或保持数据可视化的打开状态。因此 Pérez 创建了自己的版本。
2001 年 12 月,Pérez 发布了交互式 Python 解释器 IPython,它共有 259 行代码。10 年后,Pérez 和物理学家 Brian Granger、数学家 Evan Patterson 合作,将该工具迁移到 Web 浏览器,创建了 IPython Notebook,掀起了一场数据科学的革命。
和其他计算型 notebook 一样,IPython Notebook 将代码、结果、图形和文本组合到了单个文档中。但与其他此类型项目不同的是,IPython Notebook 是开源的,欢迎广大社区开发者为其发展做出贡献,并且支持 Python 这种科学家常用的语言。2014 年,IPython 演变成 Project Jupyter,支持约 100 种语言,并允许用户像在自己计算机上一样轻松地在远程超级计算机上 探索 数据。
Nature 在 2018 年指出:「对数据科学家而言,Jupyter 已经成为一种实际标准」。那时,GitHub 上已经有 250 万个 Jupyter notebook,如今已有近一千万个,其中包括 2016 年发现引力波和 2019 年黑洞成像的记录。Pérez 表示:「我们能为这些项目做出一点贡献也是非常有意义的」。
快速学习器:AlexNet(2012)
人工智能(AI)可分为两类,一类使用编码规则,另一类让计算机通过模拟大脑的神经结构来「学习」。多伦多大学计算机科学家、图灵奖获得者 Geoffrey Hinton 表示:「几十年来,人工智能研究者一直将第二种研究方法视为『荒谬』」。2012 年,Hinton 的研究生 Alex Krizhevsky 和 Ilya Sutskever 证明了事实并非如此。
在当年的 ImageNet 的年度竞赛上,研究者们被要求在包含 100 万张日常物品图像的数据库上训练 AI,然后在另一个图像集上测试算法。Hinton 表示:「在当时,最佳算法会在 1/4 的图像上出现分类错误」。Krizhevsky 和 Sutskever 开发的 AlexNet 是一种基于神经网络的深度学习算法,该算法将误差率降至 16%。Hinton 表示:「我们几乎将误差率降低了一半」。
Hinton 认为,该团队在 2012 年的成功反映出足够大的训练数据集、出色的编程和图形处理单元(最初为了提高计算机视频性能的处理器)新力量的结合。他表示:「突然之间,我们就能够将该算法的速度提高 30 倍,或者说可以学习 30 倍的数据」。
Hinton 表示真正的算法突破实际上发生在 3 年前。当时他的实验室创建了一个比几十年来不断完善的传统 AI 更能准确识别语音的神经网络。虽然准确率只稍微提升了一点,但已值得被记住。
AlexNet 及相关研究的成功带来了实验室、临床等多个领域深度学习的兴起。它让手机能够理解语音查询,也让图像分析工具能够轻松地从显微照片中挑选出细胞。这就是 AlexNet 在改变科学、改变世界的工具中占有一席之地的原因。
不可以。《Nature》《Science》《PNAS》《JAMA》这些都是国际顶级刊物但就《Nature》《Science》来说,他们是综合性刊物,更偏向通俗类科普读物;而子刊是更专业的,专门针对某一类别的研究。其中《Nature》是私人商业集团管理,《Science》是公益性的学会管理。就现在来讲,通过IF比较,某些子刊类的review甚至高于主刊,但综合来看,其实还是主刊更有影响力,毕竟刊登的是多方面的知识。对于这些20分以上的期刊,很难说谁比谁强,但Nature比其子刊难发是不争的事实,靠砸钱也许你能发个nature子刊(比如nature genetics),但是却发不了nature。同一篇文章是可能在其主刊和子刊以相同的名称发表的,因为《Nature》《Science》的出版周期很短,一周一刊,他会尽快的将研究成果展现出来,然后进一步通过子刊来深入介绍。还是不要想太多,一周一刊,前几年国内一年也就基本是100篇一下,研究生阶段看看就行,多学习,想法在这上面,几乎不可能。
个人简介: Edward H. Sargent,加拿大多伦多大学副校长、加拿大皇家科学院院士、加拿大工程院院士,是多伦多大学电子与计算机工程系教授。他是加拿大纳米技术领域的首席科学家,是胶体量子点光探测领域的开拓者,也是量子点PN结太阳能电池的发明者和光电转换效率的世界纪录的保持者,并通过所领导团队的努力,每年都在刷新纪录。迄今为止,已在Nature和Science等国际顶级期刊发表论文多篇团队已经发表超过300篇论文,论文被引用超过20000次,H因子72。
团队合照
接下来,我列举了Edward H. Sargent教授近期发表在Nature/Science系列期刊的工作!希望借此机会向大佬学习一下!
通过将二氧化碳电化学还原为化学原料,如乙烯,可同时达到二氧化碳减排和生产可再生能源的目的,目前,Cu是CO2RR的主要电催化剂。然而,迄今为止所达到的能源效率和生产率(目前的密度)仍然低于以工业生产乙烯所需的值。
鉴于此,卡内基梅隆大学的Zachary Ulissi、多伦多大学的Edward H. Sargent等人通过密度泛函理论计算结合主动机器学习来识别,描述了Cu-Al电催化剂能有效地将二氧化碳还原为乙烯,具有迄今为止所报道的最高的法拉第效率。与纯铜相比,在电流密度为400mA/cm2下Cu-Al电催化剂的法拉第效率超过了80%,以及在150mA/cm2下,在其阴极乙烯的能量转换效率则达到了~55%。理论计算表明,铜铝合金具有多个活性位点、表面定向和最佳CO结合能,有利于高效的、高选择性地还原CO2。
此外,原位X射线吸收光谱表明,铜和铝能够形成良好的铜配位环境,从而增强C-C二聚作用。这些发现说明了计算和机器学习在指导多金属系统的实验 探索 方面的价值,这些系统超越了传统的单金属电催化剂的局限性。
Accelerated discovery of CO2 electrocatalysts using active machine learning,
电解二氧化碳电还原反应(CO2RR)可用于绿色生产乙醇,然而,该反应的法拉第效率目前仍然不高,特别是在总电流密度超过10mA cm−2下。
鉴于此,多伦多大学的Edward H. Sargent团队报道了一类催化剂,其产乙醇的法拉第效率高达52.1%,阴极能量转化效率为31%。作者发现通过抑制中间体HOCCH*的脱氧作用,可以降低乙烯的选择性,促进乙醇生产。密度泛函理论(DFT)计算表明,由于封闭的N-C层具有很强的供电子能力,在Cu表面涂覆一层氮掺杂碳(N-C)可以促进C-C耦合,抑制HOCCH*中碳氧键的断裂,从而提高CO2RR中乙醇的选择性。
Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation,
堆叠具有较小带隙的太阳能电池形成双结膜,为克服单结光伏电池的Shockley-Queisser极限提供了可能。随着溶液处理钙钛矿的快速发展,有望将钙钛矿的单结效率提高>20%。然而,这一工艺仍未实现与行业相关的纹理晶体硅太阳能电池进行整体集成。
来自多伦多大学的Edward H. Sargent 和阿卜杜拉国王 科技 大学的Stefaan De Wolf团队,报道了将溶液处理的微米级钙钛矿顶部电池与完全纹理化的硅异质结底部电池相结合,进行集成双叠层电池的方法。为解决微米级钙钛矿中电荷收集的难点,作者将硅锥体底部的耗尽宽度提高了三倍。此外,通过在钙钛矿表面固定一种自限型钝化剂(1-丁硫醇),增加了扩散长度且进一步抑制了相偏析。这些多方位的结构改善,使钙钛矿—硅串联太阳能电池的整体效率达到了25.7%。在85°C下进行400小时的热稳定性测试,以及在40°C、在最大功率点下工作400小时后,发现其性能衰减可忽略不计。
Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon,
在这里,作者首先讨论了四类分子强化策略:①分子加成修饰的多相催化剂、②有机金属络合物催化剂、③网状催化剂和④无金属聚合物催化剂。作者介绍了目前在分子策略方面的挑战,并描述了电催化CO2RR产多碳产品的前景。这些策略为电催化CO2RR提供了潜在的途径,以解决催化剂活性、选择性和稳定性的挑战,进一步发展CO2RR。
Molecular enhancement of heterogeneous CO2 reduction,
目前通过优化钙钛矿的组成经过组合优化,在最先进的钙钛矿太阳能电池中通常含有六种成分(AxByC1−x−yPbXzY3−z)。关于每个组成部分的精确作用仍然存在许多不清晰,如何正确理解和掌握钙钛矿材料中不同组分对晶体结构、性能的影响关系,对于制备新型的高性能钙钛矿材料而言具有重要的指导意义。
鉴于此,多伦多大学的Edward H. Sargent与麻省理工学院的William A. Tisdale等人利用瞬态光致发光显微镜(TPLM),并结合理论计算,探究了钙钛矿材料中组分—结构—性能之间的关系。研究表明,单晶钙钛矿材料内部载流子的扩散率与结构组成无关;而对于多晶钙钛矿,不同的成分对载体扩散起着至关重要的作用。与CsMAFA型钙钛矿相比,不含MA的CsFA型钙钛矿载流子扩散率要低一个数量级。
元素组成研究表明,CsFA颗粒呈级配组成。在垂直载流子输运和表面电位研究中可以看到,CsFA型钙钛矿由于其非均匀结晶,从而引起晶粒的元素分布不一致,形成了不利于载流子扩散的“壳核结构”。而掺入MA可以有效改善颗粒成分的均匀性,在CsMAFA薄膜中产生了高的扩散系数。
Multi-cation perovskites prevent carrier reflection from grain surfaces, /10.1038/s41563-019-0602-2
电解二氧化碳还原(CO2RR)转化为有价值的燃料和原料,为这类温室气体的利用提供了一条有吸引力的途径。然而,在这类电解装置内,往往是由有限的气体通过液体电解质扩散到催化剂的表面,电解效率仍然不高。
鉴于此,多伦多大学的David Sinton和Edward H. Sargent等人提出了一种催化剂:离聚物本体异质结结构(CIBH),可用于分离气体、以及离子和电子的传输。CIBH由金属和具有疏水和亲水功能的超细离子层组成,可将气体和离子的输运范围从数十纳米扩展到微米级。采用这种设计策略,作者实现了在7 M KOH电解液中,以铜为催化剂进行电还原CO2,在阴极法拉第效率为45%下,产乙烯的偏电流密度高达1.3A cm-2。
CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2,
手性材料在推动生物标记、手性分析和检测、对映异构体选择性分离、偏振相关光子学和光电子学应用等领域的发展具有重要意义。一维半导体的区域选择性磁化可以实现室温下的各向异性磁性,以及自旋极化——这是自旋电子学和量子计算技术所必需的特性。
鉴于此,中国科学技术大学俞书宏院士团队与国家纳米科学中心唐智勇研究员课题组、多伦多大学Edward Sargent教授团队等人利用局域磁场调控电偶极矩与磁偶极矩之间的相互作用,成功合成了一类新型手性无机纳米材料。
利用这一策略,作者将具有不同晶格、化学成分和磁性能的材料,即一个磁性成分(Fe3O4)和一系列半导体纳米棒结合在一起,在特定的位置吸收紫外线和可见光谱。由此产生的异质纳米棒表现出由特定位置磁场诱导的光学活性。本文提出的区域选择性磁化策略为设计手性和自旋电子学的光学活性纳米材料提供了一条途径。
Regioselective magnetization in semiconducting nanorods,
电催化CO2还原反应(CO2RR)为温室气体的利用、化学燃料的生产提供了一种可持续的、碳中性的方法。然而,从CO2RR高选择性地生产C2产品(例如乙烯)仍然是一个挑战。
鉴于此,多伦多大学Edward H. Sargent教授、加州理工学院Theodor Agapie教授、Jonas C. Peters教授等人提出了一种分子调控策略,用有机分子使电催化剂表面功能化,用于稳定反应中间产物,使CO2RR高选择性地产乙烯。
通过电化学、操作/原位光谱和计算研究,研究了通过芳基吡啶的电二聚作用衍生的分子库对Cu的影响。结果发现,粘附分子提高了CO中间体的稳定性,有利于进一步还原成乙烯。在中性介质的液流电池中,在偏电流密度为230 mA cm-2下,电催化CO2RR产乙烯的法拉第效率高达72%。
Molecular tuning of CO2-to-ethylene conversion,
有的。2021年1月新推出的子刊,自然-计算科学(Nature Computational Science)是一本2021年1月推出的新刊。本刊的推出是对计算机科学(包括科学计算和数据科学)、数学和自然科学之间联系的兴趣日益增长,相关文献不断增加这一趋势的回应。期刊关注包括计算科学领域的基础研究和应用研究。
你好,可以的。nature是接受这方面文章的,但占量比较小,而且一般要与自然科学相结合才有比较大的发表可能!当然,最主要还是要看你的创新和带来的效应。有比较多的算法研究论文(比如生物信息)就有很多发表在nature上!自然出版集团(NPG)以出版高质量的科学和医学信息而闻名。NPG出版的期刊,在线数据库及服务广泛覆盖生命科学,物理,化学,应用科学和临床医学领域。 自然出版集团是麦克米伦出版集团(Macmillan Publishing Ltd.)的重要组成部分。集团旗下创刊于1869年的《自然》,一直在致力于满足科研工作者的需求,现已成为最重要的国际学术周刊。除《自然》之外,NPG还出版了自然系列研究类期刊和综述类期刊,以及高端学术期刊与学会刊物。在互联网上, nature.com每月为超过600万访问者提供阅读NPG出版物和使用在线数据库的服务。 这些服务包括阅读《自然》的新闻和社论。
不可以。《Nature》《Science》《PNAS》《JAMA》这些都是国际顶级刊物但就《Nature》《Science》来说,他们是综合性刊物,更偏向通俗类科普读物;而子刊是更专业的,专门针对某一类别的研究。其中《Nature》是私人商业集团管理,《Science》是公益性的学会管理。就现在来讲,通过IF比较,某些子刊类的review甚至高于主刊,但综合来看,其实还是主刊更有影响力,毕竟刊登的是多方面的知识。对于这些20分以上的期刊,很难说谁比谁强,但Nature比其子刊难发是不争的事实,靠砸钱也许你能发个nature子刊(比如nature genetics),但是却发不了nature。同一篇文章是可能在其主刊和子刊以相同的名称发表的,因为《Nature》《Science》的出版周期很短,一周一刊,他会尽快的将研究成果展现出来,然后进一步通过子刊来深入介绍。还是不要想太多,一周一刊,前几年国内一年也就基本是100篇一下,研究生阶段看看就行,多学习,想法在这上面,几乎不可能。
关于计算机的期刊有很多,楼主不必为此想太多了,最重要还是你的论文质量够不够好。我可以介绍你一个不错的论文网,京都名师论文网。你可以先在这里检测一下你的论文,然后咨询一下发到哪个期刊会比较好,他们会给你好的建议的。
嗯,可以说说具体的要求么?
你自己注册个博客呀微薄什么不就是了
计算机安全小型微型计算机系统计算机系统应用软件计算机与现代化计算机工程计算机工程与应用.................等等,都可以发表
【新智元导读】 2月25日,清华大学工程物理系唐传祥研究组与合作团队在《自然》上发表研究论文《稳态微聚束原理的实验演示》,报告了一种新型粒子加速器光源「稳态微聚束」的首个原理验证实验。与之相关的极紫外光源有望解决自主研发光刻机中最核心的「卡脖子」难题。
最现代的研究用光源是基于粒子加速器的。
这些都是大型设施,电子在其中被加速到几乎是光速,然后发射出具有特殊性质的光脉冲。
在基于存储环的同步辐射源中,电子束在环中旅行数十亿转,然后在偏转磁体中产生快速连续的非常明亮的光脉冲。
相比之下,自由电子激光器(FEL)中的电子束被线性加速,然后发出单次超亮的类似激光的闪光。
近年来,储能环源以及FEL源促进了许多领域的进步,从对生物和医学问题的深入了解到材料研究、技术开发和量子物理学。
现在,一个中德团队证明,在同步辐射源中可以产生一种脉冲模式,结合了两种系统的优点。
2月25日,清华大学工程物理系教授唐传祥研究组与来自亥姆霍兹柏林材料与能源研究中心(HZB)以及德国联邦物理技术研究院(PTB)的合作团队在Nature上发表了题为《稳态微聚束原理的实验演示》( Experimental demonstration of the mechanism of steady-state microbunching )的论文。
报告了一种新型粒子加速器光源「稳态微聚束」(Steady-state microbunching,SSMB)的首个原理验证实验。
该研究与极紫外(EUV)光刻机光源密切相关,有望为EUV光刻机提供新技术路线。
SSMB光源首个原理验证实验,中德团队登上Nature
同步辐射源提供短而强烈的微束电子,产生的辐射脉冲具有类似于激光的特性(与FEL一样),但也可以按顺序紧密跟随对方(与同步辐射光源一样)。
大约十年前,斯坦福大学教授、清华大学杰出访问教授、著名加速器理论家赵午和他的博士生Daniel Ratner以提出了「稳态微束」(SSMB)。
赵午教授
该机制还应该使存储环不仅能以高重复率产生光脉冲,而且能像激光一样产生相干辐射。
来自清华大学的青年物理学家邓秀杰在他的博士论文中提出了这些观点,并对其进行了进一步的理论研究。
2017年,赵午教授联系了HZB的加速器物理学家,他们除了在HZB操作软X射线源BESSY II外,还在PTB操作计量光源(MLS)。
MLS是世界上第一个通过设计优化运行的光源,在所谓的 「低α模式 」下运行。
在这种模式下,电子束可以大大缩短。10多年来,那里的研究人员一直在不断开发这种特殊的运行模式。
HZB的加速器专家Markus Ries解释说:「现在,这项开发工作的成果使我们能够满足具有挑战性的物理要求,在MLS实证确认SSMB原理」。
「SSMB团队中的理论小组在准备阶段就定义了实现机器最佳性能的物理边界条件。这使我们能够用MLS生成新的机器状态,并与邓秀杰一起对它们进行充分的调整,直到能够检测到我们正在寻找的脉冲模式」,HZB的加速器物理学家Jörg Feikes说。
HZB和PTB专家使用了一种光学激光器,其光波与MLS中的电子束在空间和时间上精确同步耦合。
这就调制了电子束中电子的能量。
「这使得几毫米长的电子束在存储环中正好转了一圈后分裂成微束(只有1微米长),然后发射光脉冲,像激光一样相互放大」,Jörg Feikes解释道。
「对相干态的实验性探测绝非易事,但我们PTB的同事开发了一种新的光学检测装置,成功地进行了探测。」
SSMB概念提出后,赵午持续推动SSMB的研究与国际合作。
2017年,唐传祥与赵午发起该项实验,唐传祥研究组主导完成了实验的理论分析和物理设计,并开发测试实验的激光系统,与合作单位进行实验,并完成了实验数据分析与文章撰写。
揭示SSMB作为未来光子源潜力的关键一步,是在真实机器上演示其机制。在新的论文中,研究人员报告了SSMB机制的实验演示。
SSMB原理验证实验示意图
实验表明,存储在准等时环中的电子束可以产生亚微米级的微束和相干辐射,由1,064纳米波长激光器诱导的能量调制后一个完整的旋转。
结果验证了电子的光相可以在亚激光波长的精度上逐次相关。
SSMB原理验证实验结果
在这种相位相关性的基础上,研究人员通过应用相位锁定的激光器与电子轮流相互作用来实现SSMB。
该图示直观地展示了如何通过激光调制电子束来产生发射激光的微束,是实现基于SSMB的高重复性、高功率光子源的一个里程碑。
有望解决EUV卡脖子难题
没有顶尖的光刻机,是我国半导体行业发展的最大瓶颈。
光刻机的曝光分辨率与波长直接相关,半个多世纪以来,光刻机光源的波长不断缩小,芯片工业界公认的新一代主流光刻技术是采用波长为13.5纳米光源的EUV(极紫外光源)光刻。
大功率的EUV光源是EUV光刻机的核心基础。简而言之,光刻机需要的EUV光,要求是波长短,功率大。
EUV光刻机工作相当于用波长只有头发直径一万分之一的极紫外光,在晶圆上「雕刻」电路,最后将让指甲盖大小的芯片包含上百亿个晶体管,这种设备工艺展现了人类 科技 发展的顶级水平。
而昂贵的EUV光刻机也正是实现7nm的关键设备,目前,荷兰ASML是全球唯一一家能够量产EUV光刻机的厂商,而由于禁令,我国中芯国际订购的一台EUV仍未到货。
如果中国大陆无法引入ASML的EUV光刻机,则意味着大陆将止步于7nm工艺。
目前ASML公司采用的是高能脉冲激光轰击液态锡靶,形成等离子体然后产生波长13.5纳米的EUV光源,功率约250瓦。而随着芯片工艺节点的不断缩小,预计对EUV光源功率的要求将不断提升,达到千瓦量级。
SSMB光源的潜在应用之一是作为未来EUV光刻机的光源。它们产生的类似激光的辐射也超出了 "光 "的可见光谱,例如在EUV范围内,最后阶段,SSMB源可以提供一种新的辐射特性。脉冲是强烈的、集中的和窄带的。可以说,它们结合了同步辐射光的优势和FEL脉冲的优势。
可以说,基于SSMB的EUV光源有望实现大的平均功率,并具备向更短波长扩展的潜力,为大功率EUV光源的突破提供全新的解决思路。
EUV光刻机的自主研发还有很长的路要走,基于SSMB的EUV光源有望解决自主研发光刻机中最核心的「卡脖子」难题。
关于作者
本文的通讯作者唐传祥教授是清华大学的博士生导师。
1992年9月-1996年3月,考入 清华大学工程物理系硕博连读。1996年3月获得工学博士学位, 博士学位论文为“用于北京自由电子激光装置的多腔热阴极微波电子枪的研究”。
1996年4月获得博士学位后,留校工作。
1996年7月 1998年6月期间,作为访问学者到德国DESY工作2年。在DESY工作期间,主要进行超导加速结构的优化及测量研究,并与J. Sekutowicz, M.Ferrario等合作提出了Superstructure的超导加速结构。
1998年6月回国后,继续在清华大学从事加速器物理、高亮度注入器、汤姆逊散射X射线源、自由电子激光、新加速原理与新型加速结构、电子直线加速器关键物理及技术、加速器应用等方面的研究。
参考资料:
编译 | 未玖
Nature , 14 April 2022, VOL 604, ISSUE 7905
《自然》 2022年4月14日,第604卷,7905期
天文学 Astronomy
A dusty compact object bridging galaxies and quasars at cosmic dawn
在宇宙黎明时分,星系由尘埃致密体过渡到类星体
作者:S. Fujimoto, G. B. Brammer, D. Watson, G. E. Magdis, V. Kokorev, T. R. Greve, et al.
链接:
摘要:
自从发现发光类星体在宇宙大爆炸后仅存在7亿年以来,了解超大质量黑洞在早期宇宙中如何形成和生长已成为一个重大难题。
理论模拟显示了一种进化序列,尘埃红移的类星体从严重尘埃遮蔽的星暴星系中出现,然后通过释放气体和尘埃过渡到无遮蔽的发光类星体。尽管最后一个阶段的红移已被确定为7.6,但由于它们在光学和近红外波长上的微弱性,目前尚未发现具有类似红移的过渡类星体。
研究组报道了一个紫外致密天体GNz7q的观测结果,它与一个红移为7.1899 0.0005、尘埃掩蔽的星暴有关。
在该时期,宿主星系的尘埃辐射比任何其他已知物体都要明亮,在480秒差距的中心半径范围内,每年形成1600个太阳质量的恒星。在深部、高分辨率成像和无狭缝光谱中,可识别出一个远紫外的红点源。
GNz7q在X射线中非常微弱,这表明在尘埃星暴核心出现了一个独特的紫外致密恒星形成区或一个康普顿厚、超过爱丁顿极限的黑洞吸积盘。在后一种情况下,观测到的性质与宇宙学模拟的预测一致,并表明GNz7q是晚期无遮蔽发光类星体的祖先。
Abstract:
Understanding how super-massive black holes form and grow in the early Universe has become a major challenge since it was discovered that luminous quasars existed only 700 million years after the Big Bang. Simulations indicate an evolutionary sequence of dust-reddened quasars emerging from heavily dust-obscured starbursts that then transition to unobscured luminous quasars by expelling gas and dust. Although the last phase has been identified out to a redshift of 7.6, a transitioning quasar has not been found at similar redshifts owing to their faintness at optical and near-infrared wavelengths. Here we report observations of an ultraviolet compact object, GNz7q, associated with a dust-enshrouded starburst at a redshift of 7.1899 0.0005. The host galaxy is more luminous in dust emission than any other known object at this epoch, forming 1,600 solar masses of stars per year within a central radius of 480 parsec. A red point source in the far-ultraviolet is identified in deep, high-resolution imaging and slitless spectroscopy. GNz7q is extremely faint in X-rays, which indicates the emergence of a uniquely ultraviolet compact star-forming region or a Compton-thick super-Eddington black-hole accretion disk at the dusty starburst core. In the latter case, the observed properties are consistent with predictions from cosmological simulations and suggest that GNz7q is an antecedent to unobscured luminous quasars at later epochs.
物理学 Physics
Intelligent infrared sensing enabled by tunable moiré quantum geometry
可调谐莫尔量子几何实现智能红外传感
作者:Chao Ma, Shaofan Yuan, Patrick Cheung, Kenji Watanabe, Takashi Taniguchi, Fan Zhang, et al.
链接:
摘要:
众所周知,固体中布洛赫波函数的量子几何性质,即贝里曲率和量子度量,显著影响着电子的基态和激发态行为。
体光伏效应(BPVE)是一种依赖于激发光偏振的非线性现象,在很大程度上取决于光学跃迁中的量子几何特性。红外BPVE尚未在石墨烯或莫尔体系等新兴平台中观察到,尽管这些平台已报道过与量子几何有关的激发强关联现象。
研究组报道了在扭曲双双层石墨烯(TDBG)中观察到5 µm和7.7 µm处可调谐中红外BPVE,由莫尔诱导的强对称性破缺和量子几何贡献产生。光响应在很大程度上取决于激发光的偏振态,且可通过外部电场进行高度调谐。
这种量子几何特性的广泛可调性使研究组能够使用卷积神经网络同时实现全斯托克斯偏振测量和波长检测,仅使用一个亚波长足迹仅为3 3 µm2的TDBG器件 。
该研究工作不仅揭示了莫尔工程量子几何在可调谐非线性光-物质相互作用中的独特作用,还以极其紧凑的芯片方式为未来智能传感技术开辟了新途径。
Abstract:
Quantum geometric properties of Bloch wave functions in solids, that is, Berry curvature and the quantum metric, are known to significantly influence the ground- and excited-state behaviour of electrons. The bulk photovoltaic effect (BPVE), a nonlinear phenomenon depending on the polarization of excitation light, is largely governed by the quantum geometric properties in optical transitions. Infrared BPVE has yet to be observed in graphene or moiré systems, although exciting strongly correlated phenomena related to quantum geometry have been reported in this emergent platform. Here we report the observation of tunable mid-infrared BPVE at 5 µm and 7.7 µm in twisted double bilayer graphene (TDBG), arising from the moiré-induced strong symmetry breaking and quantum geometric contribution. The photoresponse depends substantially on the polarization state of the excitation light and is highly tunable by external electric fields. This wide tunability in quantum geometric properties enables us to use a convolutional neural network to achieve full-Stokes polarimetry together with wavelength detection simultaneously, using only one single TDBG device with a subwavelength footprint of merely 3 3 µm2. Our work not only reveals the unique role of moiré engineered quantum geometry in tunable nonlinear light–matter interactions but also identifies a pathway for future intelligent sensing technologies in an extremely compact, on-chip manner.
材料科学 Materials Science
Uniting tensile ductility with ultrahigh strength via composition undulation
通过成分起伏同时实现拉伸塑性与超高强度
作者:Heng Li, Hongxiang Zong, Suzhi Li, Shenbao Jin, Yan Chen, Matthew J. Cabral, et al.
链接:
摘要:
具有纳米晶粒的金属有接近2 GPa的超高强度。然而,这种极端的晶界强化导致几乎所有拉伸塑性的丧失,即使当金属具有面心立方结构(所有晶体结构中塑性最强的结构)时亦如此。
研究组证明了纳米晶镍-钴固溶体虽仍是面心立方单相,但其拉伸强度约为2.3 GPa,塑性断裂伸长率约为16 %。
这种不寻常的拉伸强度和塑性的结合是通过高浓度固溶体中的成分起伏实现的。这种起伏使得层错能和晶格应变在1-10纳米的尺度范围内发生空间变化,从而显著影响了位错运动。
尽管纳米晶粒内部空间非常有限,但位错运动变得缓慢,促进了它们的交互作用、联锁和增殖。因此,流动应力增加,同时位错储存增加,从而提升了应变硬化能力,提高了塑性。
同时,沿位错线的分段脱捕需要较小的激活体积,因此应变速率敏感性增加,这也稳定了拉伸流动。因此,抗位错传播的起伏结构提供了一种强化机制,可在高流动应力下保持拉伸塑性。
Abstract:
Metals with nanocrystalline grains have ultrahigh strengths approaching two gigapascals. However, such extreme grain-boundary strengthening results in the loss of almost all tensile ductility, even when the metal has a face-centred-cubic structure—the most ductile of all crystal structures. Here we demonstrate that nanocrystalline nickel–cobalt solid solutions, although still a face-centred-cubic single phase, show tensile strengths of about 2.3 gigapascals with a respectable ductility of about 16 per cent elongation to failure. This unusual combination of tensile strength and ductility is achieved by compositional undulation in a highly concentrated solid solution. The undulation renders the stacking fault energy and the lattice strains spatially varying over length scales in the range of one to ten nanometres, such that the motion of dislocations is thus significantly affected. The motion of dislocations becomes sluggish, promoting their interaction, interlocking and accumulation, despite the severely limited space inside the nanocrystalline grains. As a result, the flow stress is increased, and the dislocation storage is promoted at the same time, which increases the strain hardening and hence the ductility. Meanwhile, the segment detrapping along the dislocation line entails a small activation volume and hence an increased strain-rate sensitivity, which also stabilizes the tensile flow. As such, an undulating landscape resisting dislocation propagation provides a strengthening mechanism that preserves tensile ductility at high flow stresses.
Perovskite–organic tandem solar cells with indium oxide interconnect
钙钛矿-氧化铟互连有机串联太阳能电池
作者:K. O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann, M. Theisen, et al.
链接:
摘要:
多结太阳能电池可以克服单结器件的基本效率限制。金属卤化物钙钛矿型太阳能电池的带隙可调性使其在多结结构中具有吸引力。硅和铜铟硒化镓(CIGS)以及全钙钛矿串联电池的组合已有报道。与此同时,窄间隙非富勒烯受体为有机太阳能电池带来了快速提升的效率。
有机和钙钛矿半导体是一种很有吸引力的组合,具有相似的加工技术。目前,钙钛矿-有机串联电池的效率低于标准,并且受到宽间隙钙钛矿电池的低开路电压(Voc)和子电池之间互连引入损耗的限制。
研究组展示了钙钛矿-有机串联电池的效率为24.0%(认证为23.1%),Voc高达2.15 伏特。优化的电荷提取层使钙钛矿子电池具有高Voc和填充因子的出色组合。
该串联电池的有机子电池在近红外下提供了高外部量子效率,与对非富勒烯电池有限光稳定性的典型担忧相反,如果激子主要在非富勒烯受体上产生,则表现出出色的操作稳定性。子电池由一层超薄(约1.5纳米)类金属氧化铟层连接,具有前所未有的低光/电损耗。
这项工作为钙钛矿-有机串联电池竖了一座里程碑,它优于最好的p–i–n钙钛矿单结,并与钙钛矿-CIGS和所有钙钛矿多结相媲美。
Abstract:
Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures. Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported. Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells. Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite–organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (Voc) of wide-gap perovskite cells and losses introduced by the interconnect between the subcells. Here we demonstrate perovskite–organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high Voc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high Voc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells, show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite–organic tandems, which outperform the best p–i–n perovskite single junctions and are on a par with perovskite–CIGS and all-perovskite multijunctions.
机械工程 Mechanical Engineering
Thermophotovoltaic efficiency of 40%
科学家实现40%的热光伏效率
作者:Alina LaPotin, Kevin L. Schulte, Myles A. Steiner, Kyle Buznitsky, Colin C. Kelsall, Daniel J. Friedman, et al.
链接:
摘要:
热光伏(TPV)主要通过光伏效应将红外波长的光转换为电能,可使用比目前普遍存在于电力生产中的涡轮机更高温度的热源进行能量存储和转换。
自从在2000 下使用集成背表面反射器和钨发射极首次展示29%的高效TPV以来,TPV的制造和性能得到了改善。然而,尽管预测TPV的效率可能超过50%,但在温度低于1300 下,实际效率仍仅为32%。
研究组报道了效率超过40%的TPV电池的制造和测量,并通过实验证明了高带隙串联TPV电池的效率。TPV电池是由带隙在1.0-1.4 eV的III–V材料组成的双结器件,针对1900-2400 的发射极温度进行了优化。
电池利用带边光谱滤波的概念来获得高效率,使用高反射背表面反射器来拒绝不可用的子带隙辐射返回发射极。在功率密度为2.39 W cm –2 ,发射极温度为2400 的条件下,1.4/1.2 eV器件的最大效率为(41.1 1)%。在功率密度为1.8 W cm–2,发射极温度为2127 的条件下,1.2/1.0 eV器件的最大效率为(39.3 1)%。
这些电池可以集成到一个TPV系统中,用于热能电网存储,以实现可调度的可再生能源。这为热能电网存储创造了一条途径,以达到足够高的效率和足够低的成本,从而实现电网脱碳。
Abstract:
Thermophotovoltaics (TPVs) convert predominantly infrared wavelength light to electricity via the photovoltaic effect, and can enable approaches to energy storage and conversion that use higher temperature heat sources than the turbines that are ubiquitous in electricity production today. Since the first demonstration of 29% efficient TPVs using an integrated back surface reflector and a tungsten emitter at 2,000 C, TPV fabrication and performance have improved. However, despite predictions that TPV efficiencies can exceed 50%, the demonstrated efficiencies are still only as high as 32%, albeit at much lower temperatures below 1,300 C. Here we report the fabrication and measurement of TPV cells with efficiencies of more than 40% and experimentally demonstrate the efficiency of high-bandgap tandem TPV cells. The TPV cells are two-junction devices comprising III–V materials with bandgaps between 1.0 and 1.4 eV that are optimized for emitter temperatures of 1,900–2,400 C. The cells exploit the concept of band-edge spectral filtering to obtain high efficiency, using highly reflective back surface reflectors to reject unusable sub-bandgap radiation back to the emitter. A 1.4/1.2 eV device reached a maximum efficiency of (41.1 1)% operating at a power density of 2.39 W cm–2 and an emitter temperature of 2,400 C. A 1.2/1.0 eV device reached a maximum efficiency of (39.3 1)% operating at a power density of 1.8 W cm –2 and an emitter temperature of 2,127 C. These cells can be integrated into a TPV system for thermal energy grid storage to enable dispatchable renewable energy. This creates a pathway for thermal energy grid storage to reach sufficiently high efficiency and sufficiently low cost to enable decarbonization of the electricity grid.
地球科学 Earth Science
Realization of Paris Agreement pledges may limit warming just below 2
实现《巴黎协定》的承诺有望将全球变暖控制在2 以下
作者:Malte Meinshausen, Jared Lewis, Christophe McGlade, Johannes Gütschow, Zebedee Nicholls, Rebecca Burdon, et al.
链接:
摘要:
在《格拉斯哥气候公约》签署前的过去五年中,154个缔约方在其国家自主贡献中提交了新的或更新的2030年减缓目标,76个缔约方提出了长期承诺。对2021联合国气候变化大会(COP26)之前承诺的量化表明,将升温控制在2 以下的可能性低于50 %。
研究组证明,如果所有有条件和无条件的承诺都得到充分和及时的执行,全球变暖可以控制在2 以下。根据政府间气候变化专门委员会(IPCC)第六次评估报告中第一工作组对地球系统不确定性进行的概率表征,在全面执行的情况下,峰值升温可被限制在1.9-2.0 之间。
研究组回顾性地预测了21世纪的气候变暖,以显示2015-2021年雄心勃勃的总体目标水平如何变化。研究结果依赖于对2030年或2050年之后的限时目标外推、IPCC 1.5 特别报告(SR1.5)情景数据库的特征和承诺的全面实施情况。
对这些因素更悲观的假设将导致更高的升温预测。另一个独立的排放模型框架预测,全球升温峰值为1.8 ,这支持了该研究发现,即各国兑现承诺可能会将全球变暖限制在略低于2 的范围内。
若不仅要将升温控制在“略低于”,还要控制在“远低于”2 或1.5 ,则迫切需要制定政策和采取行动,以在本世纪中叶实现全球C O2 净零排放。
Abstract:
Over the last five years prior to the Glasgow Climate Pact, 154 Parties have submitted new or updated 2030 mitigation goals in their nationally determined contributions and 76 have put forward longer-term pledges. Quantifications of the pledges before the 2021 United Nations Climate Change Conference (COP26) suggested a less than 50 per cent chance of keeping warming below 2 degrees Celsius. Here we show that warming can be kept just below 2 degrees Celsius if all conditional and unconditional pledges are implemented in full and on time. Peak warming could be limited to 1.9–2.0 degrees Celsius in the full implementation case—building on a probabilistic characterization of Earth system uncertainties in line with the Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). We retrospectively project twenty-first-century warming to show how the aggregate level of ambition changed from 2015 to 2021. Our results rely on the extrapolation of time-limited targets beyond 2030 or 2050, characteristics of the IPCC 1.5 C Special Report (SR1.5) scenario database and the full implementation of pledges. More pessimistic assumptions on these factors would lead to higher temperature projections. A second, independent emissions modelling framework projected peak warming of 1.8 degrees Celsius, supporting the finding that realized pledges could limit warming to just below 2 degrees Celsius. Limiting warming not only to ‘just below’ but to ‘well below’ 2 degrees Celsius or 1.5 degrees Celsius urgently requires policies and actions to bring about steep emission reductions this decade, aligned with mid-century global net-zero C O2 emissions
作者 | 张晴丹
你能想象0.2克的“绳子”可以提起5公斤重的物体吗?
没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。
近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。
评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”
1+1 10,凝胶界的“佼佼者”
“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。
此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。
王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。
论文中展示的是用0.2克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。
离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。
可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。
“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”
一步法轻松做成
长期以来,在凝胶材料领域最火的,非水凝胶莫属。
实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。
但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。
在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。
挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。
“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。
研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。
最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。
完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?
“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”
一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。
为实验蓄能,把理论变为现实
王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。
2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。
在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。
但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。
她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。
幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。
“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。
参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。