定积分的算法有两种:
换元积分法
如果 ;x=ψ(t)在[α,β]上单值、可导;当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,
则
分部积分法
设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:
扩展资料
定积分的性质:
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
计算定积分常用的方法:
(1)
(2)x=ψ(t)在[α,β]上单值、可导
(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b
则
2.分部积分法
设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式:
拓展资料:
定积分的数学定义:如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n 个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n) ,作和式f(r1)+...+f(rn) ,当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x) 在区间上的定积计做/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 这里,a 与 b叫做积分下限与积分上限,区间[a,b] 叫做积分区间,函数f(x) 叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式。
几何定义:可以理解为在 Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值。(一种确定的实数值)
定积分是在不定积分的前提下,把上下限带入求得的数值。集体如何算,没办法笼统讲。积分是导数的逆运算。要记公式,带公式。
答案是 4所谓用定义法就是利用曲边梯形面积求解,这也是定积分的引例。即曲线与x=a,x=b围城的图形面积S就是该函数在[a,b]的积分。具体步骤第一,分割。就是将积分图形分成n个曲边梯形。将【0,4】n等份,分点为4i/n(i=1,2...n)。第i个曲边梯形的面积为 f(4i/n)*(4/n)=32i/n^2-12/n。第二,求和。n个曲边梯形的面积为 Sn=S1+S2+...Sn=W(i=1,n)[32i/n^2-12/n]=16+16/n-12 。{注:W(i=1,n)表示求和符号 i从1到n,没有编辑器打不出来}第三,求极限。因为所求的面积s就是Sn的极限值。即,当分割的曲边梯形边长4/n越小,数量n越多,Sn就越接近S的面积。S=lim(n->无穷)=16+0-12=4 这就是所求函数在0到4的定积分。总结:定积分的定义关键是抓住其几何意义,也就是面积问题。因此,这道题,也可以直接用几何方法得到,就是直接做出函数2x-3的图形。算出其与x=0,x=4围成的图形面积,用在x轴上方图形的面积减去下方的就可以了。
可以上网查书籍目录: 前言第一章 函数、极限与连续第一节 函数第二节 极限第三节 函数的连续性自测题(一)自测题(二)自测题答案第二章 导数与微分第一节 导数概念第二节 导数的计算第三节 函数的微分自测题(一)自测题(二)自测题答案第三章 中值定理与导数应用第一节 中僮定理第二节 洛必达法则与泰勒公式第三节 函数翡单调性、极值和凸性自测题(一). 自测题(二)自测题答案第四章 不定积分第一节 原函数与不定积分的概念第二节 利用凑微分法求不定积分第三节 换元积分法与分部积分法第四节 几种特殊类型函数的积分自测题(一)自测题(二)自测题答案第五章 定积分第一节 定积分的概念与性质第二节 定积分的计算方法第三节 反常积分第四节 与定积分相关的综合性问题自测题(一)自测题(二)自测题答案第六章 定积分的应用 第一节 极坐标简介第二节 定积分的应用自测题(一)自测题(二)自测题答案第七章 向量代数与空间解析几何第一节 向量代数第二节 空间曲面与空间曲线第三节 平面与直线方程自测题(一)自测题(二)自测题答案第八章 多元驻散微分法及应用第一节 多元函数的概念第二节 多元函数微分法第三节 多元函数微分法的应用自测题(一)自测题(二)自测题答案第九章 重积分第一节 二重积分的概念第二节 二重积分的计算第三节 三重积分的计算第四节 重积分的应用自测题(一)自测题(二)自测题答案第十章 曲线积分与曲面积分第一节 对弧长的曲线积分第二节 对坐标的曲线积分第三节 格林公式第四节 对面积的曲面积分第五节 对坐标的曲面积分第六节 高斯公式和Stokes公式自测题(一)自测题(二)自测题答案第十一章 无穷级数第一节 常数项级数及其性质第二节 常数项级数敛散性判别法第三节 幂级数第四节 函数展开成幂级数第五节 傅里叶级数自测题(一)自测题(二)自测题答案第十二章 微分方程第一节 常微分方程的基本概念第二节 一阶微分方程第三节 可降阶的高阶微分方程第四节 高阶线性和常系数线性方程
国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
数学领域中的一些著名悖论及其产生背景
你去学校图书馆看看硕士博士论文,就相近的抄一下就行,主要方向就是,当今社会研究概率论在计算定积分中的应用是十分必要的,什么的
按照两重积分的定义来计算两重积分的值,这个方法是相当局限的。目前对两重积分的求解是化两重积分为两次定积分。 由于两重积分的几何意义之一可认为是一曲顶柱体的体积,则在空间直角坐标系下,如图1所示:可在a、b之间插入n-1个点,使得:这样就将曲顶柱体分成n个部分,将着n个部分的体积相加,并记曲顶柱体的体积为V,则有:V≈V1; 继续细分区间,得体积V2; 以此类推,这样我们得到一个序列: V1,V2,V3,… 当分割的区间的长度趋于零时,上面的序列趋于一常数,这时我们就把该常数理解为曲顶柱体的体积V。 当区间长度趋于零时,我们不妨设区间是一个点(点是有长度的,因为线段是由无限个点组成的,如果点没有长度的话,将不会存在线段),对于已化分成n个部分的曲顶柱体,我们取任意一小部分体积进行分析,假如我们取区间x0对应的那一部分体积分析,如图3阴影部分所示:则这一部分小体积可认为一是个平顶柱体的体积,所以:同理可得: 其中dx是点的长度,则对于区间【a,b】内的所有小平顶柱体的体积,有函数表达式:当区间长度趋于零时,Δv趋于零,则Δv=dv,所以:则【a,b】上,曲顶柱体的体积为:综上所述,有:以上便是在空间直角坐标系中,求得两重积分的计算方法。 这是笔者在学习了两重积分的计算法后的一些见解,不当之处在所难免,敬请广大读者批评指正!
一、内容概要1.二重积分的定义定义 设函数在有界闭区域D上有定义.分割 用任意两组曲线将区域D分成n个小区域,分别记为.并以代表第i个小区域的面积.求和 在每个小区域上任意一点作乘积,并求和.取极限 记为n个小区域中的最大的直径,如果.存在,且此极限值不依赖区域D的分法,也不依赖于点的取法,则称此极限值为函数在区域D上的二重积分,记为,称为面积元素.2.二重积分的几何解释由二重积分的定义可知,二重积分为一个数值.从几何上可以解释为:若在区域D上, ,则二重积分的值等于以区域D为底,以曲面为顶的曲顶直柱体的体积.若在区域D上, ,则二重积分的值的绝对值等于以D为底,以曲面为曲顶的直柱体体积,此时二重积分的值为负值.若在区域D上的某些子区域上,而另一些子域上,则二重积分的值等于这些子区域上,以为曲顶的直柱体体积的代数和,其中的直柱体体积值前取“+”,在的直柱体体积前取“-”.3.二重积分的存在性存在定理 若在闭区域D上连续,则在D上的二重积分必存在.4.二重积分的性质设下列被积函数都是可积的.性质1 .此性质由左向右看,可以解释为:常数因子可以提到积分号外面去.由右向左看,可以解释为:常数乘以二重积分,可以将此因子送入积分表达式中去.性质2 .性质3 如果闭区域D由有限条曲线分为两个区域,则.性质4 若记区域D的面积为S,则.性质5 在D上若,则,.性质6 若在D上有,则,其中S为区域D的面积.性质7 设函数在闭区域D上连续,S为区域D的面积,则在D上至少存在一点,使得,称此性质为二重积分的中值定理.5.二重积分的计算二重积分是定积分的推广.计算的基本途径是将其转化为二次积分计算,不同积分次序的二次积分计算量可能相差很大,甚至其中一种次序易于计算,而另一种次序计算复杂,以至于不能用初等函数形式表出.因此计算二重积分时选择积分次序是至关重要的问题.
二重积分的计算方法
开题报告主要是“泛泛而谈”,你的题目要介绍二重积分的起源发展,重要意义,简略的介绍下二重积分的一些算法,不用具体介绍算法,再稍微介绍点应用方面的知识,都只需简略的介绍。
定积分的应用:几何应用,物理应用。
1、平面图形的面积。
2、旋转体的体积问题。
3、曲线的弧长。
4、旋转体的侧面积。
定积分是积分的一种,是函数f(x)在区间a到b上的积分和的极限。
这里应注意定积分与不定积分之间的关系,若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
定积分的应用如下:
几何应用;物理应用。
1、平面图形的面积;
2、旋转体的体积问题;
3、曲线的弧长;
4、旋转体的侧面积。
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
§6-3 定积分在物理学中的应用(一)引言定积分的应用十分广泛,自然科学、工程技术中的许多问题都可以使用定积分来求解。下面我们来讨论一些物理方面的实例,旨在加强我们运用微元法解决一些物理学中的一些实际问题。问题一 变力作功由物理学可知,在常力F的作用下,物体沿力的方向作直线运动,当物体移动一段距离s时,力F所作的功为但在实际问题中,物体在运动过程中所受到的力是变化的,这就是我们下面要讨论的变力作功问题。【例1】把一个带 电量的点电荷放在 轴上坐标原点 处,它产生一个电场.这个电场对周围的电荷有作用力.由物理学知道,如果有一个单位正电荷放在这个电场中距离原点 为 的地方,那么电场对它的作用力的大小为( 为常数) 当这个单位正电荷在电场中从 处沿 轴移动到 处时,计算电场力 对它所作的力。解:(1)取积分变量为 ,积分区间为 ;(2)在区间 上任取一小区间 ,与它相应的电场力 所作的功近似于把 作为常力所作的功,从而得到功微元 = ;(3)所求的电场力 所作的功为通过复习已经掌握的有关力学方面的概念和微元法,并对变力作功问题进行分析,将变力作功的过程进行无限细分为若干个子过程,把每一个子过程近似看作常力作功,从而求出功微元。通过学习使学生能够用微元法,分析解决实际问题和灵活运用这一数学模型。主 要 内 容教 学 设 计= = = 一般地,若变力 将某一物体沿力的方向从 移到 处,则变力 所作的功为. (6-6)下面再举一个计算功的例子,它虽不是一个变力作功问题,但它通过定积分的微元法,先求功微元,再求定积分,并给出了一个解决此类问题的数学模型。注意1:本方法的实质就是将变力的作功过程进行无限细分为若干个子过程,再将分割的每一子过程的变力作功近似看成常力作功问题来求解,并取任意一子过程变力所作的功为所求的功微元。【例2】修建一座大桥的桥墩时先要下围囹,并抽尽其中的水以便施工,已知半径是10米的圆柱形围囹上沿高出水面2米,河水深18米,问抽尽围囹内的水作多少功?解:以围囹上沿的圆心为原点,向下的方向为 轴的正向,建立坐标系.(1) 取水深 为积分变量,它的变化区间为 ;(2) 相应于 上任一小区间 的一薄层水的高度为 ,水的密度为 牛顿/米3,这薄层水的重力为 (其中 是薄水的底面积).把这薄层水抽出围囹外时,需要提升的距离近似为 ,因此需作的功近似为(3) 即所求功微元。在 上求定积分,就得到所求的功为= (焦耳)注意2:为什么该问题的定积分积分区间取作[2,20],而不取作[0,20]?
定积分在物理学中的应用有:变力沿着直线做功;液体的静压力;物体的万有引力。
1、变力沿直线所作的功。
由物理学知道如果物体再直线的过程中有一个不变的力F作用在这物体上,且这力的方向与物体的运动方向一致,那么,在物体移动了距离s时,力F对物体所作的功为w=F·s。如果物体在运动的过程中所受的力是变化的,就会遇到变力作功的问题,不能直接使用此公式,而采用“元素法”。
2、液体的静压力。
由物理学知道,在水深为h处的压强为p=h,这里y是水的比重。如果有一面积为A的平板水平地放置在水深为h处,那么,平板—侧所受的水压力为P=p·A。
如果平板垂直放置在水中,由于水深不同的点处压强p不相等,平板一侧所受的水压力就不能直接使用此公式,而采用“元素法“。
3、物体的万有引力。
由物理学知道,在水深为h处的压强为p=h,这里y是水的比重。如果有一面积为A的平板水平地放置在水深为h处,那么,平板—侧所受的水压力为P=p·A。
如果平板垂直放置在水中,由于水深不同的点处压强p不相等,平板一侧所受的水压力就不能直接使用此公式,而采用“元素法“。
定积分:
定积分定义:设函数f(x)在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1],(x1,x2],(x2,x3],…,(xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式。该和式叫做积分和,设λ=max{△x1,△x2,…,△xn}(即λ是最大的区间长度).
如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x)在区间[a,b]的定积分,记为,并称函数f(x)在区间[a,b]上可积。其中:a叫做积分下限,b叫做积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式,∫叫做积分号。
之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数,而不是一个函数。