首页

> 学术论文知识库

首页 学术论文知识库 问题

5000字以上论文查重

发布时间:

5000字以上论文查重

论文中的查重率一般要求在30%以内,即重复部分不能占30%以上。如果论文检测能低于这个值,一般可以直接通过审核,但具体论文的查重率要求也取决于学校具体要求。 大专院校的论文检测范围是什么?大专学生非常想知道,一般大专论文主要检测的是文本部分。如果毕业论文重复检查率不合格,自然考核不合格,不能答辩。那么,一般专科论文查重率是多少?paperfree小编给大家讲解。 论文中的查重率一般要求在30%以内,即重复部分不能占30%以上。如果论文检测能低于这个值,一般可以直接通过审核。但是,具体论文的查重率要求也取决于具体要求。很多人在查重检测时不太注意论文的格式。其实如果选择了错误的格式,就有一定的概率。 论文上的标注也要注意,在检测时,标注一定要清晰,这样才能得到准确的检查率。

字数要求

本科论文字数一般在5000字以上即可,一般6000-8000字比较合适,过长或者过短都是不合适的,本科论文一般不会有什么特别高的要求,发表普刊就可以,有些甚至不要求见刊,因此本科毕业论文的字数无需太多,只要做到结构完整,思路清晰,再加上一定程度的创新,一般都可以通过考核的。

拓展阅读:

查重

本科毕业论文查重率一共是分成四个等级。在其中A级的标淮是:毕业论文的重复率在10%之内。这种毕业论文是能够立即通过。而且还能够作为优秀论文的参考范围。B级的标淮是:重复率在10%至20%,这种毕业论文能够通过,与此同时也可以作为优秀论文选拔范围。

C级的标淮是:20%至50%之内,这种毕业论文是不予通过的,因为其重复率过高,存有大量抄袭的文字,大学生们必须要进行修改和再次检测。D级的标淮是:论文查重率在50%以上,这种毕业论文几乎就是抄袭的代名词。只有实现A,B两个等级的标淮才能够参加论文答辩。

摘要充字法顾名思义,是利用摘要来扩充字数,但是一般情况下学校对于论文摘要都有字数要求,一般不会超过500字,那么怎么做到充字数已达到降重目的呢?就是利用摘要的英文翻译来达到目的,论文的字数是依据WPS或者OFFIC的字数计算的,在这两个软件中,对于英文的计算是一个单词为一个字数,而判断单词的原则是相邻两个空格之间的就是一个单词,因此在论文摘要的英文翻译中,字数甚至要比中文翻译还少,但是在论文检测中,检测的字数实际上是字符数,所以这就导使得在论文检测中,会多出大量的非重复字数来降低重复率,而为了使英文翻译中字符数更多,就需要在摘要中使用大量的修饰词语,尤其是高级词汇,因为在英文中高级词汇已经形容词的字母一般较多。例如:随着我国的经济发展,我国已经进入了小康社会。With China's economic development, China has entered a well-off society.因为我国经济持续的高速发展,目前已经全面的步入了小康社会。Because our country economy continues the high speed development, has entered the well-off society comprehensively at present.上两个句子中,第一个中文字数22个,英文字数10个,英文字符数62个,平均每个中文字对应英文字符数个。而第二个句子中,中文字数29个,英文字数17个,英文字符数110个,平均每个中文字数对应英文字符数个。由此可见,加入修饰性形容词和高级词汇会有效帮助降低重复率。表格充字法该方法在技术手段上,同样利用了文档软件和查重软件之间的不同点,数字本身在文档软件中,是与英文同样的归类方法,而在查重中则按照数字的个数计算。因此在论文中,无论是否需要数据,都可以插入表格引入大量数据,一方面通过数据提高了论文的说服性,另一方面有效的降低了重复率。在表格制作过程中,尽可能的做到小数点后两位或三位,杜绝使用整数。

本科毕业论文率要求:

1、查重率≦30%,毕业论文合格,可以申请毕业论文答辩;

2、查重率﹤10%,可以申请评定校级优秀论文;

3、查重率﹤15%,可以申请评定院级优秀论文;

4、30%﹤查重率﹤50%,查重检测不合格,给予修改时间至少为一周,修改后查重率﹤30%为通过,可申请答辩,若仍未通过,则取消答辩资格;

5、查重率≧50%,查重检测不合格,由学校组织专家对论文进行学术不端行为的评定,若认定存在严重抄袭行为,则取消答辩资格。

康复治疗论文5000字以上

护士在众多的职业当中,是一个不易被人理解、甚至被认为是无足轻重的角色,但是我热爱我的工作,因为我明白:伟大出自平凡,我爱我的职业,因为我是一名康复护士,所以我骄傲。康复护理在许多年前是不太受重视的,那时候别人一听你是名康复护士,总是不屑一顾。即使在现在的医院,我们一样被是认为无足轻重。是的,我们是一个新建的科室,我们的护理团队是最年轻的,我们这里没有风驰电掣的救护车呼啸,我们这里没有手术台边的惊心动魄,我们这里没有心电监护那滴答声的扣人心弦……虽然我不起眼,虽然我不抢镜,但就是觉得骄傲。因为在这个普通的岗位上,我发挥了自己应有的作用,服务好了该服务的对象,帮助到了要帮助的人。 有人说:“护士的胸怀像大海,能容纳千百万被病痛折磨的兄弟姐妹;护士的心灵像清泉,爱的透明,不是亲人胜似亲人。”康复科的病人往往是生活不能自理,这是我们科的特点。记得我的一位同事做晨间护理时,发现病房的一位老人把大便解在了床上,并用手不断的到处乱摸,病房里臭味扑面而来,她没有在意这臭味,立即打来温水,从头到脚给他擦洗干净,又帮他换上了新衣服,新床单。汗水浸透了她的衣衫,旁边床的病人说:“你可以等他的家属来洗”,她摇摇头微笑着说:“当我做这一切时我觉得自己已经是他的亲人了。” 俗话说“病来如山倒,病去如抽丝”。某些疾病的康复往往需要一个漫长过程,预期的治疗效果不会很快就显现,不少残病者因伤残缺陷、治疗效果一时不显现而产生悲观失望和轻生念头,这些不良情绪直接影响康复效果。所以我们康复科的特点是不仅仅在治病,更是在“治人”。记得有个股骨头坏死的中年人,在康复的过程中存在轻生的念头,不配合康复治疗,我们的护理姐妹就轮番对他进行心理疏导,使其重新振作。在我们的精心护理下,这名患者取得了良好康复效果。我们科建立只有三个多月,但我们已经有了铁杆患者,一位老伯每天都会骑人力三轮车送老伴到康复科进行治疗,他说:“我舍近求远,从七公里远的东阳来这里治疗,不但看好你们的技术,更是看重你们的服务态度,特别是这群护士,每次我坐在这里陪老伴治疗时,总是看到她们对每一位过来治疗的患者嘘寒问暖,很细心很亲切,我听着就感到特别舒服,象在家里……”我们康复科在医院是新兴学科 ,但我们就如同初生的牛犊不怕虎一样,从不畏惧困难。在建科的三个月里,就是我们这群新入岗的护士,在护士长的带领下,主动、无偿延长服务时间,保证完成了建科一周在院病员过40大关的奇迹,并保障了护理安全和护理质量。“工作着、快乐着,我可能给不了工作百分之一百的生命时间,但在工作时我将会百分之一百的投入。” 这句座右铭现在已经成为我我们康复科护士的口头禅! 说真的,我们康复科护士真的不起眼,我们做的都是护理中的小事。但我就是觉得骄傲!因为在这里,我们真正用心在工作,快乐在工作;因为在这里,我们把患者当亲人,患者把我们当儿女;因为在这里,我们都希望日复一日,年复一年地默默工作着,播洒片片爱心,点缀长路,扶持着无数患者一道走向康复的光明路途。

电子商务论文5000字以上

电子商务中的网上拍卖网站的研究与实现 摘要 因特网与电子商务正在成为21世纪中国经济竞争力的决定性因素,它们的发展不仅是中国企业内部改革可以利用的先进技术,还可以促进国家经济结构调整。 商务只有最大限度地利用电子信息技术,才能实现其跨地域、低成本、个性化产品与服务、即时高效、信息获得充分、全球配置人力与物力资源等自身发展的必然要求,这样利用的结果就是电子商务。 本项目是一个简单的电子商务系统,让每一个人都可以把自己心爱的物品拿出来与人交换,让普通人之间的交易变得如此的简单而有趣。网站的整体结构设计是以一个普通用户的拍卖过程为基础,用户通过注册登陆可以浏览商品信息,同时也可以对商品实现收藏及购买等功能。这个系统采取Windows2000为操作系统平台,采用MicrosoftActiveServerPages即我们所称的ASP来开发,后台数据库采用MicrosoftSQLserver2000。 关键字:电子商务,网上拍卖系统,ASP 目录 1绪论1 开发背景1 网上拍卖网站国内外发展的现状2 网上拍卖网站的研究方法4 论文的主要内容和结构5 2电子商务模式研究及网上拍卖网站拍卖设计5 电子商务模式6 网上拍卖6 拍卖6 网上拍卖6 网上拍卖的主要方式7 建立网上拍卖系统的目的和意义8 网上拍卖网站拍卖设计8 可行性研究8 硬件要求10 软件要求11 系统开发方案11 3系统总体设计16 系统结构图17 系统管理模块17 部分模块数据流图18 4数据库设计19 概念设计20 分析与创建数据库20 5详细设计与代码实现24 系统主界面设计与实现25 商品展示模块25 排行榜行模块26 普通用户模块26 登陆模块27 注册模块29 密码找回模块30 个人信息模块31 商品管理模块32 竞拍模块33 结论35 致谢35 参考文献37

电子商务安全论文5000字篇2 浅析电子商务安全决策原则科技 电子商务安全策略是对企业的核心资产进行全面系统的保护,不断的更新企业系统的安全防护,找出企业系统的潜在威胁和漏洞,识别,控制,消除存在安全风险的活动。电子商务安全是相对的,不是绝对的,不能认为存在永远不被攻破的系统,当然无论是何种模式的电子商务网站都要考虑到为了系统安全所要付出的代价和消耗的成本。 作为一个安全系统的使用者,必须应该综合考虑各方因素合理使用电子商务安全策略技术,作为系统的研发设计者,也必须在设计的同时考虑到成本与代价的因素。在这个网络攻防此消彼长的时代,更应该根据安全问题的不断出现来检查,评估和调整相应的安全策略,采用适合当前的技术手段,来达到提升整体安全的目的。电子商务所带来的巨大商机背后同样隐藏着日益严重的电子商务安全问题,不仅为企业机构带来了巨大的经济损失,更使社会经济的安全受到威胁。 1电子商务面临的安全威胁 在电子商务运作的大环境中,时时刻刻面临着安全威胁,这不仅仅设计技术问题,更重要的是管理上的漏洞,而且与人们的行为模式有着密不可分的联系。电子商务面临的安全威胁可以分为以下几类: 信息内容被截取窃取 这一类的威胁发生主要由于信息传递过程中加密措施或安全级别不够,或者通过对互联网,电话网中信息流量和流向等参数的分析来窃取有用信息。 中途篡改信息 主要破坏信息的完整性,通过更改、删除、插入等手段对网络传输的信息进行中途篡改,并将篡改后的虚假信息发往接受端。 身份假冒 建立与销售者服务器名称相似的假冒服务器、冒充销售者、建立虚假订单进行交易。 交易抵赖 比如商家对卖出的商品因价格原因不承认原有交易,购买者因签订了订单却事后否认。 同行业者恶意竞争 同行业者利用购买者名义进行商品交易,暗中了解买卖流程、库存状况、物流状况。 电子商务系统安全性被破坏 不法分子利用非法手段进入系统,改变用户信息、销毁订单信息、生成虚假信息等。 2电子商务安全策略原则 电子商务安全策略是在现有情况,实现投入的成本与效率之间的平衡,减少电子商务安全所面临的威胁。据电子商务网络环境的不同,采用不同的安全技术来制定安全策略。在制定安全策略时应遵循以下总体原则: 共存原则 是指影响网络安全的问题是与整个网络的运作生命周期同时存在,所以在设计安全体系结构时应考虑与网络安全需求一致。如果不在网站设计开始阶段考虑安全对策,等网站建设好后在修改会耗费更大的人力物力。 灵活性原则 安全策略要能随着网络性能及安全威胁的变化而变化,要及时的适应系统和修改。 风险与代价相互平衡的分析原则 任何一个网络,很难达到绝对没有安全威胁。对一个网络要进行实际分析,并且对网络面临的威胁以及可能遇到的风险要进行定量与定性的综合分析,制定规范的措施,并确定本系统的安全范畴,使花费在网络安全的成本与在安全保护下的信息的价值平衡。 易使用性原则 安全策略的实施由人工完成,如果实施过程过于复杂,对于人的要求过高,对本身的安全性也是一种降低。 综合性原则 一个好的安全策略在设计时往往采用是多种方法综合应用的结果,以系统工程的观点,方法分析网络安全问题,才可能获得有效可行的措施。 多层保护原则 任何单一的安全保护措施都不是能独当一面,绝对安全的,应该建立一个多层的互补系统,那么当一层被攻破时,其它保护层仍然可以安全的保护信息。 3电子商务安全策略主要技术 防火墙技术 防火墙技术是一种保护本地网络,并对外部网络攻击进行抵制的重要网络安全技术之一,是提供信息安全服务,实现网络信息安全的基础设施。总体可以分为:数据包过滤型防火墙、应用级网关型防火墙、代理服务型防火墙等几类。防火墙具有5种基本功能: (1)抵挡外部攻击; (2)防止信息泄露; (3)控制管理网络存取和访问; (4)虚拟专用网功能; (5)自身抗攻击能力。 防火墙的安全策略有两种情形: (1)违背允许的访问服务都是被禁止的; (2)未被禁止的访问服务都是被允许的。 多数防火墙是在两者之间采取折中策略,在安全的情况之下提高访问效率。 加密技术 加密技术是对传输的信息以某种方法进行伪装并隐藏其内容,而达到不被第三方所获取其真实内容的一种方法。在电子商务过程中,采用加密技术将信息隐藏起来,再将隐藏的信息传输出去,这样即使信息在传输的过程中被窃取,非法截获者也无法了解信息内容,进而保证了信息在交换过程中安全性、真实性、能够有效的为安全策略提供帮助。 数字签名技术 是指在对文件进行加密的基础上,为了防止有人对传输过程中的文件进行更改破坏以及确定发信人的身份所采取的手段。在电子商务安全中占有特别重要的地位,能够解决贸易过程中的身份认证、内容完整性、不可抵赖等问题。数字签名过程:发送方首先将原文通过Hash算法生成摘要,并用发送者的私钥进行加密生成数字签名发送给接受方,接收方用发送者的公钥进行解密,得到发送方的报文摘要,最后接收方将收到的原文用Hash算法生成其摘要,与发送方的摘要进行比对。 数字证书技术 数字证书是网络用户身份信息的一系列数据,由第三方公正机构颁发,以数字证书为依据的信息加密技术可以确保网上传输信息的的保密性、完整性和交易的真实性、不可否认性,为电子商务的安全提供保障。标准的数字证书包含:版本号,签名算法,序列号,颁发者姓名,有效日期,主体公钥信息,颁发者唯一标识符,主体唯一标示符等内容。一个合理的安全策略离不开数字证书的支持。 安全协议技术 安全协议能够为交易过程中的信息传输提供强而有力的保障。目前通用的为电子商务安全策略提供的协议主要有电子商务支付安全协议、通信安全协议、邮件安全协议三类。用于电子商务的主要安全协议包括:通讯安全的SSL协议(SecureSocketLayer),信用卡安全的SET协议(SecureElectronicTransaction),商业贸易安全的超文本传输协议(S-HTTP),InternetEDI电子数据交换协议以及电子邮件安全协议S/MIME和PEM等。 4结论 在电子商务飞速发展的过程中,电子商务安全所占的比重越发重要。研究电子商务安全策略,意在于减少由电子商务安全威胁带给人们电子商务交易上的疑虑,以推动电子商务前进的步伐。解除这种疑虑的方法,依赖着安全策略原则的制定和主要技术的不断开发与完善。 猜你喜欢: 1. 电子商务硕士论文5000字左右 2. 电子商务安全论文范文 3. 电子商务安全研究论文范文 4. 浅谈电子商务安全技术论文 5. 电子商务安全技术论文 6. 电子商务安全管理论文

这些方面 我们有很多 还有其他吗 联系 看 上方

数学建模论文5000字以上

全国大学生大学生数学建模大赛的论文字数要求3000字以上,我当年参加了,写了10000多字。

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

在我空间里面有,你去看下吧,就是历年的论文。希望你看得懂

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

论文不超过5000字可以查重吗

由于期刊的规定,论文所要求的复检率可能会导致差异。一般来说,普通期刊的论文重复率在30%以内,省级期刊所要求的重复率在20%以内。相比之下,核心期刊的要求更高。核心论文标准在10%以内,有些期刊甚至需要5%的重复率。 论文写作的难度与论文的重复检查要求有关。毕竟,如果重复检查率不通过,无论论论论文写得多好,都不能通过审查,自然也不能在期刊上发表。那么论文发表查重率要小于多少?paperfree小编给大家讲解。 由于期刊的规定,论文所要求的查重率可能会导致差异。一般来说,普通期刊的论文重复率在30%以内,省级期刊所要求的重复率在20%以内。相比之下,核心期刊的要求更高。核心论文标准在10%以内,有些期刊甚至需要5%的重复率。 期刊论文在查重检测中,如果使用内部查重系统,则应选择AMLC/SMLC论文擦汗从系统。杂志社会要求出版商通过检测报告发表论文。

论文查重一直是论文写作中一个严肃的问题,很多论文最终被pass掉原因都是因为查重不合格,谈起查重,该是很多人的噩梦。那么对于如今的本科论文,论文查重的重复率多少才算通过呢?全国各高校对重复率要求各有不同,有些学校对于重复率要求并不严格,控制在30%左右即可,有些确实要求高度原创,只有5%-10%以内,否则将不能通过。一般来说,本科重复率不达到30%可以向学校申请答辩,不超过15%可以申请院级优秀论文,不超过10%的可以申请校级优秀论文。如果重复率超过25%则可以有一次修改机会,但时间不能长,如果修改之后重复率依旧很高,那么则需要延期答辩了。硕士论文的话,当然要求原创度就更高了,一般情况不超过20%可以申请答辩,如果是博士论文,那么重复率一半就不能超过10%才能申请答辩。另外,大部分学校都采用知网查重,所以我们一定要认准查重网站,才能更加准确的去定稿。大家在提交初稿之前,最好先去自己相应的系统去检测一下自己的重复率,这样才能使自己的成功率大大提高。

研究生论文查重规则多少字以上是重复的?

知网一般是13个字符以上是重复。

具体的可以参考一下南京大学的要求:

硕士生毕业论文查重有字数要求吗?paperfree小编给大家讲解,毕业生当然也有字数要求。就是不同的学校,字数要求也不一样。与此同时,不同学历的论文,查重标准也会有所不同。一般情况下,本科毕业论文要求不到上万字,大概在6000-8000字,有些专业比较严格一些,字数可能更高一些。与之相比,硕士论文要求的字数一般在3-5万字,控制在40,000字最好。 1.标题部分需要字数。 不论是中文标题还是英文标题,标题字数不宜过长,一般控制在25字左右。题名即题,要概括核心要义,简明吸引人。 2.对报告摘要部分字数的要求。 文章的摘要字数一般控制在1500字左右。文摘作为一种独立体裁存在,字数也不能过分,但应较为详细地介绍论文研究方向、研究方法、研究过程、研究假设及最终结论。 3.关键字要求。 要害词有的学校或导师没有要求,可写可写。若要写,只写几篇就可以了,选一些精确、专业、有力的关键词。 4.报告开题部分。 研究生论文开题报告一般控制在3000-5000左右。开篇报告要说明您研究选题的学术基础,为以后研究的发展,对论文的主要研究思想和成果做一个高度概括和精炼总结。 5.论文的主体部分。 一般而言,硕士毕业论文要求为3-50,000字,那么就得算前面的项目有多少字,还有多少可以写。在撰写文章之前必须先做一个整体的论文构架,但不能完全拘泥于已有的结构和僵化的框架。 重点分析论文研究重点,细化描述;次要内容要简明扼要,不可有“喧宾夺主”之感,导致研究重点不清。事实上,写正文的时候要尽可能的细致入微,对字数多点的影响不大,但字数不够那就更麻烦了。

相关百科

热门百科

首页
发表服务