首页

> 学术论文知识库

首页 学术论文知识库 问题

耐火材料论文格式

发布时间:

耐火材料论文格式

This paper presents an experimental studyabout the impact of reflective coatings on building surface temperatures, airtempera- ture, globe temperature, energy consumptionandthermal comfort for buildings located in Shanghai, China. Thislocation is characterized by hot summers and cold winters, and the overalleffects of reflective coatings are complex considering the potential benefitsin the summer and the potential penalties during winter. In parallel, anotherexperiment with four smaller test cells was carried out to investigate theimpact of envelope material thermal properties combined with reflectivecoatings.这篇论文介绍了有关反射涂层的实验研究,分别是对位于中国上海的建筑物的表面温度,空气温度,温度计的温度,能量损耗和热舒适度的影响。本位置的特点是炎热夏季和寒冷冬季的气候,考虑到夏季潜在的收益和冬季潜在的罚款,发射涂层的整体效应比较复杂。同时,有关四个更小实验间的实验已经被执行用来调查包含了反射涂层的外层材料的热力学性质。

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

我有啊~~~你们班上学期没写过???你不会是要写社会实践吧???

耐火材料的研究论文

近期, 武汉 科技 大学“超分子材料与分子纳米器件团队”梁峰教授课题组 以合成化学作为基础和核心,积极拓展与相关学科和领域的交叉融合,在新材料精准化制备和应用研究方向取得进展,发表了多篇高水平研究论文。

利用金纳米颗粒的可塑性, 梁峰教授课题组可控制备了低钯含量的星状金钯双金属纳米颗粒 。通过对金钯双金属纳米星的中间产物的系列表征, 提出了金钯纳米星“两步法”的生长机理:即先形成单金属金纳米球,再以此为核心形成双金属金钯纳米星。 由于纳米颗粒中钯元素的加入,该纳米颗粒不仅能够高效催化对硝基苯酚(工业废料)还原为对氨基苯酚(工业原料),还能够有效催化Suzuki偶联反应, 实现催化剂的多功能化 。研究成果 “ Au-Pd nanostars with low Pd content : controllable preparation and remarkable performance in catalysis ”在《 The Journal of Physical Chemistry C 》杂志发表。化学与化工学院2017级博士研究生马涛是该论文的第一作者。

金钯双金属纳米颗粒的可控制备及多功能催化示意图

通过将石墨烯气凝胶引入掺杂有聚多巴胺纳米颗粒(PDA-NPs)的聚(N-异丙基丙烯酰胺)(PNIPAM)网络中,梁峰教授课题组与国家纳米科学中心韩东研究员课题组合作,制备出了一种多功能水凝胶 。除了增强的机械性能、良好的导电性能和自粘附性能, 制备得到的水凝胶还表现出近红外和温度双响应性能,可以根据需要释放药物;并且,在药物释放过程中,水凝胶的电阻也随之变化,因此可以利用电阻变化来实时监测药物的释放浓度。 这使得其在药物可控载释和精准医疗等领域具有潜在的应用价值。研究结果“ Temperature/Near-Infrared-Responsive Conductive Hydrogel for Controlled Drug Release and Real-Time Monitoring ” 在《 Nanoscale 》杂志发表。化学与化工学院2016级博士研究生朱玉亭是该论文的第一作者。

在以农药为主的农业化学品的实际应用中,促进药液喷雾在目标作物上的铺展和沉积对提高农药使用效率,降低对环境影响具有重要意义。柱芳烃(Pillar[n]arene)是一类新型大环超分子主体。与传统的大环结构相比,柱芳烃具有高度对称的刚性骨架结构和独特的富电子空腔并易于衍生化,在超分子化学领域表现出了重要的应用价值。 梁峰教授课题组与华中师范大学李海兵教授课题组合作 , 利用柱芳烃与农药分子间的主-客相互作用成功实现了农药分子矮壮素液滴在疏水表面上的铺展和沉积,并表现出优异的选择性 。这一研究 探索 了超分子化学在农业领域的应用,并对实现农药的精细利用具有指导意义。研究结果“ Pillar[5]arene promoted selective spreading of chlormequat droplets on hydrophobic surface ”在《 Langmuir 》杂志发表。化学与化工学院2017级硕士研究生余胜是该论文的第一作者。

此外,该团队硕士研究生王娇(导师为陈荣生教授)和曾艳教授团队合作研究的论文“ Catalyst-free fabrication of one-dimensional N-doped carbon coated TiO2 nanotube arrays by template carbonization of polydopamine for high performance electrochemical sensors ”在《 Applied Surface Science 》杂志发表。博士后张雄志(合作导师为刘思敏教授)等的研究论文“ Host-guest interaction-mediated fabrication of hybrid microsphere-structured supramolecular hydrogel showing high mechanical strength ”在《 Soft Matter 》杂志发表。

上述论文的第一单位为武汉 科技 大学省部共建耐火材料与冶金国家重点实验室。研究工作得到国家高层次人才计划、国家自然科学基金、湖北省楚天学者计划、湖北省高等学校优秀中青年 科技 创新团队项目、省部共建耐火材料与冶金国家重点实验室、煤转化与新型炭材料湖北省重点实验室、武汉 科技 大学优秀博士论文培育项目的资助。

来源 武汉 科技 大学

论文链接

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

到万方这类论文数据库找,那里论文多,且质量高。自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮你下载到这论文的

耐火材料学术交流论文

高铝矾土感应炉衬的研究与应用 (XXXXXXX 材料工程系 内蒙古 包头 014030) XX XXX XXX[提要] 阐述了高铝矾土炉衬较高的耐火度、优良的热稳定性、较好的抗渣性、良好的抗蚀性、炉衬的致密化烧结。适用于多种有色金属,普通铸铁、球墨铸铁、及多种合金铸铁,碳钢、合金钢、不锈钢和耐热钢的熔炼。熔炼中金属合金元素烧损低,可超装一倍的金属炉料。炉衬采用低温烘烤、快速升温、高温短时间致密烧结的工艺措施。炉衬的使用寿命多在150炉次左右,最高可达200炉次。关键词:高铝矾土 炉衬 感应炉 致密烧结一、前言本文研究的高铝矾土炉衬从冶金反应上,不仅适用于各种有色金属、普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。用高铝矾土炉衬熔炼金属合金其元素烧损要比石英砂、镁砂炉衬低,不仅提高了合金的利用率,而且大大增强了抵抗合金、溶渣对炉衬的侵蚀能力。高铝矾土炉衬的另一大优点是耐热度高、寿命长、线膨胀系数小、仅是酸性、碱性炉衬的 1/2~1/3, 大大提高了炉衬在间歇生产生条件下的使用寿命。炉衬的热稳定性好,耐急冷急热性强,高温荷重大,抵抗金属冲蚀作用强及合金元素烧损少,是石英砂、镁砂炉衬所不及的。高铝矾土炉衬的壁厚可做得较薄 , 在生产中几乎能超装一倍的金属炉料。此外,炉衬的结烧工艺采用低温烘烤、快速升温、高温短时间烧结的工艺措施。采用这一新工艺所用的时间仅为旧工艺的 2/3~1/2。省时省电炉衬烧结良好。高铝矾土炉衬的使用寿命多在150炉次左右,最高可达200炉次。二、高铝矾土炉衬的性能1、物理性能(1) 较高的耐火度高铝矾土化学成份AL2O3 80~90% ;Si02 7~15% ;Fe203 ~ ;Ca0 ~ ;MgO ~; K20 ~.5%;Na20 ~ ;Ti02 ~ 。耐火度 1750℃~1800 ℃,可在 1650 ℃1~750 ℃下稳定工作。能减轻钢水对炉衬的冲涮损耗,延长炉衬寿命。而较纯的石英砂耐火度为 1710 ℃。(2)优良的热稳定性高铝矾土用作炉衬,烧结后的矿物组成相中多为莫来石,其次为刚玉及少量方石英和玻璃相。莫来石的线胀系数 ( × 10-6mm/mm•℃ ) 大约只有镁砂和石英砂的 1/3,刚玉的线胀系数 (× 10-6mm/mm •℃ ) 也比镁砂和石英砂低。当 属于硅线石组成时 (含AL2O3 ), 其线胀系数可低为 × 10-6mm/mm•℃。因 此,高铝矾土炉衬较镁砂和石英砂炉衬的抗热冲击性能优良得多,有助于减轻热应力,使它的耐急冷急热性较好。在使用中即使产生裂纹也极小,若配料、打结得当,就是采用问歇式熔炼,也不会产生裂纹。石英砂、镁砂炉衬线膨胀系数大,工作时内外温差大,炉衬易产生裂纹和开裂。石英砂炉衬其寿命一般只有几十次 , 而镁砂炉衬的寿命则更低。镁砂、石英砂炉衬在烘炉升温时,体积发生较大膨胀,不得不采取缓慢升温延长烘炉时间的操作,以尽量减少裂纹和防止塌炉。而高铝矾土炉衬就无上述问题,可大大缩短烘炉时间,又不会产生裂纹,从而既保证了炉衬质量又降低了能耗。(3)耐压强度 30-40N/mm2( 经5小时1000℃煅烧 )是普通粘土砖的3-4倍。炉衬的机械强度好、壁厚可以减薄,可超装一倍的金属炉料。在固定的感应器条件下,壁厚薄则增揭容量就相对大些;同时减少了感应器内部不导磁的空间,漏磁减少,能得到较高的电效率。这样,生产率较高且耗电量又低。(4)导热系数 。(5) 松容重 1600kg/m3。(6)显微孔隙率 18-22%。(7)烧结后的容重 1750-1770kg/m3。2.较好的抗渣性能高铝矾土炉衬抗碱性渣的能力优于石英砂炉衬, 高铝矾土炉衬中 AL203比 MgO更稳定,两者反应较弱可生成铝镁尖晶石,其熔点 2135 ℃ ,AL203 与MnO 作用生成锰尖晶石,其熔点1560℃, AL2O3与 FeO 作用生成铁尖晶石,其熔点 1780 ℃ 。AL203与MnO、Fe2O3复合作用生成熔点为 1520 ℃的共晶体,与 Cr203 形成固溶体 , 此固溶体对炉衬有增强作用。直得注意的是若熔炼完高铬合金后最好不要熔炼无铬或低铬合金,否则会造成 Cr203 脱溶使炉衬表面疏松、强度下降。高铝矾土炉衬与 C、Fe203、SiO2基本不反应,而与 ZnO 生成尖晶石与B203、P205、CaO生成难溶的铝酸盐。CaO、AL203、Fe203 复合作用对炉衬的侵蚀作用要比单独作用强一些。与 Na20、K20 作用生成易溶化的共晶体及化合物。故溶渣中 Na20、K20、CaO 对高铝矾土炉衬侵蚀较大,而石英砂炉衬对溶渣中的 MgO、Zn0、PbO、CaO、Na20、K20反应激烈更易造成炉衬的侵蚀,CaO、Si02、FeO复合作用形成易溶化合物,特别是ZnO、PbO对炉衬侵蚀极大。石英砂炉衬中 Fe203 含量要求严格控制、由机械破碎,研磨的石英砂( 碱性炉衬中的镁砂 )应严格磁选 , 否则会造成炉衬漏电,产生炉衬的烧穿事故。3、良好的抗蚀性能高铝矾土炉衬因其矿物组成主要是莫来石其次是刚玉及少量方石英和玻璃相,其化学稳定性高,在高温下呈弱碱性与AL、Mn、Fe、Si、Sn、Go、Cr、Ni基本不发生化学反应。与Zn、Pb、Mg、Ti等反应微弱与Cu反应较明显( 熔炼铜合金时 )。而石英砂炉衬与Al、Mg、Pb、Zn、Mn等均有明显反应。Zn、Pb ( 黄铜 ) 会使炉衬严重侵蚀,甚至常常在短时间内将炉衬烧穿,Al、Mg、Ca等均会使炉衬严重侵蚀。在熔炼低硅铸铁时,碳对炉衬的侵蚀,炉衬裂纹的扩展影响也较大。一般来讲高铝矾土炉衬比石英砂炉衬对合金的收得率高 , 而总烧损不可回收损失低 1. 4%。其原因是高铝矾土炉衬造渣作用小,液体不易氧化而且从渣中还原金属的反应较强。高铝矾土炉衬在 1500 ℃以上长时间保温对Cr、Ni、Al、Cu几乎没有烧损 ,1350 ℃以下C、Si无变化,1400 ℃-1500 ℃C、Si每小时烧损 ;Si每小时烧损 ;1500 ℃保温 3 小时Mn的相对烧损仅为 。石英砂炉衬熔炼耐蚀铸铁时其元素烧损为:C 、Si 、、Cr 、、 、S 。对可锻铸铁其元素平均烧损为:C 、Si 8%、Mn 7%。对高强度铸铁元素烧损为:C 2%、Si 、Mn 、P 、 、 。由于高温下高铝矾土比镁砂更稳定,在一般条件下与Cr、C、Mn元素的作用较弱,故炉衬浸蚀轻微。由此可知,高铝矾土炉衬不仅适用于多种有色金属、普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。 三、高铝矾土炉衬的致密化烧结感应炉炉衬烧结的目的是把打结好的靠近 融熔金属一面一定厚度的耐火材料转变为致密体。只有致密化烧结的坩埚才能承受高温钢(铁)水的冲刷和熔渣的侵蚀。坩埚烧结的致密化程度与耐火材料的化学组成、粒度配比、烧结工艺和烧结温度等因素有关。1、粒度配比合理的粒度配比可获得烧结前的最小气孔率。如果粒度配比不合理,打结后炉衬内的气孔率较高。烧结过程是由颗粒重排、气孔充填和晶粒长大等阶段组成。如果气孔率较高,在烧结过程中难以使绝大部分气孔被充填而影响其致密化。另外,合理的粒度配比还可获得最大抗热冲击性。为兼顾低的气孔率和高的抗热冲击性,粒度的配比是:粗(3~5mm):中(~1mm): 细(﹤)=60:10:30。2、粘结剂在高温下,少量的添加剂,与主晶相生成少量液相,可加速烧结过程的进行, 并能起到 -定的粘结作用。高铝矾土熟料中含有均匀分布的 Fe203、CaO、MgO、TiO2等微量杂质,在高温下它们与主晶相生成少量液相, 能够满足烧结过程中扩散传质的需要Fe203、CaO 和MgO在烧结过程中还是莫来石化的促进剂。故 -般情况下不需加入任何粘结剂。但对小容量感应炉,因打结完毕后胎具要取出,为防止烘烤过程骨料颗粒散落,故要加入1~工业硼酸 (H3B03 )。3、烧结温度由烧结机理可知,只有体积扩散才能导致坯体致密化。表面扩散只能改变气孔形状而不 能引起颗粒中心距逼近,因而不发生致密化过程。在高温烧结阶段主要以体积扩散为主,而在低温阶段以表面扩散为主。在坩埚的烧结过程中,如果在低温停留时间较长则不仅不发生致密化反而因表面扩散使气孔封闭,内部气体难以排出遗留在烧结层中。这样将会使坩埚的使用性能降低。通常取 Ts=~ (Ts为烧结温度 ,Tm 为熔融温度 )。从烧结理论上讲,在烧结过程中应尽快地从低温升到高温,以便为体积扩散创造条件。因此,采用高温短时间烧结是获得致密坩埚的有效手段。烧结温度一般控制在1450℃~1500℃较为合理,过高的烧结温度将导致晶界迅速移动而使处于晶界上的气孔来不及向外扩散就被包入大 晶粒内,其结果必然产生晶体缺陷。因此,必须控制烧结温度,使晶界缓慢移动,最大限度地消除气孔,从而获得较致密的坩埚烧结体。4、烧结工艺在烧结坩埚过程中的具体做法是:炉衬打结完毕后,自然风干24小时,以5~30% 的功率烘烤。间断送电让炉衬保持初期红色(≤500 ℃), 直至烘干(4~5小时即可)。随之加入 1/3 的炉料并以大功率全负荷运行使炉料快速熔清,在熔化温度保温一小时。接着进入后期的熔炼工序。这就是所谓的低温烘烤、快速升温、高温短时间烧结的工艺措施。采用这一新工艺所用的时间仅为旧工艺的 2/3~1/2。省时省电操作方便且烧结良好。使用中未发现裂纹和其他不良现象。炉衬使用寿命可超过150炉次。最高可达 200 炉次。四、结论1、 适用于多种有色金属 , 普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。2、 用高铝矾土炉衬熔炼金属合金其元素烧损要比酸性、碱性炉衬低,不仅提高了合金的利用率,而且大大增强了抵抗合金、溶渣对炉衬的侵蚀能力。3、 耐热度高 , 寿命长,线膨胀系数小,仅是酸性、碱性炉衬的 1/2-1/3, 大大提高了炉衬在间歇生产生条件下的使用寿命。4、 高铝矾土炉衬的壁厚可做得较薄 , 在生产中几乎能超装一倍的金属炉料。5、炉衬采用低温烘烤、高温短时间快速烧结工艺,时间仅为原工艺的 2/3~I/2, 致密化速率为原工艺 的 2 倍以上。不仅节省了烘干烧结的时间, 而且也节省了电力。6、炉衬烧结良好、致密,使用中未发现裂纹和其他不良现象,高铝矾土炉衬的使用寿命多在150炉次左右,最高可达 200 炉次。参考文献1 李景仁。高铝矾土感应炉坩埚的致密化烧结。铸造 1991。32 詹国祥。熔炼络系铸铁的感应炉炉衬。铸造 1995。53 《熔模精密铸造》编写组。熔模精密铸造 国防工业出版社 19844Research and application of induction furnace lining of high bauxite(Baotou vocation technology college, Department of material engineering, Inner Mongolia Baotou 014030)SunMin WangShuTian ShiJiDongAbstract:Furnace lining of high bauxite have get high refractoriness, fine heat resistance, better resist press residues, and well resist corrosion .By means of Tight agglutination used for smelting of many kinds of non-ferrous metals, ordinary cast iron, cast iron with graphite, cast alloy iron, carbon and alloy steel, stainless steel and heat resisting steel. Alloy element loss by burning is lower in smelting; Furnace material can be loading one multiple. Techniques measures of hypothermia bake, quick lift temperature and short time high temperature tight agglutination are applied in Furnace lining. The life period of furnace lining usually are 150 times and200 times in words :High bauxite; Furnace lining; Induction furnace; Tight agglutination

我有啊~~~你们班上学期没写过???你不会是要写社会实践吧???

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

耐火材料论文参考文献大全

高铝矾土感应炉衬的研究与应用 (XXXXXXX 材料工程系 内蒙古 包头 014030) XX XXX XXX[提要] 阐述了高铝矾土炉衬较高的耐火度、优良的热稳定性、较好的抗渣性、良好的抗蚀性、炉衬的致密化烧结。适用于多种有色金属,普通铸铁、球墨铸铁、及多种合金铸铁,碳钢、合金钢、不锈钢和耐热钢的熔炼。熔炼中金属合金元素烧损低,可超装一倍的金属炉料。炉衬采用低温烘烤、快速升温、高温短时间致密烧结的工艺措施。炉衬的使用寿命多在150炉次左右,最高可达200炉次。关键词:高铝矾土 炉衬 感应炉 致密烧结一、前言本文研究的高铝矾土炉衬从冶金反应上,不仅适用于各种有色金属、普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。用高铝矾土炉衬熔炼金属合金其元素烧损要比石英砂、镁砂炉衬低,不仅提高了合金的利用率,而且大大增强了抵抗合金、溶渣对炉衬的侵蚀能力。高铝矾土炉衬的另一大优点是耐热度高、寿命长、线膨胀系数小、仅是酸性、碱性炉衬的 1/2~1/3, 大大提高了炉衬在间歇生产生条件下的使用寿命。炉衬的热稳定性好,耐急冷急热性强,高温荷重大,抵抗金属冲蚀作用强及合金元素烧损少,是石英砂、镁砂炉衬所不及的。高铝矾土炉衬的壁厚可做得较薄 , 在生产中几乎能超装一倍的金属炉料。此外,炉衬的结烧工艺采用低温烘烤、快速升温、高温短时间烧结的工艺措施。采用这一新工艺所用的时间仅为旧工艺的 2/3~1/2。省时省电炉衬烧结良好。高铝矾土炉衬的使用寿命多在150炉次左右,最高可达200炉次。二、高铝矾土炉衬的性能1、物理性能(1) 较高的耐火度高铝矾土化学成份AL2O3 80~90% ;Si02 7~15% ;Fe203 ~ ;Ca0 ~ ;MgO ~; K20 ~.5%;Na20 ~ ;Ti02 ~ 。耐火度 1750℃~1800 ℃,可在 1650 ℃1~750 ℃下稳定工作。能减轻钢水对炉衬的冲涮损耗,延长炉衬寿命。而较纯的石英砂耐火度为 1710 ℃。(2)优良的热稳定性高铝矾土用作炉衬,烧结后的矿物组成相中多为莫来石,其次为刚玉及少量方石英和玻璃相。莫来石的线胀系数 ( × 10-6mm/mm•℃ ) 大约只有镁砂和石英砂的 1/3,刚玉的线胀系数 (× 10-6mm/mm •℃ ) 也比镁砂和石英砂低。当 属于硅线石组成时 (含AL2O3 ), 其线胀系数可低为 × 10-6mm/mm•℃。因 此,高铝矾土炉衬较镁砂和石英砂炉衬的抗热冲击性能优良得多,有助于减轻热应力,使它的耐急冷急热性较好。在使用中即使产生裂纹也极小,若配料、打结得当,就是采用问歇式熔炼,也不会产生裂纹。石英砂、镁砂炉衬线膨胀系数大,工作时内外温差大,炉衬易产生裂纹和开裂。石英砂炉衬其寿命一般只有几十次 , 而镁砂炉衬的寿命则更低。镁砂、石英砂炉衬在烘炉升温时,体积发生较大膨胀,不得不采取缓慢升温延长烘炉时间的操作,以尽量减少裂纹和防止塌炉。而高铝矾土炉衬就无上述问题,可大大缩短烘炉时间,又不会产生裂纹,从而既保证了炉衬质量又降低了能耗。(3)耐压强度 30-40N/mm2( 经5小时1000℃煅烧 )是普通粘土砖的3-4倍。炉衬的机械强度好、壁厚可以减薄,可超装一倍的金属炉料。在固定的感应器条件下,壁厚薄则增揭容量就相对大些;同时减少了感应器内部不导磁的空间,漏磁减少,能得到较高的电效率。这样,生产率较高且耗电量又低。(4)导热系数 。(5) 松容重 1600kg/m3。(6)显微孔隙率 18-22%。(7)烧结后的容重 1750-1770kg/m3。2.较好的抗渣性能高铝矾土炉衬抗碱性渣的能力优于石英砂炉衬, 高铝矾土炉衬中 AL203比 MgO更稳定,两者反应较弱可生成铝镁尖晶石,其熔点 2135 ℃ ,AL203 与MnO 作用生成锰尖晶石,其熔点1560℃, AL2O3与 FeO 作用生成铁尖晶石,其熔点 1780 ℃ 。AL203与MnO、Fe2O3复合作用生成熔点为 1520 ℃的共晶体,与 Cr203 形成固溶体 , 此固溶体对炉衬有增强作用。直得注意的是若熔炼完高铬合金后最好不要熔炼无铬或低铬合金,否则会造成 Cr203 脱溶使炉衬表面疏松、强度下降。高铝矾土炉衬与 C、Fe203、SiO2基本不反应,而与 ZnO 生成尖晶石与B203、P205、CaO生成难溶的铝酸盐。CaO、AL203、Fe203 复合作用对炉衬的侵蚀作用要比单独作用强一些。与 Na20、K20 作用生成易溶化的共晶体及化合物。故溶渣中 Na20、K20、CaO 对高铝矾土炉衬侵蚀较大,而石英砂炉衬对溶渣中的 MgO、Zn0、PbO、CaO、Na20、K20反应激烈更易造成炉衬的侵蚀,CaO、Si02、FeO复合作用形成易溶化合物,特别是ZnO、PbO对炉衬侵蚀极大。石英砂炉衬中 Fe203 含量要求严格控制、由机械破碎,研磨的石英砂( 碱性炉衬中的镁砂 )应严格磁选 , 否则会造成炉衬漏电,产生炉衬的烧穿事故。3、良好的抗蚀性能高铝矾土炉衬因其矿物组成主要是莫来石其次是刚玉及少量方石英和玻璃相,其化学稳定性高,在高温下呈弱碱性与AL、Mn、Fe、Si、Sn、Go、Cr、Ni基本不发生化学反应。与Zn、Pb、Mg、Ti等反应微弱与Cu反应较明显( 熔炼铜合金时 )。而石英砂炉衬与Al、Mg、Pb、Zn、Mn等均有明显反应。Zn、Pb ( 黄铜 ) 会使炉衬严重侵蚀,甚至常常在短时间内将炉衬烧穿,Al、Mg、Ca等均会使炉衬严重侵蚀。在熔炼低硅铸铁时,碳对炉衬的侵蚀,炉衬裂纹的扩展影响也较大。一般来讲高铝矾土炉衬比石英砂炉衬对合金的收得率高 , 而总烧损不可回收损失低 1. 4%。其原因是高铝矾土炉衬造渣作用小,液体不易氧化而且从渣中还原金属的反应较强。高铝矾土炉衬在 1500 ℃以上长时间保温对Cr、Ni、Al、Cu几乎没有烧损 ,1350 ℃以下C、Si无变化,1400 ℃-1500 ℃C、Si每小时烧损 ;Si每小时烧损 ;1500 ℃保温 3 小时Mn的相对烧损仅为 。石英砂炉衬熔炼耐蚀铸铁时其元素烧损为:C 、Si 、、Cr 、、 、S 。对可锻铸铁其元素平均烧损为:C 、Si 8%、Mn 7%。对高强度铸铁元素烧损为:C 2%、Si 、Mn 、P 、 、 。由于高温下高铝矾土比镁砂更稳定,在一般条件下与Cr、C、Mn元素的作用较弱,故炉衬浸蚀轻微。由此可知,高铝矾土炉衬不仅适用于多种有色金属、普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。 三、高铝矾土炉衬的致密化烧结感应炉炉衬烧结的目的是把打结好的靠近 融熔金属一面一定厚度的耐火材料转变为致密体。只有致密化烧结的坩埚才能承受高温钢(铁)水的冲刷和熔渣的侵蚀。坩埚烧结的致密化程度与耐火材料的化学组成、粒度配比、烧结工艺和烧结温度等因素有关。1、粒度配比合理的粒度配比可获得烧结前的最小气孔率。如果粒度配比不合理,打结后炉衬内的气孔率较高。烧结过程是由颗粒重排、气孔充填和晶粒长大等阶段组成。如果气孔率较高,在烧结过程中难以使绝大部分气孔被充填而影响其致密化。另外,合理的粒度配比还可获得最大抗热冲击性。为兼顾低的气孔率和高的抗热冲击性,粒度的配比是:粗(3~5mm):中(~1mm): 细(﹤)=60:10:30。2、粘结剂在高温下,少量的添加剂,与主晶相生成少量液相,可加速烧结过程的进行, 并能起到 -定的粘结作用。高铝矾土熟料中含有均匀分布的 Fe203、CaO、MgO、TiO2等微量杂质,在高温下它们与主晶相生成少量液相, 能够满足烧结过程中扩散传质的需要Fe203、CaO 和MgO在烧结过程中还是莫来石化的促进剂。故 -般情况下不需加入任何粘结剂。但对小容量感应炉,因打结完毕后胎具要取出,为防止烘烤过程骨料颗粒散落,故要加入1~工业硼酸 (H3B03 )。3、烧结温度由烧结机理可知,只有体积扩散才能导致坯体致密化。表面扩散只能改变气孔形状而不 能引起颗粒中心距逼近,因而不发生致密化过程。在高温烧结阶段主要以体积扩散为主,而在低温阶段以表面扩散为主。在坩埚的烧结过程中,如果在低温停留时间较长则不仅不发生致密化反而因表面扩散使气孔封闭,内部气体难以排出遗留在烧结层中。这样将会使坩埚的使用性能降低。通常取 Ts=~ (Ts为烧结温度 ,Tm 为熔融温度 )。从烧结理论上讲,在烧结过程中应尽快地从低温升到高温,以便为体积扩散创造条件。因此,采用高温短时间烧结是获得致密坩埚的有效手段。烧结温度一般控制在1450℃~1500℃较为合理,过高的烧结温度将导致晶界迅速移动而使处于晶界上的气孔来不及向外扩散就被包入大 晶粒内,其结果必然产生晶体缺陷。因此,必须控制烧结温度,使晶界缓慢移动,最大限度地消除气孔,从而获得较致密的坩埚烧结体。4、烧结工艺在烧结坩埚过程中的具体做法是:炉衬打结完毕后,自然风干24小时,以5~30% 的功率烘烤。间断送电让炉衬保持初期红色(≤500 ℃), 直至烘干(4~5小时即可)。随之加入 1/3 的炉料并以大功率全负荷运行使炉料快速熔清,在熔化温度保温一小时。接着进入后期的熔炼工序。这就是所谓的低温烘烤、快速升温、高温短时间烧结的工艺措施。采用这一新工艺所用的时间仅为旧工艺的 2/3~1/2。省时省电操作方便且烧结良好。使用中未发现裂纹和其他不良现象。炉衬使用寿命可超过150炉次。最高可达 200 炉次。四、结论1、 适用于多种有色金属 , 普通铸铁、球墨铸铁,及各种合金铸铁,而且还适用于各种碳钢、合金钢、不锈钢和耐热钢的熔炼。2、 用高铝矾土炉衬熔炼金属合金其元素烧损要比酸性、碱性炉衬低,不仅提高了合金的利用率,而且大大增强了抵抗合金、溶渣对炉衬的侵蚀能力。3、 耐热度高 , 寿命长,线膨胀系数小,仅是酸性、碱性炉衬的 1/2-1/3, 大大提高了炉衬在间歇生产生条件下的使用寿命。4、 高铝矾土炉衬的壁厚可做得较薄 , 在生产中几乎能超装一倍的金属炉料。5、炉衬采用低温烘烤、高温短时间快速烧结工艺,时间仅为原工艺的 2/3~I/2, 致密化速率为原工艺 的 2 倍以上。不仅节省了烘干烧结的时间, 而且也节省了电力。6、炉衬烧结良好、致密,使用中未发现裂纹和其他不良现象,高铝矾土炉衬的使用寿命多在150炉次左右,最高可达 200 炉次。参考文献1 李景仁。高铝矾土感应炉坩埚的致密化烧结。铸造 1991。32 詹国祥。熔炼络系铸铁的感应炉炉衬。铸造 1995。53 《熔模精密铸造》编写组。熔模精密铸造 国防工业出版社 19844Research and application of induction furnace lining of high bauxite(Baotou vocation technology college, Department of material engineering, Inner Mongolia Baotou 014030)SunMin WangShuTian ShiJiDongAbstract:Furnace lining of high bauxite have get high refractoriness, fine heat resistance, better resist press residues, and well resist corrosion .By means of Tight agglutination used for smelting of many kinds of non-ferrous metals, ordinary cast iron, cast iron with graphite, cast alloy iron, carbon and alloy steel, stainless steel and heat resisting steel. Alloy element loss by burning is lower in smelting; Furnace material can be loading one multiple. Techniques measures of hypothermia bake, quick lift temperature and short time high temperature tight agglutination are applied in Furnace lining. The life period of furnace lining usually are 150 times and200 times in words :High bauxite; Furnace lining; Induction furnace; Tight agglutination

[1]陶维屏,苏德辰.中国非金属矿产资源及其利用与开发.北京:地震出版社,2002.

[2]刘研,李宪洲.高岭土的深加工与新材料.世界地质,2004,23(2):195~200.

[3]孔浩.高岭土改性和层柱材料的制备与表征.天津:天津大学硕士论文,2002.

[4]中国矿床编委会编著.中国矿床.北京:地质出版社,1994.

[5]王怀宇,张仲利.世界高岭土市场研究.中国非金属矿工业导刊,2008,(2):58~62.

[6]吴铁轮.我国高岭土市场现状及展望.非金属矿,2004,27(1):1~4.

[7]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土的矿物学特征与成因简析.岩石矿物学杂志,2006,25(5):433~439.

[8]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土矿床特征及成因分析.矿物岩石,2006,26(4):1~7.

[9]张术根,丁俊,刘小胡,等.湖南辰溪仙人湾高岭土矿物学特征与应用途径探索.矿物学报,2006,26(4):357~362.

[10]李凯琦,刘钦甫,许红亮.煤系高岭岩及深加工技术.北京:中国建材工业出版社,2001.

[11] Frost R deformation in and Clay Minerals,1998,46(3):280~289.

[12] ,41:738.

[13]袁树来,等.中国煤系高岭岩(土)及加工利用.北京:中国建材工业出版社,2001.

[14] Ma C,Eggleton R layer types of kaolinite:Ahigh-resolution transmission electron microscope and Clay Minerals,1999,47:181~191.

[15] Frost R L,Kristof J,Schmidt J M,et spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen Acta Part A,2001,57:603~609.

[16] Van Duin A C T,Steve R dynamics investigation into the adsorption of organic compounds on kaolinite Geochemistry,2001,32:143~150.

[17]刘摔摔,张培萍,吴永功.层状硅酸盐矿物填料在聚合物中的应用及发展.世界地质,2001,20(4):360~365.

[18]刘欣梅,潘正鸿,李国,阎子峰.用煤系高岭土制取白炭黑的研究.石油大学学报(自然科学版),2005,29(2):121~124.

[19]王万军,张术根,孙振家,刘纯波.用伊利石高岭石质煤矸石试制橡胶填料.中南大学学报(自然科学版),2004,35(5):769~773.

[20]张文良.非金属矿物高岭土在涂料中的应用.广东化工,2002,4:38~41.

[21]张怀彬,贾同文,等.沸石催化剂在精细化工中的应用.精细石油化工,1993,(1):6~11.

[22] Rong T J,Xia J catalytic cracking activity of the kaolin-group Letters,2002,57:297~301.

[23]王雪静,张甲敏,杨胜凯,杨风霞.偏高岭土水热合成NaY分子筛的机理研究.无机化学学报,2008,24(2):235~240.

[24]蒋荣立,孔德顺,夏小波,陈文龙.偏高岭石-碱-硅酸钠水热反应体系13X分子筛的合成.硅酸盐学报,2008,36(6):832~836.

[25]孙书红,马建泰,庞新梅,等.高岭土微球合成ZSM-5沸石及其催化裂解性能.硅酸盐学报,2006,36(4):757~761.

[26]蒋笃孝,魏红梅.由高岭土合成环境友好的无磷洗涤剂用沸石添加剂.现代化工,1999,19(12):27~28.

[27]沈水发,陈耐生,陈柽生,等.利用高岭土制备聚合氯化铝净水剂.无机盐工业,1999,31(5):33~35.

[28]陈国斌,唐课文,黄凯明.用高岭土制备聚氯化铝铁-淀粉复合絮凝剂及性能研究.湖南理工学院学报(自然科学版),2006,19(2):52~58.

[29]吴宏海,刘佩红,张秋云,何广平.高岭石对重金属离子的吸附机理及其溶液的pH条件.高校地质学报,2005,11(1):85~91.

[30]侯梅芳,崔杏雨,李瑞丰.沸石分子筛在气体吸附分离方面的应用研究.太原理工大学学报,2001,(3):135~139.

[31]刘燕.高岭土类粘土矿物材料对模拟核素Sr、Co、Cs的吸附性能研究.中国非金属矿工业导刊,2007,(5):25~28.

[32]李恒德.现代材料科学与工程词典.济南:山东科技出版社,2001:411~412.

[33] Bandyopadhyoy S,Mukerji of nitrogen content on the sintering behavior and properties of Sialon prepared from ,1993,19(3):133~139.

[34] Suvorov S A,Dolqushev N V,Zabolotskij A synthesis of dispersed sialon i Tekhnicheskaya Keramika,2002,4:2~5.

[35] Antsiferov V N,Gilev V materials from i Tekhnicheskaya Keramika,2001,2:2~8.

[36] Panda P K,Mariqppan L,Kannan T reduction of kaolinite under nitrogen Inter,2000,26(5):455~461.

[37] Panneerselvam M,Rao K microwave method for the preparation and sintering of β R Bull,2003,38(4):663~674.

[38]张海军,李文超,钟香崇.天然原料合成o′-Sialon-ZrO2-SiC复合材料.稀有金属,2000,34(1):25~29.

[39]张海军,李文超,钟香崇.粘土还原氮化合成o′-Sialon基复合材料.耐火材料,2000,34(3):137~140.

[40]李亚伟,李楠,王斌耀,等.β-赛隆(Sialon)/刚玉复合耐火材料研究.无机材料学报,2000,15(4):612~618.

[41]钱扬保,王福明,徐利华,等.粘土碳热还原氮化二步法制备β-Sialon结合刚玉复相材料.耐火材料,2002,36(2):77~69.

[42] Davidovits and geopolymeric Then Angl,1989(35):429~441.

[43] Miao J Y,Dennis W H,Chang C C,et carbon spheres of high purity prepared on kaolin by and Related Materials,2003,12:1368~1372.

[44]王银叶.天然矿高岭土制备莫来石复合纳米晶微观结构表征.硅酸盐学报,2000,28(2):68~71.

[45] Karch J,Birringer R,Gleiter at low ,1987,33(6148):556~559.

[46]吕凤柱,张宝砚,王文斌,窦臻.PA1010/高岭土杂化材料的制备和探讨.高分子材料科学与工程,2002,18(2):187~191.

[47]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.

[48]魏月琳,吴季怀.高岭土-丙烯酰胺系超吸水性复合材料表征.华侨大学学报(自然科学版),2002,23(4):412~416.

[49]王新.聚合填充法制备 UHMWPE/Kaolin复合材料的结构与性能.北京:中国科学院化学研究所博士论文,2001.

[50]朱秀林,顾梅,赵峰.高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究.高分子材料科学与工程,1994,(5):46~49.

[51]熊传溪,刘起虹,董丽杰,王雁冰.HDPE/高岭土复合材料的制备与性能.武汉理工大学学报,2002,24(1):1~3.

[52]陈汉周,刘钦甫,侯丽华,赵庆章.高岭土/PET纳米复合材料的制备与表征.非金属矿,2008,31(3):42~44.

[53]蔡会武,江照洋,王瑾璐,等.丙烯酸/淀粉/高岭土复合高吸水树脂的制备及性能研究.化工新型材料,2008,36(4):47~49.

[54]刘钦甫,杨晓杰,张鹏飞.中国煤系高岭岩(土)资源成矿机理与开发利用.矿物学报,2002,22(4):359~364.

[55]陆军.煤矸石发电是扩大煤矸石综合利用的有效途径.中国煤炭,2001,27(7):36~37.

[56]张术根,王万军,谭建农.湖南煤矸石资源环境评价与开发利用研究.长沙:中南大学出版社,2003.

[57]刘春荣,宋宏伟,董斌.煤矸石用于路基填筑的探讨.中国矿业大学学报(自然科学版),2001,30(3):294~297.

[58]刘俊尧,裴春平,刘晓惠,张淑娟.煤矸石做道路基层材料的应用分析.云南交通科技,2000,16(3):23~26.

[59]施龙青,韩进,尹增德,陆鸿.煤矸石改良土壤的应用研究.中国煤炭,1998(5):37~39.

[60]王刚.利用煤矸石生产肥料.煤炭加工与综合利用,1996,(6):10~11.

四氧化三铁是铁的一种氧化物,其化学式为Fe3O4,相对分子质量为。四氧化三铁是中学阶段唯一可以被磁化的铁化合物。四氧化三铁中含有Fe2+和Fe3+,X射线衍射实验表明,四氧化三铁具有反式尖晶石结构,晶体中并不存在偏铁酸根离子FeO2。四氧化三铁,又称磁性氧化铁、氧化铁黑、磁铁、磁石、吸铁石,天然矿物类型为磁铁矿。铁在四氧化三铁中有两种化合价,为反式尖晶石结构,即FeⅢ[FeⅢFeⅡ]O4。另外,四氧化三铁还是导体,因为在磁铁矿中由于Fe2+与Fe3+在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性。SiO2又称硅石。在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的是淡黄色。密度 ~.熔点1670℃(鳞石英);1710℃(方石英)。沸点2230℃,相对介电常数为。不溶于水微溶于酸,呈颗粒状态时能和熔融碱类起作用。用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。

新型耐火材料论文参考文献

This paper presents an experimental studyabout the impact of reflective coatings on building surface temperatures, airtempera- ture, globe temperature, energy consumptionandthermal comfort for buildings located in Shanghai, China. Thislocation is characterized by hot summers and cold winters, and the overalleffects of reflective coatings are complex considering the potential benefitsin the summer and the potential penalties during winter. In parallel, anotherexperiment with four smaller test cells was carried out to investigate theimpact of envelope material thermal properties combined with reflectivecoatings.这篇论文介绍了有关反射涂层的实验研究,分别是对位于中国上海的建筑物的表面温度,空气温度,温度计的温度,能量损耗和热舒适度的影响。本位置的特点是炎热夏季和寒冷冬季的气候,考虑到夏季潜在的收益和冬季潜在的罚款,发射涂层的整体效应比较复杂。同时,有关四个更小实验间的实验已经被执行用来调查包含了反射涂层的外层材料的热力学性质。

支持楼上的,我也在里面下载了这一篇了,还不错

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

相关百科

热门百科

首页
发表服务