人
工智能(Artificial Intelligence,AI)是利用机器学习和数据分析方法赋予机器模拟、延伸
近年来, 在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。
人工智能市场格局
人工智能赋能实体经济,为生产和生活带来革命性的转变。 人工智能作为新一轮产业变革 的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和 新产品。从衣食住行到医疗教育,人工智能技术在 社会 经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测, 2035 年,人工智能将推动中国劳动生产率提高 27%,经济总增加值提升 7.1 万亿美元。
多角度人工智能产业比较
战略部署:大国角逐,布局各有侧重
全球范围内,中美“双雄并立”构成人工智能第一梯队,日本、英国、以色列和法国等发 达国家乘胜追击,构成第二梯队。同时,在顶层设计上,多数国家强化人工智能战略布局, 并将人工智能上升至国家战略,从政策、资本、需求三大方面为人工智能落地保驾护。后起之秀的中国,局部领域有所突破。中国人工智能起步较晚,发展之路几经沉浮。自 2015 年以来,政府密集出台系列扶植政策,人工智能发展势头迅猛。由于初期我国政策 侧重互联网领域,资金投向偏向终端市场。因此,相比美国产业布局,中国技术层(计算 机视觉和语音识别)和应用层走在世界前端,但基础层核心领域(算法和硬件算力)比较 薄弱,呈“头重脚轻”的态势。当前我国人工智能在国家战略层面上强调系统、综合布局。
美国引领人工智能前沿研究,布局慢热而强势。 美国政府稍显迟缓,2019 年人工智能国 家级战略(《美国人工智能倡议》)才姗姗来迟。但由于美国具有天时(5G 时代)地利(硅 谷)人和(人才)的天然优势,其在人工智能的竞争中已处于全方位领先状态。总体来看, 美国重点领域布局前沿而全面,尤其是在算法和芯片脑科学等领域布局超前。此外,美国聚焦人工智能对国家安全和 社会 稳定的影响和变革,并对数据、网络和系统安全十分重视。
伦理价值观引领,欧洲国家抢占规范制定的制高点。 2018 年,欧洲 28 个成员国(含英国) 签署了《人工智能合作宣言》,在人工智能领域形成合力。从国家层面来看,受限于文化和语言差异阻碍大数据集合的形成,欧洲各国在人工智能产业上不具备先发优势,但欧洲 国家在全球 AI 伦理体系建设和规范的制定上抢占了“先机”。欧盟注重探讨人工智能的社 会伦理和标准,在技术监管方面占据全球领先地位。
日本寻求人工智能解决 社会 问题。 日本以人工智能构建“超智能 社会 ”为引领,将 2017 年确定为人工智能元年。由于日本的数据、技术和商业需求较为分散,难以系统地发展人 工智能技术和产业。因此,日本政府在机器人、医疗 健康 和自动驾驶三大具有相对优势的 领域重点布局,并着力解决本国在养老、教育和商业领域的国家难题。
基础层面:技术薄弱,芯片之路任重道远
基础层由于创新难度大、技术和资金壁垒高等特点,底层基础技术和高端产品市场主要被欧美日韩等少数国际巨头垄断。 受限于技术积累与研发投入的不足,国内在基础层领域相 对薄弱。具体而言,在 AI 芯片领域,国际 科技 巨头芯片已基本构建产业生态,而中国尚 未掌握核心技术,芯片布局难以与巨头抗衡;在云计算领域,服务器虚拟化、网络技术 (SDN)、 开发语音等核心技术被掌握在亚马逊、微软等少数国外 科技 巨头手中。虽国内 阿里、华为等 科技 公司也开始大力投入研发,但核心技术积累尚不足以主导产业链发展;在智能传感器领域,欧洲(BOSCH,ABB)、美国(霍尼韦尔)等国家或地区全面布局传 感器多种产品类型,而在中国也涌现了诸如汇顶 科技 的指纹传感器等产品,但整体产业布 局单一,呈现出明显的短板。在数据领域,中国具有的得天独厚的数据体量优势,海量数 据助推算法算力升级和产业落地,但我们也应当意识到,中国在数据公开力度、国际数据 交换、统一标准的数据生态系统构建等方面还有很长的路要走。
“无芯片不 AI”,以 AI 芯片为载体的计算力是人工智能发展水平的重要衡量标准,我们 将对 AI 芯片作详细剖析,以期对中国在人工智能基础层的竞争力更细致、准确的把握。
依据部署位置,AI 芯片可划分为云端(如数据中心等服务器端)和终端(应用场景涵盖手 机、 汽车 、安防摄像头等电子终端产品)芯片;依据承担的功能,AI 芯片可划分为训练和 推断芯片。训练端参数的形成涉及到海量数据和大规模计算,对算法、精度、处理能力要 求非常高,仅适合在云端部署。目前,GPU(通用型)、FPGA(半定制化)、ASIC(全定制化)成为 AI 芯片行业的主流技术路线。不同类型芯片各具优势,在不同领域呈现多 技术路径并行发展态势。我们将从三种技术路线分别剖析中国 AI 芯片在全球的竞争力。
GPU(Graphics Processing Unit)的设计和生产均已成熟,占领 AI 芯片的主要市场份 额。GPU 擅长大规模并行运算,可平行处理海量信息,仍是 AI 芯片的首选。据 IDC 预测, 2019 年 GPU 在云端训练市场占比高达 75%。在全球范围内,英伟达和 AMD 形成双寡头 垄断,尤其是英伟达占 GPU 市场份额的 70%-80%。英伟达在云端训练和云端推理市场推 出的 GPU Tesla V100 和 Tesla T4 产品具有极高性能和强大竞争力,其垄断地位也在不断 强化。目前中国尚未“入局”云端训练市场。由于国外 GPU 巨头具有丰富的芯片设计经 验和技术沉淀,同时又具有强大的资金实力,中国短期内无法撼动 GPU 芯片的市场格局。
FPGA(Field Programmable Gate Array)芯片具有可硬件编程、配置高灵活性和低能耗等优点。FPGA 技术壁垒高,市场呈双寡头垄断:赛灵思(Xilinx)和英特尔(Intel)合计 占市场份额近 90%,其中赛灵思的市场份额超过 50%,始终保持着全球 FPGA 霸主地位。 国内百度、阿里、京微齐力也在部署 FPGA 领域,但尚处于起步阶段,技术差距较大。
ASIC(Application Specific Integrated Circuits)是面向特定用户需求设计的定制芯片, 可满足多种终端运用。尽管 ASIC 需要大量的物理设计、时间、资金及验证,但在量产后, 其性能、能耗、成本和可靠性都优于 GPU 和 FPGA。与 GPU 与 FPGA 形成确定产品不 同,ASIC 仅是一种技术路线或方案,着力解决各应用领域突出问题及管理需求。目前, ASIC 芯片市场竞争格局稳定且分散。我国的 ASIC 技术与世界领先水平差距较小,部分领域处于世界前列。在海外,谷歌 TPU 是主导者;国内初创芯片企业(如寒武纪、比特大陆和地平线),互联网巨头(如百度、华为和阿里)在细分领域也有所建树。
总体来看 ,欧美日韩基本垄断中高端云端芯片,国内布局主要集中在终端 ASIC 芯片,部分领域处于世界前列,但多以初创企业为主,且尚未形成有影响力的“芯片−平台−应用” 的生态,不具备与传统芯片巨头(如英伟达、赛灵思)抗衡的实力;而在 GPU 和 FPGA 领域,中国尚处于追赶状态,高端芯片依赖海外进口。
技术层面:乘胜追击,国内头部企业各领风骚
技术层是基于基础理论和数据之上,面向细分应用开发的技术。 中游技术类企业具有技术 生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学 习)、开发平台(开源框架)和应用技术(计算机视觉、智能语音、生物特征识别、自然 语言处理)。众多国际 科技 巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层 围绕垂直领域重点研发,在计算机视觉、语音识别等领域技术成熟,国内头部企业脱颖而 出,竞争优势明显。但算法理论和开发平台的核心技术仍有所欠缺。
具体来看,在算法理论和开发平台领域,国内尚缺乏经验,发展较为缓慢。 机器学习算法是人工智能的热点,开源框架成为国际 科技 巨头和独角兽布局的重点。开源深度学习平台 是允许公众使用、复制和修改的源代码,是人工智能应用技术发展的核心推动力。目前, 国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,百度的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。
在应用技术的部分领域,中国实力与欧美比肩。 计算机视觉、智能语音、自然语言处理是三大主要技术方向,也是中国市场规模最大的三大商业化技术领域。受益于互联网产业发 达,积累大量用户数据,国内计算机视觉、语音识别领先全球。自然语言处理当前市场竞 争尚未成型,但国内技术积累与国外相比存在一定差距。
作为落地最为成熟的技术之一,计算机视觉应用场景广泛。 计算机视觉是利用计算机模拟 人眼的识别、跟踪和测量功能。其应用场景广泛,涵盖了安防(人脸识别)、医疗(影像诊断)、移动互联网(视频监管)等。计算机视觉是中国人工智能市场最大的组成部分。据艾瑞咨询数据显示,2017 年,计算机视觉行业市场规模分别为 80 亿元,占国内 AI 市 场的 37%。由于政府市场干预、算法模型成熟度、数据可获得性等因素的影响,计算机视觉技术落地情况产生分化。我国计算机视觉技术输出主要在安防、金融和移动互联网领域。而美国计算机视觉下游主要集中在消费、机器人和智能驾驶领域。
计算机视觉技术竞争格局稳定,国内头部企业脱颖而出。 随着终端市场工业检测与测量逐 渐趋于饱和,新的应用场景尚在 探索 ,当前全球技术层市场进入平稳的增长期,市场竞争格局逐步稳定,头部企业技术差距逐渐缩小。中国在该领域技术积累丰富,技术应用和产 品的结合走在国际前列。2018 年,在全球最权威的人脸识别算法测试(FRVT)中,国内 企业和研究院包揽前五名,中国技术世界领先。国内计算机视觉行业集中度高,头部企业 脱颖而出。据 IDC 统计,2017 年,商汤 科技 、依图 科技 、旷视 科技 、云从 科技 四家企业 占国内市场份额的 69.4%,其中商汤市场份额 20.6%排名第一。
应用层面:群雄逐鹿,格局未定
应用场景市场空间广阔,全球市场格局未定。 受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模最大的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到360.5 亿元,约是技术层的1.67 倍,基础层的2.53 倍。 在全球范围内,人工智能仍处在产业化和市场化的 探索 阶段,落地场景的丰富度、用户需 求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有绝对主导权的垄断企 业,在很多细分领域的市场竞争格局尚未定型。
中国侧重应用层产业布局,市场发展潜力大。 欧洲、美国等发达国家和地区的人工智能产 业商业落地期较早,以谷歌、亚马逊等企业为首的 科技 巨头注重打造于从芯片、操作系统 到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国 人工智能市场最为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比最大。据艾瑞咨询统计,2019 年,国内77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于 世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大 华股份分别占据全球智能安防企业的第一名和第四名。
整体来看 ,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基 础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧 易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、 见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、 基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终 端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。
透析人工智能发展潜力
基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对 中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重 后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。
从智能产业基础的角度
产业化程度:增长强劲,产业规模仅次美国
中国人工智能尚在产业化初期,但市场发展潜力较大。 产业化程度是判断人工智能发展活 力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能 市场规模分别是 213、71.25 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度, 据清华大学 科技 政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉 领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展 望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的 增长态势,发展潜力较大。
技术创新能力:专利多而不优,海外布局仍有欠缺
专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申 请量占全球总申请量的 73.95%。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出 量首超美国,并长期雄踞申请量首位。
从专利申请领域来看, 深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重 点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI 科技 热潮兴起后 申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前 沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁 荣的结构性不均衡问题。
中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。 尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护 专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少, 仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布 局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实 用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实 用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示, 受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效, 而美国 85.6%的专利仍能得到有效保留。
人才储备:供需失衡,顶尖人才缺口大
人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布 不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 61.8%。欧洲 28 国拥有 43064 名人工智能人才,位居全球第一,占全球总量的 21.1%。美国和中国分别以 28536、18232 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 2.26 倍,基础层人才数是中国的 13.8 倍。
我国人工智能人才供需严重失衡,杰出人才缺口大。 据 BOSS 直聘测算,2017 年国内人 工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着 至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄 厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰 出人才(977 人)比例仍明显偏低,不足欧美的 1/5。
人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。 根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定 国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看, 国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的第一大来源大国,占所有回流中国人才比重的 43.9%。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。
从学术生态的角度
技术创新能力:科研产出表现强劲,产学融合尚待加强
科研能力是人工智能产业发展的驱动力。从论文产出数量来看,1998-2018 年,欧盟、中国、美国位列前三,合计发文量全球占比 69.64%。近些年,中国积极开展前瞻性 科技 布 局, AI发展势头强劲,从1998年占全球人工智能论文比例的8.9%增长至2018年的28.2%, CAGR17.94%。2018 年,中国以 24929 篇 AI 论文居世界首位。中国研究活动的活跃从 侧面体现在人工智能发展潜力较大。
我国论文影响力仍待提高,但与欧美差距逐年缩小。 FWCI(Field-Weighted Citation Impact, 加权引用影响力)指标是目前国际公认的定量评价科研论文质量的最优方法,我们利用 FWCI 表征标准化1后的论文影响力。当 FWCI≥1 时,代表被考论文质量达到或超过了世 界平均水平。近 20 年,美国的 AI 论文加权引用影响力“独领风骚”,2018 年,FWCI 高 于全球平均水平的 36.78%;欧洲保持相对平稳,与全球平均水平相当;中国 AI 领域论文 影响力增幅明显,2018 年,中国 FWCI 为 0.80,较 2010 年增长 44.23%,但论文影响力仍低于世界平均水平的 20%。从高被引前 1%论文数量来看,美国和中国高质量论文产出 为于全球第一、第二位,超出第三位英国论文产出量近 4 倍。综合来看,中国顶尖高质量 论文产出与美国不分伯仲,但整体来看,AI 论文影响力与美国、欧美仍有差距。
从发文主体来看,科研机构和高校是目前中国人工智能知识生产的绝对力量,反映出科研成 果转化的短板。 而美国、欧盟和日本则呈现企业、政府机构和高校联合参与的态势。据Scopus 数据显示,2018 年,美国企业署名 AI 论文比例是中国的 7.36 倍,欧盟的 1.92 倍。2012 年 至 2018 年,美国企业署名 AI 论文比例增长 43pct,同期中国企业署名 AI 论文仅增长 18pct。 此外,人工智能与市场应用关联密切,校企合作论文普遍存在。而我国校-企合作论文比例仅为 2.45%,与以色列(10.06%)、美国(9.53%)、日本(6.47%)差别较大。从产学结合的角度, 中国人工智能研究以学术界为驱动,企业在科研中参与程度较低,或难以实现以市场为导向。
中国人工智能高校数量实位于第二梯队,实力比肩美国。高校是人工智能人才供给和论文 产出的核心载体。 据腾讯研究院统计,全球共 367 所高校设置人工智能相关学科,其中, 美国(168 所)独占鳌头,占据全球的 45.7%。中国拥有 20 所高校与英国并列第三,数 量上稍显逊色。此外,中国高校实力普遍上升,表现强劲。据麻省理工学院 2019 年发布的AI 高校实力 Top20 榜单中,中国清华大学、北京大学包揽前两名,较 2018 年分别上 升 1 个和 3 个名次。
从创新环境的角度
研发投入:中美研发投入差距收窄
中国研发高投入高强度,在全球研发表现中占据重要地位。 从研发投入的角度,美国、中国、日本和德国始终是全球研发投入的主力军。据 IDC 统计显示,2018 年四国的研发投 入总和占全球总量的比例已达 60.77%。其中,美国凭借其强大的研发实力连续多年位居 全球研发投入的榜首。近年来,中国研发投入呈现一路猛增的强进势头,据 Statista 统计, 国内 2019 年研发投入额为 5192 亿美元,仅次于美国。且趋势上与美国差距不断缩小, 2000 年至 2019 年,CAGR 高达 14.43%,同期美国 CAGR 仅 2.99%。由于经济疲软等 诸多原因,欧盟与日本则呈现较为缓慢的上升趋势。据研发投入与强度增长的趋势推测, 中国或在 1-2 年内取代美国的全球研发领先地位。从研发强度的角度,中国研发强度总体 上呈逐步攀升的趋势,且涨幅较大。但对创新活动投入强度的重视程度仍与美国和日本存 在差距。2018 年中国研发强度 1.97%,低于日本和美国 1.53、0.87 个百分点。
资本投入:资金多而项目缺,资本投向侧重终端市场
中美是全球人工智能“融资高地”。 人工智能开发成本高,资本投入成为推动技术开发的主力。在全球范围内,美国是人工智能新增企投融资领先者,据 CAPIQ 数据显示,2010 年至 2019 年 10 月,美国 AI 企业累计融资 773 亿美元,领先中国 320 亿美元,占全球总 融资额的 50.7%。尤其是特朗普政府以来,人工智能投资力度逐步加码。中国作为全球第 二大融资体,融资总额占全球 35.5%。考虑到已有格局和近期变化,其他国家和地区难以 从规模上撼动中美两国。从人工智能新增企业数量来看,美国仍处于全球领先地位。2010 至 2018 年,美国累计新增企业数量 7022 家,较约是中国的 8 倍(870 家)。中国每年新 增人工智能企业在 2016 年达到 179 家高点后逐渐下降,近两年分别是 179 家( 2017 年), 151 家(2018 年),表明中国资本市场对 AI 投资也日趋成熟和理性。整体来看,中国人 工智能新增企业增势缓慢,但融资总额涨幅迅猛。这一“资金多而项目缺”的态势或是行 业泡沫即将出现的预警。
相比较美国,中国资本投向侧重易落地的终端市场。 从融资层面来看,中国各领域发展较 为均衡,应用层是突出领域,如自动驾驶、计算机学习与图像、语音识别和无人机技术领 域的新增融资额均超过美国。而美国市场注重底层技术的发展。据腾讯研究院数据显示, 芯片和处理器是美国融资最多的领域,占总融资额的 31%。当前中国对人工智能芯片市场 高度重视,但受限于技术壁垒和投资门槛高,国内芯片融资处于弱势。
基于信息熵的 TOPSIS 法:综合指标评估
数据结果显示,美国综合指标及三大项目指标评分绝对领先,中国第二,欧洲 28 国暂且落后。 具体来看,美国在人工智能人才储备、创新产出、融资规模方面优势明显。中国作为后起之秀,尽管有所赶超,但总体水平与美国相比仍有差距,尤其是杰出人才资源、高 质量专利申请上存在明显的缺陷和短板。但在论文数量和影响力、研发投入等指标上,中国正快速发展,与美国差距收窄。从各指标具体分析来看,我国人工智能研究主要分布在 高校和科研机构,企业参与度较低,产出成果较多呈现条块化、碎片化现象,缺乏与市场 的系统性融合,这将不利于中国人工智能技术的发展和产业优势的发挥。此外,我国科研 产出、企业数量和融资领域集中于产业链中下游,上游核心技术仍受制于国外企业。未来, 若国内底层技术领域仍未能实现突破,势必导致人工智能产业发展面临瓶颈。
展望
转自丨 信息化协同创新专委会
去年以来,人工智能便成了科技圈的宠儿,其他诸如AR、VR的,似乎都消失不见。而在今年的两会上,人工智能写进了政府工作报告。缔造了“虚拟劳动力”某种意义上,人工智能为这个时代的经济发展,提供了一种新的能量,缔造一种新的“虚拟劳动力”。来自埃森哲与经济学前沿公司最近的一份报告大胆提出,到2035年,基于人工智能的技术的普遍采用,可能会将很多发达国家的经济增速提高一倍。报告估计认为,人工智能有可能将美国、英国和日本的总增加值(与GDP近似)年度增速分别提高到4.6%、3.9%和2.7%。在这一轮人工智能浪潮中,对经济最大的价值在于更大规模地实现自动化、机器化转变。虽然这种自动化经济,或者叫机器人经济,可能将无可避免地引发一系列的工作岗位消失。但与此同时,我们也要看到的是,这样的自动化经济,某种意义上也可以进一步扩大中国的经济优势。或制造出制造业“蓝海”很多人想象不到,虽然人工智能的应用前景十分广泛,包括医疗、教育、公共安全、交通等,都具有巨大的潜力。但从具体实际应用来说,制造业却可能是最快进行自动化、智能化的蓝海领域。原因其实很简单,中国的传统制造业,大而不强,与日本、德国相比较,至少有20年的差距。但这恰恰也为制造业进行转换、升级提供另一种便利,亦即其很容易被人工智能技术击败,改造起来反而更加容易。一是这些企业拥有行业海量的数据,充沛的资金;二是在生产力水平急需提升、人口红利逐渐消失的情况下,这些传统企业也有迫切的意愿来改造升级自己的工厂、业务,提高收益,降低企业成本等需求。因此,制造业既是人工智能可以大有作为的领域,也是中国发展人工智能的优势领域。是中国引领全球巨大机遇除此之外,中国在人工智能领域的人才储备、研究成果等方面,也具备了较强的基础。比如在人才方面,中国科学家已经占据了全球人工智能科研实力的半壁江山。这一点,有个例子可以说明中国的影响力。2017年的美国人工智能促进协会(AAAI)年会,原定于一月底在新奥尔良举行。选址上没问题,但时间恰好撞上了中国的春节。这在过去没有什么,但现在却不同了。鉴于中国人工智能科学家们的重要性,最后会议不得不延后一周,在旧金山举行。而且,在这个会议上提交的论文,中美两国最终被接受的论文几乎一样多。这在过去很难想象。有数据表明,在2015年全球顶尖期刊上发表的人工智能论文里,华人/中国人作者的比例达到了43%。同时,根据乌镇智库去年发布的报告显示,中国人工智能的专利申请数、授权数在2012年就已经超过美国。所以,中国既具备发展人工智能的基础,也有足够的市场进行改造升级的需求;中国既有后发优势,也有先发优势。诚如李开复所言,人工智能是中国引领全球的巨大机遇。
人工智能是未来的发展的大趋势,未来的竞争压力是会有的,它包括:机器翻译、智能控制、专家系统、机器人学、语言和图像理解、遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等,这恰恰体现了人工智能专业的热门,所以学习人工智能方面的专业是很不错的。一、就业方向:1、搜索方向,例如百度识图、作业帮搜题等。视频搜索也是搜索领域进一步研究的方向;2、计算机视觉和模式识别方向,其应用领域包括智能办公、智能交通、智慧城市等等;3、医学图像处理,医疗设备和医疗器械很多都会涉及到图像处理和成像技术。4、无人驾驶领域,是人工智能重点应用领域之一;5、智慧生活和智慧城市等,包括交通、商业、生活的诸多领域将会出现人工智能的影子。二、人工智能发展前景1、智能化是未来发展的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。2、产业互联网的发展必然会带动人工智能的发展。
人工智能是未来的大趋势。机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。竞争压力是会有的,这恰恰体现了人工智能专业的热门,所以学习人工智能方面的专业是很不错的。虽然这些不是人人都能干的,但是对于我国乃至世界来讲人才也是非常多的,所以竞争压力肯定会有的。必须的不断学习,探索新知。
拓展补充:
对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。
虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。
第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。
即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。
本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。
科技产出与人才投入
1. 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 4.26% 增长至2017 年的 27.68%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 42.64% 。
2. 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。中国的专利技术集中在数据处理系统和数字信息传输等领域,其中图像处理分析的相关专利占总发明件数的 16%。电力工程也已成为中国人工智能专利布局的重要领域。
3. 人才投入 : 中国人工智能人才总量居世界第二,但是杰出人才占比偏低。截至 2017 年,中国的人工智能人才拥有量达到 18232 人,占世界总量的 8.9%,仅次于美国(13.9% ) 。高校和科研机构是人工智能人才的主要载体,清华大学和中国科学院系统成为全球人工智能人才投入量最大的机构。然而,按高 H 因子(又称 H 指数,用于评价科学家的科研绩效)衡量的中国杰出人才只有 977 人,不及美国的五分之一,排名世界第六。企业人才投入量相对较少,高强度人才投入的企业集中在美国,中国仅有华为一家企业进入全球前 20。中国人工智能人才集中在东部和中部,但个别西部城市如西安和成都也表现十分突出。国际人工智能人才集中在机器学习、数据挖掘和模式识别等领域,而中国的人工智能人才研究领域则比较分散。
产业发展和市场应用
1. 企业规模 : 中国人工智能企业数量为全球第二,北京是全球人工智能企业最集中的城市。截至2018 年 6 月,全球共监测到人工智能企业总数达 4925 家,其中美国人工智能企业数 2028 家,位列全球第一。中国( 不含港澳台地区 )人工智能企业总数 1011 家,位列全球第二,其后分别是英国、加拿大和印度(图 1):
从城市尺度看(图 2),全球人工智能企业数量排名前 20 的城市中,美国占 9 个,中国占 4 个,加拿大占 3 个,英国、德国、法国和以色列各占 1 个。其中,北京成为全球人工智能企业数量最多的城市,其次是旧金山和伦敦。上海、深圳和杭州的人工智能企业数量也进入全球前 20。
从成立时间看(图 3),中国人工智能创业企业的涌现集中在2012-2016 年,在 2015 年达到顶峰,新增初创企业数量达到 228 家。从2016 年开始,创业企业的增速有所放缓。
中国人工智能企业的平均年龄为 5.5 年。其中,北京、上海和天津等地初创企业云集,企业平均年龄相较于全国平均水平更年轻,平均年龄在 5.5 年以下。山东和辽宁等地老牌工业机器人和自动化企业转型较多,企业年龄相对较大。
人工智能的应用技术主要包括语音类技术 ( 包括语音识别、语音合成等 )、视觉类技术 ( 包括生物识别、图像识别、视频识别等 ) 和自然语言处理类技术 ( 包括机器翻译、文本挖掘、情感分析等 )。将基础硬件考虑在内,国内外人工智能企业应用技术分布如图 4 所示。相比国外,中国人工智能企业的应用技术更集中于视觉和语音,而基础硬件占比偏小。
人工智能在行业应用上包括智能机器人、智能驾驶、无人机、AR/VR、大数据及数据服务、各类垂直领域应用(本文中定义为“AI+")等。国内外人工智能企业的行业应用分布如图 5 所示。可以看出,相比于国外,国内企业更看重智能机器人、无人机和智能驾驶等终端产品的市场,而国外企业更注重 AI在各类垂直行业的应用。
2. 风险投资 : 中国已成为全球人工智能投融资规模最大的国家。自 2013 年以来,全球和中国人工智能行业投融资规模都呈上涨趋势(图 6)。2017 年全球人工智能投融资总规模达 395 亿美元,融资事件1208 笔,其中中国的投融资总额达到 277.1 亿美元,融资事件 369 笔。中国 AI 企业融资总额占全球融资总额的 70%,融资笔数达 31%。
根据 2013 年到 2018 年第一季度全球的投融资数据,中国已在人工智能融资规模上超越美国成为全球最“吸金”国家,但是在投融资笔数上,美国仍然在全球处于领先地位。
发展战略和政策环境
1. 国际比较 : 各国人工智能战略与政策各有着重点。 2013年以来,美、德、英、法、日、中等国都纷纷出台了人工智能战略和政策。各国人工智能战略各有侧重,美国重视人工智能对经济发展、科技领先和国家安全的影响 ; 欧盟国家关注人工智能带来的安全、隐私、尊严等方面的伦理风险 ; 日本希望人工智能推进其超智能社会的建设 ; 而中国人工智能政策聚焦于实现人工智能领域的产业化,助力中国的制造强国战略。各国政策在研发重点和重点应用领域也存在着较大差异。
2. 国家政策 : 从物联网,到大数据,再到人工智能。从 2009 至今,中国人工智能政策的演变可以分为五个阶段,其核心主题词也不断变化,体现了各阶段发展重点的不同。
国家层面政策早期关注物联网、信息安全、数据库等基础科研,中期关注大数据和基础设施,而 2017年后人工智能成为最核心的主题,知识产权保护也成为重要主题。综合来看,中国人工智能政策主要关注以下六个方面 : 中国制造、创新驱动、物联网、互联网 +、大数据、科技研发。
3. 地方政策 : 响应国家战略,地方政策主题因地而异。地方政府积极响应国家人工智能发展战略,其中,《中国制造 2025》处于人工智能政策应用网络的核心,在地方人工智能政策制定过程中发挥着纲领性的作用。通过政策发布数量来看,目前中国人工智能发展活跃的区域主要集中在京津冀、长三角和粤港澳地区。各省的政策主题也大有不同,比如江苏省关注基础设施、物联网和云计算等基础研发领域,广东省关注制造和机器人等人工智能应用,而福建省关注物联网、大数据、创新平台和知识产权,各地政策与地方发展条件密切相关。
对社会的综合影响
随着人工智能的充分发展,劳动生产率和生产力水平的提升,人们的生活体验将更加丰富多彩,将更多地将人们从体力劳动乃至常规性的脑力劳动中解放出来,更多地投入到创造性活动当中,使人类自身与社会得到更充分的发展。当前,人工智能技术的突飞猛进正不断改变着零售、农业、物流、教育、医疗、金融、商务等领域的发展模式,重构生产、分配、交换、消费等各环节。根据 IDC 数据显示,在未来5 年内,人工智能技术应用到多个行业,将极大提高这些行业的运转效率,具体提升的效率为教育行业82%、零售业 71%、制造业 64%、金融业 58%。
1. 人工智能对教育和就业的影响。发展人工智能的最终目的不是用来替代人类,而是帮助人类变得更加智慧,而教育将在这个过程中起到关键性作用。人工智能技术提升经济活动中的产能,使得人们逐渐从机械的重复性的或危险的劳动中抽离出来,从而增加了思考、欣赏等闲暇时间,更专注于创新能力、思考能力、审美与想象力的潜能开发与提升。
目前,人工智能在教育领域的应用主要集中在以下几方面 : 自适应 ( 个性化 ) 学习、虚拟导师、教育机器人、基于编程和机器人的科技教育、基于虚拟现实 / 增强现实的场景式教育。用适合自己的方式去学习,不仅效率会提高,而且会保持更长时间的学习兴趣。
在教育领域深度发展人工智能的意义并不是取代教师,而是协助教师使教学变得更加高效和有趣。另外,在人工智能技术所影响的教育体系中,对人才的信息输入与输出能力、自主学习能力等的要求骤然提高,创新能力的培养也成为重要方向。
随着技术的发展逐步替代人类从事大部分繁琐重复的工作或体力劳动,在给人们带来福利的同时也带来前所未有的挑战。今天已经有越来越多的人担忧是否自己的工作会被人工智能技术所取代,或者只能在人工智能所留下的“夹缝”中生存。有专家对中国的就业岗位被人工智能取代的概率进行了估算,结果显示,未来 20 年中,约占总就业人口 76% 的劳动力会受到来自人工智能技术的冲击,若只考虑非农业人口,这一比例为 65 %。但同时,人工智能技术对就业的创造效应也已有所显现。调查显示,中国科技公司目前人工智能团队规模平均扩张 20%,而且这种需求还会增长。另外国家工业和信息化部教育考试中心专家称,在未来几年中国对 AI 领域的人才需求可能增至 500 万。
可以判断,在人工智能重塑产业格局和消费需求的情境下,一部分工作岗位终将被历史淘汰,但是也会伴随着人工智能技术孵化出一系列新的岗位。另一方面,新型的人机关系正在构建,非程序化的认知类工作会变得愈发难以替代,其对人的创新、思考与想象力提出更高的要求。
机械化和智能化塑造着新的就业格局,但也要警惕新格局下有可能发生的衍生问题,比如由于失业率上升而引起的贫富差距和社会稳定问题。人工智能所带来的“冲击”是持续性的,对教育和就业的多重影响也是持续性的,因此也需要不断积极探索与技术革命相匹配、相适应的教育与就业机制。
2. 人工智能对隐私与安全的影响。今天,在许多生活消费场景中,人们对个性化体验的需求不断增加,个性化、场景化服务也逐渐成为人工智能驱动创新的主要方向。服务供应方在信息获取社交化、时间碎片化的情境下,着力建立更灵活便捷的消费场景,给人们带来更加友好的用户体验。与此同时,随着语音识别、人脸识别、机器学习算法的发展和日趋成熟,企业可以通过分析客户画像真正理解客户,精准、差异化的服务使得客户的被重视被满足感进一步增强。但是在蕴藏着巨大商业价值的同时,也对现有法律秩序与公共安全构成了一定的挑战。
网络空间的虚拟性,使得个人数据更易于被收集与分享,极大地便利了身份信息编号、健康状态、信用记录、位置活动踪迹等信息的存储、分析和交易过程,与此同时,人们却很难追踪个人数据隐私的泄露途径与程度。例如,以人工智能技术为支撑的智慧医疗,病人的电子病例、私人数据归属权如何界定,医院获得及使用私人数据的权限界限如何规范。再比如人工智能技术生成作品的著作权问题等。开放的产业生态使得监管机构难以确定监管对象,也令法律的边界变得越来越模糊。
人工智能的普遍使用使得“人机关系”发生了趋势性的改变,人机频繁互动,可以说已形成互为嵌入式的新型关系。时间与空间的界限被打破、虚拟与真实也被随意切换,这种趋势下的不可预测性与不可逆性很有可能会触发一系列潜在风险。与人们容易忽略的“信息泄露”不同,人工智能技术也可能被少数别有用心的人有目的地用于欺诈等犯罪行为。如基于不当手段获取的个人信息形成“数据画像”,并通过社交软件等冒充熟人进行。再比如,使用人工智能技术进行学习与模拟,生成包括图像、视频、音频、生物特征在内的信息,突破安防屏障。去年曾有报道,新款苹果手机“刷脸”开机功能被破解即是这类例子。而从潜在风险来看,无人机、无人车、智能机器人等都存在遭到非法侵入与控制,造成财产损失或被用于犯罪目的的可能。
3.人工智能对社会公平的影响。随着人工智能研发与应用的突飞猛进,一系列价值难题也正逐渐显现在人们面前。目前还有大量不会上网、由于客观条件无法使用互联网及不愿触碰互联网的人群,已经被定义为人工智能时代的“边缘人”,而人工智能对人们的文化水平、信息流的掌握程度又有了更高的要求。人工智能技术越发达,信息鸿沟就越深,进而演变为服务鸿沟、福利鸿沟,而在人工智能时代,“边缘人”将越来越难享受到便捷的智能信息服务,也更不易获得紧缺的服务资源。
本文转自 中国经济报告 2018年第10期,作者:清华大学中国科技政策研究中心
人工智能诞生于20世纪50年代中期,1956年被确立为一门学科,至今经历过经费枯竭的两个寒冬(1974-1980年、1987-1993年),也经历过两个大发展的春天(1956-1974年、1993-2005年)。从2006年开始,人工智能进入了加速发展的新阶段,并行计算能力、大数据和先进算法,使当前人工智能加速发展;同时,近年来人工智能的研究越来越受到产业界的重视,产业界对AI的投资和收购如火如荼。
近年来人工智能迅速融入到经济、社会、生活等各行各业,在全世界燃起了燎原之势。2019年人工智能(AI)申请榜上,50强里中国企业从过去的8家增长到19家。中国近年来在AI领域的发展成果也成为全世界关注的焦点。未来的人工智能将更多的进入到生活的方方面面。传媒领域2019年中国两会圆满落幕之后,一位声音动听的AI女主播参与到两会的播报中,迅速走红网络。这位AI女主播不仅具有高的颜值,而且精通汉语、英语、日语、韩语等多种语言。科大讯飞股份有限公司作为中国首批新一代人工智能开放创新平台之一,此次通过语音合成技术所研发的“AI女主播”具有形象逼真、口音自然、口型精准等优点。未来人工智能在传媒领域将发挥更大的作用。交通领域搜狗作为中国最早布局人工智能的公司之一,一直以来都十分关注人工智能技术。搜狗创始人李彦宏在出席2018年世界人工智能大会上海开幕式时,以“人脸识别”和“自动驾驶”技术为例,讲述了人工智能将让社会更加美好。如今,在搜狗园区内“阿波龙”无人车、无人扫地车、无人售货车正处于工作状态中。教育领域2019年3月13日,人工智能基础基础教育学术论坛计《K12人工智能教育》系列丛书发布会在成都市武侯区举行。该系列丛书是四川省首套中小学人工智能教育用书,分为小学、初中、高中三个版本。其中初中版以培养编程思维、机器人智能化教育为主,高中版以进一步培养和提升人工智能设计思维为主。近年来,我国在人工智能教育领域一直保持着积极探索的步伐。医疗领域随着技术的成熟,人工智能越来越被应用到医疗领域。能够“读图”识别影像,还能“认字”读懂病历,甚至出具诊断报告,给出治疗建议。这些曾经在想象中的画面,逐渐变成现实。对解决医疗资源供需失衡及地域分配不均等问题意义重大。相关机构预测,中国医疗人工智能的市场需求已达数百亿元。
你好!在科技日新月异的今天,人工智能正在快速融入人们的生产生活,极大提高工作效率,降低生产、管理等成本,为经济社会发展不断注入新动能。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这种趋势下,智能化的发展是必然的。互联网行业开始应用人工智能相关技术,然后陆续普及到其他行业。从大的发展前景来看,人工智能相关领域的发展前景非常广阔。在未来,当人工智能的发展进入全新的领域时,很多人会暂时休息。对全世界的经济和社会来说,影响很大。
我国人工智能产业技术基础已经具备,各应用场景的技术研发及落地也进展顺利,人工智能的产业化应用趋势日趋明朗。2017年我国人工智能市场规模达到216.9亿元,同比2016年增长52.8%。产业政策规划指出,到2020年中国人工智能核心产业规模超过1500亿元、人工智能是典型的高增速、大增量的蓝海市场,未来行业发展前景广阔。人工智能技术门槛较高,目前大多数的领域的发展还依赖于国家技术战略的推动以及资本的推动。人工智能的市场分割性主要存在于技术应用场景方面,巨头大而全的布局难以深度介入,这也正是初创企业以及正在转型的非巨头上市公司机会所在。
自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。以下是我整理分享的人工智能发展的结课论文的相关资料,欢迎阅读!
浅谈人工智能技术的发展
摘要:自从计算机诞生以来,计算机的发展十分迅猛快速,而且计算机的运算速度已经超过了人脑的运算速度。目前对于计算机科学的研究已经出现了很多的分支,其中的人工智能在整个计算机科学领域中也是一个十分热门的课题。本文从人工智能的概念开始,对人工智能的发展进行讲述,并从哲学的角度对人工智能能否超过人的智能这个问题进行了分析。
关键词:人工智能 发展 智能
1、人工智能的概念
人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的 思维方式 和 方法 产生了深刻的变革。人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。
2、人工智能的发展
对于人工智能的研究一共可以分为五个阶段。
第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、 跳棋 程序、LISP语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。
第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。
第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。
第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学诞生的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。
第五个阶段是20世纪90年代后。 网络技术 的出现和发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。
3、人工智能可否超过人的智能
那么人工智能可否超过人的智能呢?关于这个问题可以从下面几个方面来分析:
首先,从哲学量变会引起质变的角度来说,人工智能的不断发展必定会产生质的飞跃。大家都知道,人工智能从最初的简单模拟功能,到现在能进行推理分析 (比如计算机战胜了 国际象棋 世界冠军),这本身就是巨大的量变。在一部科幻电影中,父亲把儿子生前的记忆输人芯片,装在机器人中,这个机器人就与他的儿子死去时具有相同的思维和记忆,虽然他不会长大。从技术的角度来说,科幻电影中的东西在不久的将来也可以成为现实。到那个时候,真的就很难辨别是人还是机器了。
第二,有的人会说,人工智能不会超过人的智能,因为人工智能是人制造出来的,所以不可能超过人的智能。对于这个观点,我们这样想一想,起重机也是人造出来的,它的力量不是超过人类很多吗?汽车也是人制造出来的,它的速度不也远超过人类的速度吗?从科学技术的角度来说,智能和力气、速度一样,也是人的某个方面的特性,为什么人工智能就不能超过人类的智能呢?
第三,还有的人认为,人工智能是人制造的,必有其致命的弱点,所以人的智能胜于人工智能。我认为这一点也不成立,因为人与机器人比较,也可以说有致命弱点,比如说人如果没有空气的话,就不能生存,就好比是机器人没有电一样。再比如,人体在超过一定的温度或压力的环境下,不能生存,在这一点上,机器人却可以远胜于人类。因此,在弱点比较方面,我认为人工智能的机器人并不比人差,在某些方面还远胜于人类。
第四,随着科学技术的发展,人工智能不单需要 逻辑思维 与模仿。科学家对人类大脑和精神系统研究得越多,他们越加肯定情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能不仅在于赋予它情感能力。
4、结束语
人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术、控制科学与技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和 教育 等带来更大的影响。
下一页分享更优秀的<<<人工智能发展的结课论文
智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。以下是我整理的人工智能的论文的相关 文章 ,欢迎阅读!
建筑智能化设计的相关探讨
【摘要】智能建筑中的智能化系统是新科技的代表,是顺应时代的产物。智能建筑成为一个整体出现时,智能化系统会有序的、科学的分布在建筑的应用中,发挥它应有的功能和作用。智能化系统在智能建筑中起着重要的作用,在管理过程中,要科学管理、综合考究、有效安排、合理利用。以求达到最佳效果,确保建筑项目安全施工。本文将综合阐述有关智能建筑中智能化系统的设计概念、以及在设计和施工的过程中应该注意的相关问题。
【关键词】智能建筑;智能化系统;设计
一、建筑智能化系统的设计原则
(一)先进性。智能建筑的智能化系统是随着信息电子科学技术的发展而不断发展的,因此,在系统设计时应当分析智能化系统的发展状况,吸收开放的先进设计理念,以完善智能建筑功能的发挥。
(二)可靠性。在智能化系统设计时应当采用模块化设计理念,将智能化系统的各个子系统相互隔离,以确保在部分子系统发生故障的过程中不会影响其他子系统或链路的正常运行,由此提高系统运行的可靠性。
(三)标准化。随着智能化系统的快速发展,相关的系统设计标准也相继制定。在系统设计中应当严格按照系统标准进行设计,以方便系统的施工与维护。
(四)实用性。智能化系统的设计应当能够充分实现接收有线电视、图像、监控设备、多媒体通信、安全防范、语音、数据等功能,确保其在完善用户的信息沟通与娱乐的同时能够提高用户环境的安全性。
(五)经济性。智能化系统内部包含着多个子系统,其子系统又包含多种构件和设备,因此在系统设计过程中应当在考虑质量保证的同时尽量节省投资成本。
(六)扩展性。在电子信息技术的迅速发展状况下,当前的智能化系统设计内容会出现一定程度的约束与局限。所以,在进行智能化系统设计时应当考虑设计内容的可扩展性,确保智能建筑能够在未来的技术发展下得到更新扩展。
二、建筑智能化系统的设计
(一)供电系统设计
智能化系统的子系统通常需要进行单独供电,因此需要重视供电系统的设计。一般计算机网络系统会采用UPS 进行集中供电,在不间断电源机房其供电出线也需要进行集中供电,而供电进线则满足一定的容量要求即可;对于未使用不间断电源供电的的工作站,也应当采用单独回路进行供电,以避免电路混用危害系统运行,如安全防范系统应当使用单独回路进行集中供电,以保证其与消防联动系统在应对紧急情况时能够正常工作。
(二)接地系统设计
智能建筑的接地将直接影响到设备与工作人员安全、系统工作的可靠性与稳定性、信息传输的质量等。在建筑接地系统设计时应当根据建筑的功用与智能化系统工作要求进行设计,保证能够为其在应用部位提供响应接地端。其需要安装的有静电接地系统、辅助等电位铜排、防雷接地系统、安全保护接地系统、工作接地系统、直流接地系统等部分。其包括两种接地方式:
1、联合接地方式,其在应用中需注意:由于计算机等设备的抗雷击性能不高,且其系统包含超大规模的集成电路容易造成抗高频干扰差,很可能会受到其他系统的干扰,所以应当对计算的直流电源采用单独接地的方式;在使用联合接地方式时其接地电阻有可能会大于1Ω,所以对有特殊要求的智能化子系统均要采用单独接地。
2、单独接地方式,在使用统一接地时主要利用自然接地体,若不再使用人工接地体其应当满足以下条件:接地电阻应当在1Ω以下,即小于规定值;建筑基础内部的钢筋应当互相连接形成电气通路及闭合环,且闭合环英应当与地面保持0.7m以上的距离;建筑基础表面未设置绝缘防水层。由于单独接地方式具有施工简单方便、接地可靠、节省成本等优点,因此在智能建筑接地系统设计中得到了较广泛的应用。
(三)智能化管理间与智能化竖井
通常计算机网络系统对于数据通信线路有必要的长度与性能要求,在智能建筑智能化系统设计中,一般使用铜质双绞线作为计算机系统的水平线路,而铜质双绞线会影响到网络传输的带宽,所以根据布线标准与规范,应当保证网络交换机与计算机之间使用的铜质双绞线长度在100m的范围以内;根据管路的弯度与竖直条件,智能化管理间到建筑物的边缘距离应当在60m的范围内;在网络管理间应当安置相应的网络机柜,其周围要留设合理的安装与维护空间,其平面面积应当在5~10m2之间。
(四)综合布线系统设计
在综合布线系统设计中,一般的语音电缆或水平子系统数据电缆应当采用支持带宽100M的D级别系统和5e类的UTP电缆,以满足大量用户的扩展要求;其水平线缆的总长度应当在100m范围以内,其中水平布线电缆的最佳长度为90m,电信间配线架上的跳线与接线软线长度应当不小于5m,对于情况不明确的公共空间其电缆应当按照以下公式进行计算:
C=(102-H)/1.2 W=C-5
其中H表示水平电缆的长度;C表示设备电缆、工作区电缆与电信间跳线的长度总和;W表示工作区电缆的最大长度,其值应当在22m以下;D表示设备电缆与电信间跳线的总长度。
三、目前智能建筑存在的问题
(一)国产化系统集成产品
现在占据国内智能建筑市场的产品仍然属于国外的几家公司,如美国的江森自控、IBM、朗讯科技和Honeywell等。国产系统集成产品没有主动权,这就很难使智能建筑完全真正地适应中国国情。
(二)技术障碍
在整个智能建筑领域仍然存在着一些技术上的缺陷,比如网络频宽的限制:数据传输量迅速增加和多媒体的使用,要求有宽阔的通讯空间;使用天线局域网络也要重新分配宝贵的音波频律。在新网络科技如ATM、Frame-relay等问世后,通讯空间的问题可获部分解决,但缺乏全面而完整的数据模型,各个建筑物自动化和应用系统之间仍然无法有效地交换数据。另外数据安全性和无缝话音与数据通讯之间还存在着矛盾,很多机构非常关注其内部资讯系统的安全性,以及保护其电脑和话音系统免被非法接达的问题,但如果把某建筑物隔离起来提供保护的话,就会导致无法使用更先进的通讯工具。
(三)人才缺乏
从事智能建筑的人才包括设计专门管理人才、安防产品技术支持工程师、布线、安防产品开发高级工程师、销售工程师(负责安防、综合布线产品的区域市场销售工作)、防盗报警、监控产品、大屏幕开发高级工程师、软件开发工程师(主要负责楼宇自控系统软件开发),而最为紧缺的是智能建筑系统设计管理人才。它需要懂得电子、通讯和建筑三方面专业知识的复合型人才。就智能建筑项目来说,工程的设计和施工是两个方面。而既懂工程设计,又懂施工方案的人,却是少而又少。设计与施工如何衔接和连贯好,关系到工程的进度与质量。
智能建筑是高科技的产物,智能建筑学科是多学科的交叉和融汇,人才培养应该是多层次、多方位的,只有强调理论与实践紧密结合,设计与技术紧密结合,施工与产品紧密结合,才能培养出新一代的智能建筑人才。
四、结束语
智能建筑设计中的智能化系统是一项科技水平高施工难度大的高科技建筑,无论是对智能化系统的规划还是对其进行管理,都要进行优化控制,以达到智能建筑的最优化设计。智能化系统施工设计质量好坏将直接关系着智能建筑整体质量和使用寿命。因此,相关研究和设计人员应当加强智能化系统的综合分析与管理, 总结 智能化系统施工中的 经验 与问题,以不断提高智能化系统施工设计水平和质量。
参考文献:
[1] 翟伟盛,浅谈智能化系统管理及维护,消费导刊,2009年10期
[2] 金红峰,浅谈智能化系统管理及维护的一点心得,艺术科技,2007年03期
[3] 邵胜华,智能化建筑智能化安装工程管理探究[J] 理论研究,2010(7)
下一页分享更优秀的>>>人工智能的论文
《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人工智能其他学科等等。另外,这本期刊就是一本开源期刊,与传统期刊相比,采用了同行评审的方法审稿,具体开源期刊的特点可以百度了解更多;而且发表了的文章传播范围更广,受众更多,文章的影响力也更大。
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!
浅谈逻辑学与人工智能
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。
1 人工智能学科的诞生
12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。
以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。
现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。
2 逻辑学的发展
2.1逻辑学的大体分类
逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。
2.2 泛逻辑的基本原理
当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。
泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。
3 逻辑学在人工智能学科的研究方面的应用
逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。
3.1 经典逻辑的应用
人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。
3.2 非经典逻辑的应用
(1)不确定性的推理研究
人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。
归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。
(2)不完全信息的推理研究
常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。
此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。
4 人工智能——当代逻辑发展的动力
现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
5 结语
人工智能的产生与发展和逻辑学的发展密不可分。
一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。
目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。以下是我精心整理的浅谈人工智能发展的大学期末论文的相关资料,希望对你有帮助!
人工智能发展现状与未来发展
一、人工智能概述
人工智能自诞生几十年来, 在崎岖的道路上取得了可喜的进展。目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。人工智能虽然取得了快速的发展,但像许多新兴学科一样,人工智能至今尚无统一的定义。人工智能的发展引起了学术界的关注,尽管学术界有各种不同的说法和定义,但就其本质而言,人工智能是研究、设计和应用智能系统,来模拟人类智能活动的新学科。人工智能的目的就是利用各种自动化机械或者智能机器,来模仿、延伸和扩展人类的智能思维,从而实现计算机网络管理的人性化。
二、人工智能的研究历史
(一)1956年-1970年
人工智能诞生于一次历史性的聚会。为使计算机变得更“聪明”,或者说是计算机具有智能,1965年夏季,在美国达特莫斯大学举行了一次为期两个月的夏季学术研讨会。10位来自美国神经学、心理学、数学、信息科学和计算机科学方面的杰出科学家,在一起共同学习和探讨了用机器模拟人类智能的有关问题,并提议正式采用了“人工智能AI”这一术语。从而,一个以研究如何用机器来模拟人类智能的新兴学科——人工智能诞生了。
(二)1971年-80年代末
在科学上,前进的道路从来就不是平坦的,成功和失败、顺利和挫折总会交织在一起。人工智能也是如此,自它诞生至发展一段时间后,就遇到了不少的问题。在这种困难的环境下,仍有一大批人工智能的学者潜心研究。他们在总结前一段研究工作经验、教训的同时,从费根鲍姆“以知识为中心”开展人工智能研究的观点中找到了新的出路。
(三)20世纪80年代至今
人工智能逐步向多技术、多方法的综合集成与多领域、多学科的综合发展。其他学科的学者陆续将本学科的理论与方法向人工智能渗透,从而导致人工智能出现研究多学科交叉的现象。各学科对人工智能的渗透反映了目前人工智能发展的一种趋势,其渗透的结果现在还不是很明显,还需要时间的考验。目前,人工智能技术正在向大型分布式多专家协同系统、大型分布式人工智能、广义知识表达、并行推理、综合知识库、多种专家系统开发工具、大型分布式人工智能开发环境和分布式环境下的多智能协同系统等方向发展。
三、人工智能应用领域
目前 , 人工智能在许多领域都得到了应用,其应用领域如下:
(一)在企业管理中的应用
刘玉然在《谈谈人工智能在企业管理中的应用》中提到要把人工智能应用于企业管理中,认为要做的工作就是弄清楚人的智能和人工智能的关系,从企业的发展目标出发,深入了解人工智能的内涵,搭建人工智能的应用平台,研究并开发企业智能化软件,这样一来,人工智能就能在企业决策中起到关键的作用。
(二)在医学领域中的应用
人工智能在国外发展很快,在医学方面取得了很大的成就。国外最早将人工智能成功应用于医疗诊断的是MYCIN专家系统。美国及其他发达国家的科学家已成功研制出了用于人类血管治疗的微型机器人,此外,在不久的将来,就会制造出能够在毛细血管里自由活动的机器人。20世纪80年代初,我国已成功将人工智能应用于医学,且在这方面有了新的突破,例如许多高等院校和研究机构共同开发了基于人工智能的医学计算机专家系统,并成功地应用于临床。
(三)在矿业中的应用
第一个将人工智能专家系统应用于矿业的是美国的专家系统PROSPECTOR,该系统用于勘探评价、区域资源估值和钻井井位选择等等,为矿业的开采带来了方便。1980年以来,美国的矿业公司在人工智能上加大了投资,其中矿山局匹兹堡研究中心与其它单位合作开发了用于煤矿开发的专家系统。
(四)在技术研究中的应用
人工智能在技术研究中的应用,首先是应用于超声无损检测与无损评价领域。在超声无损检测与无损评价领域,目前主要广泛采用专家系统对超声损伤中缺陷的性质,大小和形状进行判断和归类。此应用节省了许多人力,另外这些技术的应用,使得无损检测的定位、定性和定量的可靠性有了大幅度提高,为无损评价奠定了良好的判定基础。
(五)在电子技术方面的应用
人工智能在电子技术领域的应用由来已久。随着网络的迅速发展,网络问题日益突出,网络技术的安全成了我们关心的重点。因此在传统技术的基础上进行网络安全技术的改进,,大力发展挖掘技术、免疫技术,及开发智能机器,人工智能技术在这方面为我们提供了可能性。
四、人工智能的发展现状
国外发展现状。目前,人工智能技术在发达国家发展很快。尤其是在美国,发展更为迅速。在人工智能技术领域十分活跃的IBM公司,在智能电脑方面有了新的突破,成功地生产了具有人脑千分之一智力的电脑,而且正在开发功能更为强大的超级电脑。据其内部消息透露,预计该超级电脑研制成后,其智力水平将大致与人脑相当。除了IBM公司外,其他公司也加紧了这方面的研究,估计在未来几年内其成果更为惊人。
国内发展现状。二十一世纪是信息化时代,作为现代信息技术的精髓,人工智能技术必然成为新世纪科学技术的前沿和焦点。在我国,很长一段时间,专家们都把研制具有人行为特征的类人性机器人作为奋斗目标。机器人的发展水平不仅与计算机科技水平相关,而且与一个国家工业的各方面的发展水平密切相关。中国科技大学在国家基金的支持下,经过十年攻关和钻研,于2000年,成功地研制出我国第一台类人性机器人。
五、未来发展
人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生; 另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。
人工智能一直处于计算机技术的前沿,其研究的领域和方向在很大程度上将决定了计算机技术的发展方向。今天,已经有很多人工智能产品融入了我们的日常生活。将来,人工智能技术的发展将会给我们的学习、生活、工作带来更大的影响。
下一页分享更优秀的<<<浅谈人工智能发展的大学期末论文
人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读!
人工智能技术推动我国ICT产业发展模式探讨
【摘 要】人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。通过比较国内外ICT产业中人工智能技术研发现状, 总结 我国相关技术和产业的优劣势,有针对性的从国家政策层面和企业层面探讨人工智能技术在促进我国ICT产业发展的对策和建议。
【关键词】人工智能;政策引导;发展模式
0 引言
工信部在2010年工作会议上重点部署了战略性新兴产业的发展,信息和通信技术(Information and Communication Technology, ICT)产业排在首位。当前以智慧城市、智能家居、车联网等构成的物联网、移动互联网等应用为代表的新一代ICT产业不断创新,正在全球范围内掀起新一轮科技革命和产业变革,相关产业布局如图1所示。2013年前后欧美等国家和地区相继启动的人脑研究计划,促进人工智能、神经形态计算和机器人系统的发展。而人工智能就是机器模拟人脑的具体表现形式,以云计算、深度学习、智能搜索等一系列新技术在大规模联网上的应用,已经成为ICT产业进一步发展的重要方向[1-2]。面对人工智能在ICT产业上的迅猛发展,急需对我国在此方面的发展模式进行梳理。
1 国内外人工智能技术在ICT产业的发展现状
从发展脉络看,人工智能研究始终位于技术创新的高地,近年来成果斐然,在智能搜索、人工交互、可穿戴设备等领域得到了前所未有的重视,成为产业界力夺的前沿领域。目前国际ICT产业在人工智能技术上的发展重心涉及以下几个方面。
1.1 搜索引擎方向的发展
信息搜索是互联网流量的关键入口,也是实现信息资源与用户需求匹配的关键手段,人工智能的引入打开了搜索引擎发展的新空间。融合了深度学习技术的搜索引擎正大幅度提升图像搜索的准确率,同时吸纳了自然语言处理和云操作处理技术的搜索引擎,可将语音指令转化为实时搜索结果,另外人工智能搜索引擎可能添加意识情感元素,发展出真正意义上的神经心理学搜索引擎[3]。
从搜索引擎的发展上来看,国内企业起步稍晚,搜索领域较窄,但也有新浪、搜狐、百度、阿里巴巴、腾讯等公司等纷纷运用独特的技术与 商业模式 进行中国式的创新与超越,以及科大讯飞等企事业研究单位在部分方向已经具有了一定的基础,发展态势较好。
1.2 人脑科学助推人工智能技术发展
人工智能技术都是通过机器来模拟人脑进行复杂、高级运算的人脑研究活动。目前基于信息通信技术建立的研究平台,使用计算机模拟法来绘制详细的人脑模型,推动了人工智能、机器人和神经形态计算系统的发展,预计将引发人工智能由低级人脑模拟向高级人脑模拟的飞跃。
谷歌公司早就通过自主研发以及收购等方式来获取人工智能的必要技术,包括使用一万六千个处理器建立的模拟人脑神经系统的、具备学习功能的谷歌大脑。国内该方面的研究发展起步偏重于医学单位,在中华人类脑计划和神经信息学方面具有一定的科研成果,在某些领域达到了国际先进水平,但在新一轮全球人工智能竞赛中,中国至今处于观望和模仿阶段。直至2013年初,百度成立深度学习研究院,提出百度大脑计划,如图2所示,拥有了超越天河二号的超级计算能力,组建起世界上最大的拥有200亿个参数的深度神经网络。作为国内技术最领先的互联网公司,百度此次争得人工智能领域最顶尖的科学家,在硅谷布局人工智能研究,被视为与美国科技巨头直接展开了技术和人才竞争。
1.3 智能终端和可穿戴设备引起产业变革
移动终端通过嵌入人工智能技术破除了时空限制,促进了人机高频互动,穿戴式智能联网设备正在引领信息技术产品和信息化应用发展的新方向。
我国在智能终端和可穿戴设备芯片的研发方面,还处于探索的阶段,特别是大型芯片企业未进行有力的支持。目前只有君正发布了可穿戴的芯片,制造工艺与国际上还有一定的差距。应该说国内芯片现在还是处于刚刚起步阶段,相比市场对可穿戴设备概念的热捧,用户真正能体验到的可穿戴设备屈指可数,大多停留在概念阶段。
1.4 物联网部分领域发展
全球物联网应用在各国战略引领和市场推动下正在加速发展,所产生的新型信息化正在与传统领域深入融合。总的来看,在公共市场方面发展较快,其中智能电网、车联网、机器与机器通信(Machine-To-Machine, M2M)是近年来发展较为突出的应用领域[4]。
物联网涉及领域众多,各国均上升至国家战略层次积极推动物联网技术研发,我国也在主动推进物联网共性基础能力研究和建立自主技术标准。在射频识别(Radio Frequency Identification, RFID)、M2M、工业控制、标识解析等领域已经获得部分知识产权,其中中高频RFID技术接近国际先进水平,在超高频(800/900MHz)和微波(2.45GHz)RFID空中接口物理层和MAC层均有重要技术突破。在标准方面,已建立传感网标准体系的初步框架,其中多项标准提案已被国际标准化组织采纳。作为国际传感网标准化四大主导国(美国、德国、韩国、中国)之一,我国在制定国际标准时已享有重要话语权。
2 我国ICT产业的政策引导
目前ICT产业的应用范围在不断的延伸,政策的制定必须考虑跨行业的需要,加速产业链的分工、合作和成熟。我国ICT企业正紧跟变革、激励创新、发掘内需,再通过突破瓶颈的ICT政策必将迎来新的机遇和发展。
2.1 国家政策方面的引导
世界发达国家纷纷制定ICT产业发展计划,并将其作为战略性新兴产业的重要组成部分。我国急需在国家政策方面进行引导,试图抢占下一程竞争制高点。政策应呈现如下趋势,破除行业间壁垒,加快制定ICT跨行业标准和产业相关政策。
2.1.1 加强政策顶层设计
成立国家级ICT产业发展机构,尽快确立国家ICT中长期发展战略,落实国家级监管机制、产业协同等各方面的工作,促进ICT产业及相关行业的发展。 2.1.2 加强自主创新能力
将战略性新兴产业作为发展重点,围绕其需求部署创新链,掌握核心关键技术,突破技术瓶颈。加强技术集成和商业模式的创新,加快新产品、新技术、新工艺研发应用。
2.1.3 深化科技体制改革
将企业主体地位予以强化,建立以企业为主、以市场为导向、产学研一体化的创新体系。新体系要确保企业为产业技术研发、技术创新决策、成果转化的主导地位,要促进人才、资源、技术等创新要素向企业流动,要主动与产学研机构开展深度合作,要扶植和壮大创新型企业。
2.2 知识产权方面的引导
2.2.1 专利方面
国际专利纠纷在一定程度上提高了国内企业的专利危机意识,但是由于在国内专利长期并未得到重视及专利技术研发周期长,企业对是否有能力实现布局认识不清[5]。初具国际竞争实力的国内企业应该紧抓全球重大的专利收购机遇,快速提升整体竞争力。针对新技术涉及专利问题应加快系统研究,重视前瞻性专利布局。积极探索统一专利池的构建,增强全产业专利授权及谈判能力,探索构建国内企业面临知识产权危机时的商业保护伞机制。一方面强化自身研发投入,另一方面仍需加强产学研结合、实现高校和科研院所的专利对企业转移。
2.2.2 著作权方面
目前版权产业已经成为国民经济新的增长点和经济发展中的支柱产业。世界知识产权组织在与我国国家版权局的合作调研时发现,2013年我国著作权作品登记共845064件,其中软件著作权登记164349件,同比增长超过18%。物联网、云计算、大数据等 热点 领域软件均呈现出了加速增长态势,如物联网软件著作权共4388件,同比增长70.54%,云计算软件著作权共3017件,同比增长55.04%,明显高于软件登记整体增速。虽然我国软件技术正处在一个高速增长期,但存在着低水平重复、起点较低的问题,仍需坚持不懈的进行引导、创新和保护。
3 ICT相关企业实现方式探讨
经过多年的努力积累,在人工智能究领域我国在不再仅是国外技术的跟随者,已经能够独立自主地进行重大问题的创新性研究,并取得了丰硕的成果。今后我国相关企业应进一步拓展人工智能在ICT产业的应用,并加快构建ICT产业生态系统。我国ICT相关企业在整个产业上应该逐步完成以下几个方面。
3.1 政、学、研、产、用全面推进
政府与科研院所建立合作机制。我国已经在制定多个促进产学研合作的计划,目的是将基础研究、应用研究,以及国家工业未来的发展紧密联系起来。大力资助具有应用前景的科研项目,促进大学与产业界联合申请项目,同时对由企业参与投资开发的项目实行重点关注。企业参与高校的科研项目。鼓励实力雄厚的公司通过向高校提供资金、转让科研设备等形式建立合作关系。高校积极参加企业研发项目。提供多种形式的合作方式,如高校教师充当企业顾问、举办学术讲座或参加企业课题研究,公司科研人员到高校进修并取得学位等。随着高校与政府、企业、研发机构合作的不断深入,努力消除校企之间的空间和物理层面的隔阂。探索建立学校、地方、企业、研发机构四位一体的科技创新体系,尽快形成具有特色优势和规模效益的高新技术产业群。
3.2 加强合作、推进新技术的产业化与商用
通信设备企业可与电信运营商、互联网企业加强合作,共同搭建新型试验网络,验证基于融合技术的网络架构在各场景的运行状况,排查可能出现的问题,推进相关技术、设备以及解决方案的成熟与商用化。加大与科研院所、专利中介、行业协会组织的合作,充分利用各方资源优势。企业应着重关注和影响科研院所的研究方向,协助其加强研发的实用性,提高研发质量。可以采取与校企合作开发、企业牵头申报课题,高校参与、企业设立课题由高校认领、建立联合实验室等方式。合作培育应用生态。企业在推进网络控制平台面向标准化的过程中,应充分考虑和吸纳包括电信运营商、互联网企业及其他各类企业的网络应用创新需求,为网络应用生态体系的形成与繁荣创建良好的技术基础与商业环境。
3.3 全力抢占大数据
我国政府已经认识到大数据在改善公共服务、推动经济发展以及保障国家安全等方面的重大意义。2014年《政府 工作 报告 》明确提出,“以创新支撑和引领经济结构优化升级;设立新兴产业创业创新平台”,在新一代移动通信、集成电路、大数据等方面赶超先进,引领未来产业发展。ICT企业在发展大数据的总体思路应该是:首先,明确国家关于大数据发展的战略目标,促进电信、互联网、金融等拥有海量数据的企业与其他行业进行大数据融合,扩展大数据应用领域;其次,在技术方面需要提高研发的前瞻性和系统性,近期重点发展实时大数据处理、深度学习、海量数据存储管理、交互式数据可视化和应用相关的分析技术等[6];第三,集合产学研用各方力量,统筹规划大数据应用,避免盲目发展;最后,解决个人信息的数据安全性需求。
3.4 重点发展云计算
2014年3月,工信部软件服务业司司长陈伟透露我国云计算综合标准化技术体系草案已形成。在政府建立标准化的同时,ICT企业应以企业的角度积极参与到云计算领域研究中,服务国家云产业发展战略。建议向用户充分开放企业平台资源,推进社会云产业发展;加强技术应用深度,将云计算技术着重应用于信息搜索、数据挖掘等领域,逐渐形成社会资源利用方面高效可行的 方法 技术;广泛展开与社会各界合作,推动社会各类数据资源与企业云计算技术的整合应用。云计算企业拥有丰富的软硬件资源、技术资源以及人力资源,并且服务政府信息化建设意愿强烈。应通过与政府社会资源应用需求相结合,充分发挥企业云计算资源在服务政府信息化建设、社会资源应用方面的潜力。
4 小结
发达国家对人工智能技术在ICT产业应用的研究开展较早,为促进人工智能技术的发展和ICT产业相关技术的发展已经提出并实施了一些行之有效的策略,积累了一定的 经验 。本文通过对比国内外在人工智能技术重点方向发展现状,借鉴他国政策与经验,根据我国的国情及产业发展所处的阶段,提出符合我国目前产业发展现状,适合我国的可借鉴的策略,以期为促进我国人工智能技术在ICT产业发展提供参考。
下一页分享更优秀的>>>科技人工智能论文
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!
浅谈逻辑学与人工智能
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。
1 人工智能学科的诞生
12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。
以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。
现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。
2 逻辑学的发展
2.1逻辑学的大体分类
逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。
2.2 泛逻辑的基本原理
当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。
泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。
3 逻辑学在人工智能学科的研究方面的应用
逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。
3.1 经典逻辑的应用
人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。
3.2 非经典逻辑的应用
(1)不确定性的推理研究
人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。
归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。
(2)不完全信息的推理研究
常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。
此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。
4 人工智能——当代逻辑发展的动力
现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
5 结语
人工智能的产生与发展和逻辑学的发展密不可分。
一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。