最常用的检测器是紫外吸收检测器(UVD),用于有紫外吸收的物质。其他的二极管阵列检测器(DAD)可以扫描出一个3D光谱,它是在紫外检测器基础上改良出来的,用于多波长错组分物质;示差折光检测器(RID)和蒸发光散射检测器(ELSD)都属于万能检测器,可以检出没有紫外吸收的物质。还有荧光检测器,用于可发出荧光的物质。
扩展资料:
高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。
高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。
该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术应用。
高效液相色谱适宜于分离、分析高沸点、热稳定性差、有生理活性及相对分子量比较大的物质,因而广泛应用于核酸、肽类、内酯、稠环芳烃、高聚物、药物、人体代谢产物、表面活性剂,抗氧化剂、杀虫剂、除莠剂的分析等物质的分析。
如何使用高效液相色谱(HPLC)
1. 高效液相色谱仪原理 高效液相色谱仪原理 高效液相色谱仪的使用和原理分析 高效液相色谱法(HPLC)是目前应用广泛的分离、分析、纯化有机化合物(包括能通过化学反应转变为有机化合物的无机物)的有效方法之一。 在已知的有机化合物中,约有80%能用高效液相色谱法分离、分析,而且由于此法条件温和,不破坏样品,因此特别适合高沸点、难气化挥发、热稳定性差的有机化合物和生命物质。HPLC系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。 其中输液泵、色谱柱、检测器是关键部位。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、与柱或保护住、柱温控制器等,现代HPLC仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC仪还备有自动馏分收集装置。目前常见的HPLC仪生产厂家国外有Waters 公司、Agilent 公司(原HP公司)、岛津公司等,国内有上海伍丰科学仪器有限公司,上海禾工科学仪器有限公司,大连依利特公司、北京创新通恒、北京温分等。 一、输液泵1.泵的构造和性能输液泵是HPLC系统中最重要的部件之一。泵的性能好坏直接影响到整个质量和分析结果的可靠性。 输液泵应具备如下性能:①流量稳定,其RSD应小于,这关系到定性定量的准确性;②流量范围宽,分析型应在范围内连续调,制备型应能达到100ml/min;③输出压力高,一般应能达到150~300KG/CM2:④液缸容积小;⑤密封性能好,耐腐蚀。泵的种类很多,按输液性质可分为恒压泵和恒流泵。 恒流泵按结构又可分为螺旋注射泵、柱塞往复泵和隔往复泵。恒压泵受柱阴影响,流量不稳定;螺旋泵缸体太大,这两种泵己被淘汰目前应用最多的是柱塞往复泵。 柱塞往复泵的液缸容积小,可至,因此易于清洗和更换流动相,特别适合于再循环和梯度洗脱;改变电机转速能方便地调节流量,流量不受柱压影响;泵压可达400KG/CM2。ADW主要缺点是输出的脉冲性较大,现多彩采用双泵系统来克服。 双泵按连接方式可分为并联式和串联式,一般说来并联泵的流量重现性较好(RSD为左右,串联泵为),但出现故障的机会较多(因多了单向阀),价格也较贵。二、进样器一般HPLC分析常用六通进样阀(以美国RHEODYNE公司的7725和7725I型最常见),其关键部件由圆形密封垫子(转子)和固定底座(定子)组成。 耐高压(35~40MPA),进样量准确,重复性好(),操作方便。六通阀进样方式有部分装液法和完全装液法两种。 ①用部分装液法进样时,进样量应不大于定量环体积的50%(最多75%),并要求每次进样体积准确、相同。此法进样的准确度和重复性决定于注器取样的熟练程度,而且易产生由进样引起的峰展宽。 ②用完全装液法进样时,进样量应不小于定量环体积的5~10倍9最少3倍,这样才能完全置换定量环内和流动相,消除管壁效应,确保进样的准确度及重复性。三、色谱柱色谱是一种分离分析手段,分离是核心,因此担负分离作用的色谱柱是色谱系统的心脏。 对色谱柱的要求是柱效高、选择性好,分析速度快等。市售的用于HPLC的各种微粒填料好多孔硅胶以及以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)、多孔碳等,其粒度一般为3,5,7,10UM等,柱效理论值可达5~16万/米。 对于一般的分析只需5000塔板数的柱效;对于同系物分析,只要500即可;对于较难的分离物质对则可采用高达2万的柱子,因此一般10~30CM左右的柱长就能满足复杂混合物分析的需要。柱效受柱内外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,不要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。 即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向内算起30倍料径的厚度。 在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。四、检测器HPLC的检测器分为两类:通用型检测器和专用型检测器。 1.通用型检测器可连续测量色谱柱的流出物的全部特性变化,通常采用差分测量法,这类检测器包括示差折光检测器、介电常数检测器、电导检测器等,通用检测器适用范围广,但由于对流动相有响应,因此易受温度变化、流动相和组分的变化的影响,噪声和漂移都比较大,灵敏度较低,不能用梯度洗脱。2.专用型检测器用以测量被分离样品组分某种特性的变化。 这类检测器对样品中组分的某种物理或化学性质敏感,而这一性质是流动相所不具备的,或至少在操作条件下不显示。这类检测器包括紫外检测器、荧光检测器、放射性检测器等。 高效液相色谱仪的工作原理? 高效液相色谱仪工作原理;高压泵将贮液罐的流动相经进样器送入色谱柱中,然后从检测器的出口流出,这时整个系统就被流动相充满。当欲分离样品从进样器进入时,流经进样器的流动相将其带入色谱柱中进行分离,分离后不同组分依先后顺序进入检测器,记录仪将进入检测器的信号记录下来,得到液相色谱图。 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送,色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万),同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 扩展资料 高效液相色谱仪配置高压二元泵或者低压四元泵,而泵的冲程体积以及混合器的体积大小,均会对色谱基线噪音水平产生影响,特别是在梯度洗脱的时候。一般地泵的冲程体积越小以及混合器的体积相对越大,由输液造成的脉冲相对越小,对于梯度变化的响应能力越高,基线越平缓, 在应用二元泵的时,需要注意的是,当二元混合中的其中一元流动相的比例小于5%的时候,特别是在使用正相等度洗脱对一些医药中间体及终产品进行手性拆分的时候,最好使用单泵预混合的方式。避免由于泵在低比例时泵液精度相对较差,而导致色谱基线出现冲程相关峰, 参考资料来源;搜狗百科--高效液相色谱仪 高效液相色谱仪的基本工作原理 高效液相色谱仪的基本工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 HPLC原理是什么 原理: 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别。 被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据就可以以图谱形式打印出来,以便研究人员分析。 扩展资料: 高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。 ①高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。 ②高速:分析速度快、载液流速快,较经典液体色谱法速度快得多,通常分析一个样品在15~30分钟,有些样品甚至在5分钟内即可完成,一般小于1小时。 ③高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。 ④高灵敏度:紫外检测器可达,进样量在μL数量级。 ⑤应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。 ⑥柱子可反复使用:用一根柱子可分离不同化合物 ⑦样品量少、容易回收:样品经过色谱柱后不被破坏,可以收集单一组分或做制备。 此外高效液相色谱还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。 高效液相色谱的缺点是有“柱外效应”。在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。 高效液相色谱检测器的灵敏度不及气相色谱。 HPLC使用的色谱柱是很细的(1~6 mm),所用固定相的粒度也非常小(几μm到几十μm),所以流动相在柱中流动受到的阻力很大,在常压下,流动相流速十分缓慢,柱效低且费时。 为了达到快速、高效分离,必须给流动相施加很大的压力,以加快其在柱中的流动速度。为此,须用高压泵进行高压输液。 高压、高速是高效液相色谱的特点之一。HPLC使用的高压泵应满足下列条件: a. 流量恒定,无脉动,并有较大的调节范围(一般为1~10 mL/min); b. 能抗溶剂腐蚀; c. 有较高的输液压力;对一般分离,60*10^5Pa的压力就满足了,对高效分离,要求达到150~300*10^5Pa。 ⑴往复式柱塞泵 当柱塞推入缸体时,泵头出口(上部)的单向阀打开,同时,流动相进入的单向阀(下部)关闭,这时就输出少量的流体。 反之,当柱塞向外拉时,流动相入口的单向阀打开,出口的单向阀同时关闭,一定量的流动相就由其储液器吸入缸体中。 这种泵的特点是不受整个色谱体系中其余部分阻力稍有变化的影响,连续供给恒定体积的流动相。 ⑵气动放大泵 其工作原理是:压力为 p1 的低压气体推动大面积( SA )活塞A ,则在小面积( SB )活塞 B 输出压力增大至 p2 的液体。 压力增大的倍数取决于 A 和 B 两活塞的面积比,如果 A 与 B 的面积之比为 50 : 1 ,则压力为 5 * Pa 的气体就可得到压力为 250*Pa 的输出液体。这是一种恒压泵。 参考资料:百度百科——高效液相色谱。 HPLC仪的工作原理是什么? 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350*105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。 如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。 对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。 其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。 流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。 达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。 现在应用很广泛(70~80%)。 2 .液 — 固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。 这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。 ] 3 .离子交换色谱法(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。 以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中) 当交换达平衡时: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系数为: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。 4 .离子对色谱法(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。 其原理可用下式表示: X+水相 + Y-水相 === X+Y-有机相 式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X+Y---形成的。 液相色谱仪使用及工作原理 工作原理: 流动相通过输液泵流经进样阀,与样品溶液混合,流经色谱柱,在色谱柱中进行吸附、分离,最后每一组分分别经过检测器转变为电讯号,在色谱工作站上出现相应的样品峰。 液相色谱的使用: 首先对样品进行预处理,然后进样,进样完毕后,清洗进样口,每次分析结束后,清洗通道,最后关闭仪器。 扩展资料: 液相色谱所用基本概念:保留值、塔板数、塔板高度、分离度、选择性等与气相色谱一致。 液相色谱所用基本理论:塔板理论与速率方程也与气相色谱基本一致,但由于在气相色谱中以液体代替气相色谱中气体作为流动相,而液体和气体的性质不相同。 此外,液相色谱所用的仪器设备和操作条件也与气相色谱不同,所以,液相色谱与气相色谱有一定的差别。 主要有以下几力‘面: ①操作条件及应用范围不同 对于气相色谱,是加温操作。仅能分析在操作温度下能汽化而不分解的物质,对高沸点化合物、非挥发性物质、热不稳定化合物、离子型化合物及高聚物的分离、分析较为困难,致使其应用受到一定程度的限制,据统计只有大约20%的机物能用气相色谱分析。 而液相色谱是常温操作,不受样品挥发度和热稳定性的限制,它非常适合相对分子量较大,难汽化,不易挥发或对热敏感的物质、离子型化合物和高聚物的分离分析,大约占有机物的70%~80%。 ②液相色谱能完成难度较高的分离工作 a.气相色谱的流动相载气是色谱惰性的,基本不参与分配平衡过程,与样品分子无亲和作用,样品分子主要与固定相相互作用。 而在液相色谱中流动相液体也与固定相争夺样品分子,为提高选择性增加了一个因素。也可选择不同比例的两种或两种以上的液体做流动相,增加分离的选择性。 b.液相色谱固定相类型多,如离子交换色谱和排阻色谱等,作为分析时,选择余地大;而气相色谱并不可能。 c.液相色谱通常在室温下操作,较低的温度,一般有利于色谱分离条件的选择。 ③由于液体的扩散性比气体的小105倍,因此,溶质在液相中的传质速率慢,柱外效应就显得特别重要;而在气相色谱中,由色谱柱外区域引起的扩张可以忽略不计。 ④液相色谱中,制备样品简单,回收样品也比较容易,而且回收是定量的,适合于大量制备,但液相色谱尚缺乏通用的检测器,一起比较复杂,价格昂贵。 在实际应用中,这两种技术是相互补充的。 综上所述,液相色谱具有柱效高,选择性高,灵敏性高,分析速度快,重复性好,应用范围广等优点,该法已成为现代分析技术的主要手段之一。 目前在化学,化工,医药,生化,环保,农业等科学领域获得广泛的应用。 高效液相色谱应用非常广泛,几乎遍及定量定性分析的各个领域。 (1)分离混合物 高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。 通过与试样预处理技术相配合,高效液相色谱法所达到的高分辨率和高灵敏度,可分离并同时测定性质上十分相近的物质,能够分离复杂混合物中的微量成分。 并且随着固定相的发展,还可在充分保持生化物质活性的条件下完成对其的分离。 (2)生化分析 由于高效液相色谱法具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域,并已成为解决生化分析问题最有前途的方法。 (3)仪器联用 高效液相色谱仪与结构仪器的联用是一个重要的发展方向。高效液相色谱一质谱联用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等:高效液相色谱一红外光谱联用也发展很快,如在环境污染分析测定水中的烃类等.使环境污染分析得到新的发展 参考资料:百度百科——液相色谱。 液相色谱仪的原理是什么?用来干什么? 液相色谱仪的原理: 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 主要用于对高沸点、难气化合物的混合物通过色谱柱核淋洗剂并以实现分离。应用于生物化学、生物医学、环境化学、石油化工等部门。 扩展资料液相色谱仪根据固定相是液体或是固体,又分为液-液色谱(LLC)及液-固色谱(LSC)。现代液相色谱仪由高压输液泵、进样系统、温度控制系统、色谱柱、检测器、信号记录系统等部分组成。 与经典液相柱色谱装置比较,具有高效、快速、灵敏等特点。 高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统。 进样系统一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。 输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。 分离系统该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成)。
高效液相色谱仪(HPLC)是应用高效液相色谱原理,主要用于分析高沸点不易挥发的、受热不稳定的和分子量大的有机化合物的仪器设备。它由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中做相对运动时,经过反复多次的吸附- 解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。HPLC广泛应用于生命科学、食品科学、药物研究以及环境研究中。储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被转换成电信号传送到记录仪,数据以图谱形式输出检测结果。根据分离机制的不同,HPLC原理可分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法及分子排阻色谱法。1. 液固吸附色谱法液固吸附色谱法中,固定相为固体吸附剂,根据各组分吸附能力差异而使组分得以分离。常用的吸附剂为硅胶或氧化铝,大多数用于非离子型化合物。吸附色谱固定相可以分为极性和非极性两大类。对流动相的要求为:1) 选用的溶剂应当与固定相互不相溶,并能保持色谱柱的稳定性。2) 选用的溶剂应有高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。3) 选用的溶剂性能应与所使用的检测器相匹配,如果使用紫外吸收检测器,就不能选用在检测波长下有紫外吸收的溶剂;若使用示差折光检测器,就不能用梯度洗脱。4) 选用的溶剂应对样品有足够的溶解能力,以提高测定的灵敏度。5) 选用的溶剂应具有低的黏度和适当低的沸点。6) 应尽量避免使用具有显著毒性的溶剂,以保证工作人员的安全。液固色谱法是以表面吸附性能力为依据的,所以它常用于分离极性不同的化合物,也能分离那些具有相同极性基团,但数量不同的样品。2. 液液分配色谱法固定相为液体,根据被分离的组分在流动相和固定相中的溶解度不同而分离。依固定相和流动相的极性不同可分为正相色谱法和反相色谱法。正相色谱法采用极性固定相,流动相为相对非极性的疏水性溶剂,常用于分离中等极性和极性较强的化合物;反相色谱法一般用非极性固定相,流动相为水或缓冲溶液,适用于分离非极性和极性较弱的化合物。其中,反相色谱应用最广。3. 离子交换色谱法固定相是离子交换树脂。树脂上可电离离子与流动相中具有相同电荷的离子及被测组分的离子进行交换,根据各离子与离子交换基团具有不同的电荷吸引力而分离。4. 分子排阻色谱法分子排阻色谱法又称凝胶色谱法,它是按照分子尺寸大小顺序进行分离的一种色谱方法。分子排阻色谱法的固定相凝胶是一种多孔性的聚合材料,有一定的形状和稳定性,利用分子筛对分子量大小不同的各组分排阻能力的差异而完成分离。根据所用流动相的不同,凝胶色谱法可以分为两类:即用水溶剂做流动相的凝胶过滤色谱法(GFC)与用有机溶剂如四氢呋喃做流动相的凝胶渗透色谱法(GPC)。高效液相色谱仪检测项目主要是针对有紫外吸收的液体有机物(不饱和的有机物),进行定性和定量分析和纯度分析。定性:就是保留时间的特征峰。没办法分析出物质结构,但是如果已知物质是X,可以对比待测物质和X标准物质。色谱图显示保留时间一致,确定该物质就是X。多用于鉴别试验中的色谱鉴别。定量:就是浓度和峰面积成正比。已知物质成分,由标准品的标准曲线计算出待测物质的纯度。多用于含量测定。纯度分析:这个是根据波长。在某一特定的波长下注入样品,根据主成分色谱峰和杂质色谱峰的峰面积粗略判断物质的纯度。多用于有关物质测定。
1.刘桂华,.姜杰,谢建滨,张红宇等. 同位素内标稀释高效液相色谱-质谱法测定鱼体中的孔雀石绿及其代谢物. 现代预防医学,2006,33⑴:124-1262.姜杰,刘桂华,何彩,张红宇等. 鸡肉组织中二甲硝咪唑残留物测定,中国公共卫生 2006,22⑷:319-3203.刘桂华. 姜杰. 谢建滨. 张红宁等. 固相萃取LC-MS/MS检测动物源性食品中硝基呋喃残留标志物,华南预防医学,2006,32⑻(增):4-84.谢建滨,刘桂华工作场所中铟及其化合物ICP- AES测定方法. 中国公共卫生 2006,22⑾:1377 -13785.丘红梅,刘桂华,谢建滨,黎雪慧空气中镍、镉等元素及其化合物的微波消解/ICP—AES法测定研究,中国工业医学杂志 2006,19⑷:232-2336.刘桂华,陈卫等空气中可溶性钡化合物测定的电感耦合等离子体发射光谱法,中华劳动卫生与职业病杂志 2004,22⑴:78-797.谢建滨,刘桂华工作场所空气中钴及其化合物的微波消解/ICP-AES测定方法研究职业与健康2004,20⑸12-148.刘小立,谢建滨,刘桂华,王继尧,柳其芳微波消解法测定胎儿大脑组织中生物必需元素 中国公共卫生 2004年,20⑶:309-3109.谢建滨,刘小立,刘桂华,王继尧,柳其芳,王舟胎儿组织器官和母血中铜、铁、铬、硼含量的测定和相关性分析 卫生研究 2004年,33⑶:321-32310.刘桂华,谢建滨等微波消解/ICP-MS法测定人体肋骨中痕量镧系元素. 卫生研究 2002,31⑷:235—27311.刘桂华,汪丽HPLC-ICP-MS在紫菜中砷形态分析的应用. 分析测试学报 2002,21⑷:88-9012.刘桂华,谢建滨等ICP-MS法测定人体肝脏中超微量稀土元素的研究. 实用预防医学 2002,9⑵:.刘桂华,谢建滨ICP-AES法测定水中金属及非金属元素.中国公共卫生 2002,18⑷:451-4514.刘桂华,刘小立等ICP-AES法测定小脑组织中生物必需常量元素K、Na、Mg、P的研究.光谱实验室 2002,19⑶:.刘桂华,刘小立等胎儿小脑组织中Cu、Fe、Mn、Zn的测定研究. 中国公共卫生 2002年,18⑺:793—79416.张顺祥,李良成,施侣元,沈珉,江英,张慧敏,刘桂华尿石症现患调查和两类病例对照研究结果综合分析. 中华流行病学杂志. 2002,23(增刊):.张顺祥,李良成,沈珉,张慧敏,刘桂华,施侣元,谢建斌 血液和尿液中化学元素与尿石症发病关系的研究. 现代预防医学 2002,296⑸:.张建清. 姜杰. 刘桂华. 李良成. 钟伟祥 高分辨气相色谱/高分辨双聚焦磁式质谱用定量检测市售牛奶中的二恶英和呋喃 中国卫生检验杂志2002,12⑴:16-1919.姜杰. 张建清. 周健. 刘桂华 高分辨气相色谱/双聚焦磁式质谱联用仪(HRGC/HRMS)检测奶粉中二恶英 中国卫生检验杂志2002,12⑸:530-53220.张慧敏,张顺祥,刘桂华,谢健滨,沈珉尿液中草酸、枸橼酸和尿酸测定方法的研究 中国公共卫生2002,18⑶:347-34921.张建清,姜杰,刘桂华,李良成,钟伟祥HRGC/HRMS定量检测市售牛奶中二恶英和呋喃 中国公共卫生2002,18⑶:356-35822.谢建滨,刘桂华,柳其芳,刘小, 李筱薇,高俊全微波消解/ICP-MS法测定人体肺及肾脏中稀土元素 中国公共卫生2002,18⑿:1502-150423.姜杰,张建清,周健,刘桂华奶粉中二恶英类化合物的检测 预防医学情报杂志 2002,18⑸:411-41224.张建清, 姜杰,周健,刘桂华奶粉中二恶英含量分析 现代预防医学 2002,29⑷:492-49425.陈卫,刘桂华工作场所空气中丁酮的热解吸气相色谱测定方法 劳动医学 2001,18⑴:45-4626.何焕基,刘桂华钴-DMTAM-盐酸羟胺的极谱研究 中国公共卫生2001,17⑵:158-16027.刘桂华,谢建滨电感耦合等离子体光谱和质谱法用于饮水中多元素分析的研究.卫生研究,2000,29⑹:.谢建滨,刘桂华ICP-MS法测定水源水、出厂水、末梢水中17种微量元素 环境与健康杂志 2000,17⑶:175-17729.沈珉,张顺祥,刘桂华,李良成,施侣元ICP-AES法同时测定人血清16种元素含量. 光谱实验室 2000,17⑸:582-585 .30.张慧敏,张顺祥,刘桂华毛细管离子分析法同时测定尿液中草酸、柠檬酸和尿酸. 国外分析仪器 2000,⑷:69-72.
色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。
涂料检测中的现代色谱分析技术应用分析
摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。
关键词:涂料检测;现代色谱;气相色谱法
1 高效液相色谱法
该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。
涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。
HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。
2 气相色谱法
裂解气相色谱-傅里叶变换红外光谱联用
能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。
我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。
红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。
裂解气相色谱-质谱联用
涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。
了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。
涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。
3 结论
快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。
参考文献
[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).
[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).
点击下页还有更多>>>色谱分析技术论文
建议你去“色谱世界”网站看看,这个网站在色谱方面非常专业,有很多技术资料及高手,应该能帮到你的。
中文专业毕业生论文致谢(精选12篇)
论文致谢是学术论文的重要组成部分,主要用于对论文完成期间得到的帮助表示感谢,让我们一起认真地写份论文致谢吧。还是对论文致谢一筹莫展吗?以下是我帮大家整理的中文专业毕业生论文致谢,仅供参考,欢迎大家阅读。
本文是在导师xx教授及企业导师xx副教授的悉心指导下完成的。两位导师渊博的学识、严谨的治学态度和对问题的敏锐洞察力,给我留下了无比深刻的印象,影响和激励我完成论文的写作工作。两位导师的不倦教诲使我提高了解决实际问题的能力,同时也提高了科研素养。谨在此,向导师致以崇高的敬意和衷心的感谢。
在本文的研究过程中,得到了北方重工设计院xx教授级高级工程师,装卸设备分公司设计所室主任xxx的帮助与支持,在此表示感谢。同时,还要感谢爱人和女儿,对我学习与工作的支持,生活上的关心与精神上的鼓励。
最后,衷心地感谢在百忙之中评阅论文,答辩审查的专家、教授!
本设计在xxx老师的悉心指导和严格要求下业已完成,从课题选择、方案论证到具体设计和调试,无不凝聚着xx老师的心血和汗水,在四年的本科学习和生活期间,也始终感受着导师的精心指导和无私的关怀,我受益匪浅。在此向xxx老师表示深深的感谢和崇高的敬意。
感谢我的导师xxx 教授,他们严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;他们循循善诱的教导和不拘一格的思路给予我无尽的启迪。感谢我的xx老师,这片论文的每个实验细节和每个数据,都离不开你的细心指导。而你开开朗的个性和宽容的态度,帮助我能够很快的融入我们这个新的实验室。
感谢我的室友们,从遥远的家来到这个陌生的城市里,是你们和我共同维系着彼此之间兄弟般的感情,维系着寝室那份家的融洽。四年了,仿佛就在昨天。四年里,我们没有红过脸,没有吵过嘴,没有发生上大学前所担心的任何不开心的事情。只是今后大家就难得再聚在一起吃每年元旦那顿饭了吧,没关系,各奔前程,大家珍重。但愿远赴xx国的xx平平安安,留守复旦的快快乐乐,挥师北上的xx顺顺利利,也愿离开我们寝室的开开心心。我们在一起的日子,我会记一辈子的。
感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。
在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意。
本论文在xxx导师的悉心指导下完成的。导师渊博的专业知识、严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严于律己、宽以待人的崇高风范,朴实无法、平易近人的人格魅力对本人影响深远。不仅使本人树立了远大的学习目标、掌握了基本的研究方法,还使本人明白了许多为人处事的道理。本次论文从选题到完成,每一步都是在导师的悉心指导下完成的,倾注了导师大量的心血。在此,谨向导师表示崇高的敬意和衷心的感谢!在写论文的过程中,遇到了很多的问题,在老师的耐心指导下,问题都得以解决。所以在此,再次对老师道一声:老师,谢谢您!
三年寒窗,所收获的不仅仅是愈加丰厚的知识,更重要的是在阅读、实践中所培养的思维方式、表达能力和广阔视野。很庆幸这三年来我遇到了如此多的良师益友,无论在学习上、生活上,还是工作上,都给予了我无私的帮助和热心的照顾,让我在一个充满温馨的环境中度过三年的大学生活。感恩之情难以用言语量度,谨以最朴实的话语致以最崇高的敬意。
时光飞逝,四年的大学生涯即将落幕,心中百感交加,感激和不舍,这四年多是人生中最难忘的经历,这里有我的青春岁月,在这里,自己由青涩变得成熟。在论文完成之时,由衷地向四年多来给予我帮助的各位老师、同学、亲人表示感谢。
感谢导师xxx教授在学习和研究过程中给予我的谆谆教诲和悉心指导。导师淡泊名利,为人宽厚谦和,平易近人,知识渊博,治学严谨,是我终身学习的榜样。从论文的选题、原料收集、试验设计到论文的撰写无不凝结着导师的心血和汗水。在紫金港三的求学过程,期间并非一帆风顺,最终可以顺利完成学业,与导师春风化雨、润物无声的关怀是密不可分的,在此致以崇高的敬意和真挚的感谢。
在实验和论文实施过程中,得到了课题组各位师兄师姐的帮助和指导。感谢xx对我的学术指导和帮助,从紫外分光光度的测定、焚光检测仪、Waters高效液相色谱仪的操作到论文投稿过程中遇到的诸多难题,向师兄师姐们请教后,顿时豁然开朗,柳暗花明。感谢xxx,从读书报告到开题报告再到实验思路,相互交流,相互学习,相互监督,共同进步。感谢xxx课题组课题组,为我的学术之路提供平台。
感谢课题组20xx级同窗好友对我的关心,鼓励和支持,和你们在一起的时光将是我人生宝贵的经历和美好的回忆。感谢未一一提及的师弟师妹平日里的帮忙,感谢课题组每一位兄弟姐妹的陪伴与支持。
感谢我的亲人,父母哥哥为我的成长倾注了心血和爱,小弟时时的问候关怀着我,小侄子天真可爱,充满童真童趣。感谢我身边及远方的朋友们,亲情友情的力量是巨大的,让我在遇到挫折时不轻言放弃,我希望能成为你们的骄傲!
年年岁岁花相似,岁岁年年人不同。又到了毕业的时候,去年送走毕业师兄师姐的场景犹在眼前,回想起这四年在浙大求学的日子和今后未知的航程,思绪万千。求是园读书的四年是我人生中最值得纪念的四年,也是青春最后绽放的四年,太多太多的人和事让我回忆和感激。
首先,我要感谢我的导师xxx教授。x老师为人和蔼,对学生、对工作认真负责,拥有丰富的工程经验,和国内很多企业有着深入的项目合作。在读书的四年里,先后在x老师的带领下参加了多项省重大科技专项项目,开拓了我的眼界,也极大的锻炼了我的科研能力。x老师给我最大的帮助就是教会我看待问题的角度和高度,使我能够站在一个较高的高度上看待问题,在解决工程项目问题的时候更多的能从宏观方面去考量,这是我毕生的财富。
我要感谢xxx老师,x从老师治学严谨,理论基础扎实。在我遇到问题的时候给我很大的帮助,使我能够将项目顺利的开展下去,在生活上x老师给我很大的帮助,知道我性子急躁,经常告诫我路要一步一步走,做事情要一点一点来,在x老师这里我学到了对待人生的态度和做学术的方法。
我要感谢xxx,在实验室里和徐剑一起坐了整整四年,我们一起打球、一起科研,xx乐观的性格和做事方法深深的感染了我,在我写毕业论文的期间给了我很大的帮助,在生活中是我的好哥们,在学术上是我的好老师。
我要感谢我的师兄,在刚进实验室的时候给我学习和生活上的指引,xx师兄曾教我UG、ANSYS等软件,教给我很多宝贵的经验,xxx师兄在我蹉跎的时候带我毅行、跑马拉松,将我从宅男改造成运动爱好者,在这里我再次感谢他们给予我的帮助。
我要感谢我的好哥们,和他们一起在学生会体育部工作的日子是我难忘的记忆之一,从他们身上我感受到了什么是卓越的领导能力,在我工作上遇到困难的时候总能帮我想到解决办法,我们一起打篮球、一起筹划篮球赛,虽然毕业了天各一方,但是我们永远都是好朋友。
最后,我要感谢我的父母,妹妹和亲朋好友。在杭州求学前后已快四年,每当想起父母日渐苍白的头发,回家时的嘘寒问暖,总会潸然泪下。在这些年父母从物质和精神上竭尽所能的支持着我,我却没能帮助父母多少,深感惭愧,希望能通过自己的努力让父母颐养天年。感谢我的妹妹,在大学的四年里,她从初中考到高中,时刻都在关心着我的状态,每年都盼望我能早点回家,哥哥以后会更加关心你,成为一个称职的兄长。
纸短情长,回忆至此,太多太多的记忆充斥着我的脑海,对于那些关心过我、帮助过我的人,我想说:谢谢你们,让我青春更加灿烂。
时间荏苒,四年多的时光弹指一挥间,回忆大学求学期间的点点滴滴,回味在科研中的一步一个脚印,情不自禁感谢生活的馈赠。此时此刻,我要祝敬爱的老师们,亲爱的同学们、朋友们身体健康,事事如意。
衷心感谢导师xxx对我的悉心指导,感谢您无私、耐心的栽培。xxx思维敏锐、平易近人,每次在学术上的交流与讨论让我获益匪浅,导师严谨严格、精益求精的科研精神端正了我工作和学习的态度。
特别感谢软课题组的老师们,其中xxx教授在项目中对我的高标准严要求,让我养成了求是、求实的学术精神,并一直激励着我们努力工作;感谢x老师对我的帮助和指导。吴老师平易近人、思维开阔,在软课题期间对我的课题进行了大量的指导,其严谨的学术态度深深影响了我。
在我的学习生活中,感谢各位同学。在科研加班和工作之余感谢你们的陪伴和鼓励,你们的热情让我在学习之中倍感鼓舞,收获良多,衷心地希望大家科研顺利,多出成果,早发文章,身体健康,顺利毕业。特别是在软课题的那些日子,大家拼搏、求索的干劲让我感动,认识你们是我的最大财富,希望你们课题顺利,少加班多出成果。
还要感谢在我生活中的其他好兄弟。班级的每一次活动、寝室的每一次夜谈,闲暇时间一起打球、逛西湖、分享科研的心得和喜悦,至今历历在目。祝你们前程似锦、一路顺风,祝博士兄弟们都顺利毕业。
最后需要特别感谢我的父母,感谢你们二十多年的养育之恩,感谢你们的辛勤付出和关心爱护。你们的爱是我努力向前的最大勇气,你们的支持也是我人生不断前行的最大动力。祝你们健康、长寿,我会一直努力,做你们最大的骄傲。
我能完成这篇论文,首先需要感谢的.是我的导师。我毕业论文动手时间很短,大四下学期三月份得时候才选的导师。李老师不仅帮我选定课题,还教导我如何安排时间,按时检查我工作进度,教我如何查找相关文献,如何写作论文,如何分析数据,论文写完后又帮我再三修改,如此种种,不在细表。总之,没有李老师的帮助,我根本写不出这篇论文。
其次,我最需要感谢的是我师兄温x。以前上课时我对古地磁也就知道个基本原理,实验仪器我根本就不会运用,数据根本不知如何处理。师兄手把手的教会了我如何使用交变退磁仪、超导磁力仪,教我如何测样,如何制作样品支架。在教会我后更守在我身边不时为我解疑释难。研究钻孔783个样品所有样品的磁化率值全是由师兄测出。交变退磁样品共测了277个样品,其中有71个样品是师兄帮我测的。热退磁样品共测了39个,样品从100℃到675℃一共测了14步,每步样品加热全是由师兄负责。在论文写作过程中,师兄还教我如何从参考文献中查找有用信息,如何将样品数据转换成图等等。如果说,李老师为我论文支起了骨架,温师兄就给我论文增添了血肉。
另外,袁x师兄也在我测样、写作过程中提供了很大的帮助。举个简单例子来说,有一次在对热退磁样品加温过程中,样品区的温度始终上不去,是袁师兄帮我们查出了问题。还有古地磁实验室的胡老师在我测样过程中也给了我多番照顾。没有胡老师,实验室的超导测磁仪状态不可能这么稳定,如此可能到现在我的样品还没有测完。实验室的热退磁仪曾有一度坏掉了,是胡老师积极联系将其尽快修好的。
另外,我还要感谢江苏省地调院的工作人员。研究钻孔是他们出野外打的,样品由他们送来,野外岩性描述也有地调院工作人员提供,没有江苏省地调院的工作人员,我的论文没有样品,根本做不了。在这里,我向他们致以真挚的谢意。
最后,我在这里还要感谢我宿舍里的舍友。我伤心时,他们陪我喝酒耍疯,K歌搞怪;我生病时,他们对我嘘寒问暖,关心呵护。平时大家都在忙毕业论文,有时候我想松懈了,想放松了,不想去实验室了,看看大家,想想在一起的一年里,巩伟明几乎每晚都会在实验室里呆到十一点,独自一人,自得其乐,有的实验甚至要跑到南古所去做,未曾有半分推诿懈怠;陈晓锋上半年居无定所,图书馆、南园教学楼自习各种给力,下半年宿舍不到锁门时间宿舍里看不到其身影;邬斌整天嚷嚷实验数据不合格需要重测,仪器不给力还得待修,论文有点小问题需要重新修改;徐颖峰大帅风范,做事不紧不慢,每天早出晚归,天天都泡在实验室里;刘宝论文动手最早,文献查找,资料考证,信息提取,导师不在国内,自己一人搞定;李刈昆为了论文独自一人直闯京师,历时三月,方得小成。大家这么努力,我有怎能懈怠。我的毕业论文能按时完成,舍友之功不可埋没。
四年时光悠悠走过,在这里,我度过了人生中最为美丽的时光,在这里,我由做梦少年转变为意气青年,在这里,我初步踏上了科研之路,在这里,我的人生之路得以确立。在这四年里,虽然我一直在抱怨学校住宿条件差,学校网络速度慢,学校食堂饭难吃,学校美女实在少,校园生活实在沉闷。而今,马上就要毕业了,我却对你依依不舍。舍不得你那虬枝古树,舍不得你那冲天水杉,舍不得我那可爱同学,舍不得我那可敬老师。教学楼中,讲座曾听一百四,场场爆满;图书馆内,小说已览二百八,本本上心。我在玲珑驿中打过字,大操场上做过操,龙王山内踏过坟,名人园中爬过树,除了女生宿舍,我哪里没去过!我住过浦口七舍,宿过仙林一舍,而今就在鼓楼五舍,可谓睡遍长江两岸。你若问我有何遗憾,一恨学术未精研,搞篇论文焦头烂额;二恨口才没练好,说个问题笨嘴拙舌;三恨实习没做好,白把机会浪费了;四恨四次表白全被拒!
无论如何,在这里我想说:南大,我爱你!在这里,我郑重的感谢母校对我的培养。
在这篇论文的完成之际,感谢我的导师对我的指导和鼓励,感谢学院提供良好的学习环境,感谢同学对我的帮助。
在学习这段时间里,感谢导师对我在学业和生活方面的关怀和照顾,导师严谨的治学态度,一直是我学习的榜样,她不仅教会了我如何做研究,也教会了我如何做人。
感谢同学和朋友对我的帮助,大家一起在紧张的学习之余度过了许多愉快的时光。 感谢亲人在我读研期间对我在物质和精神上的支持,使我能顺利完成学业。最后对在这篇文章中引用到的文献作者表示感谢,同时也感谢各位同学在论文的完成过程中对我的关照。
时间飞逝,大学生活很快就要过去,在这四年的学习生活中,收获了很多,而这些成绩的取得是和一直关心和帮助我的人分不开的。
在本次论文设计过程中,周老师对该论文从选题,构思到最后定稿的各个环节给予细心指引与教导,使我得以最终完成毕业论文设计。在学习中,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度以及侮人不倦的师者风范是我终生学习的楷模,导师们的高深精湛的造诣与严谨求实的治学精神,将永远激励着我。这三年中还得到众多老师的关心支持和帮助。在此,谨向老师们致以衷心的感谢和崇高的敬意!
最后,我要向在百忙之中抽时间对本文进行审阅,评议和参与本人论文答辩的各位老师表示感谢。
时间飞逝,大学的学习生活很快就要过去,在这四年的学习生活中,收获了很多,而这些成绩的取得是和一直关心帮助我的人分不开的。
我的论文是在我的导师王助娟的亲切关怀和悉心指导下完成的。他拥有着严肃的科学态度,严谨的治学精神和精益求精的工作作风深深的感染和激动着我。从课题的选择一直到项目的最终完成,王老师都给予了我细心的指导和不懈的支持。
在此我要感谢同属烽火移动有限公司的各位同事大力帮助和支持,让我克服了一个又一个的困难,直到本文的顺利完成,特别感谢寝室同学的热心帮助。
在论文马上就要完成的时候,我的心里始终无法平静下来,从开始入课题到论文的顺利完成,有很多可敬的师长,和同学们,请在这里接受我的致谢。
我的论文所有的研究工作,从论文的选题开始,王老师根据我的情况,需要结合我们自己的工作实际,选择符合自己工作背景的论文题目,这样有利于实现论文的可答性,同时这样更有利于论文能够根据自己所熟悉的情况表现出它的与众不同之处,从开题报告开始,王老师就给予了很多指导,包括论文的题目的如何选择,题目的如何归类,如何把题目定义的不大不小,太大造成太多的空洞,太小无题可作,而后指导开题报告的撰写的规范性等。
王老师在百忙之中抽出时间来阅读我的论文,我在此表达我最诚挚的感谢!
感谢老师给我的帮助。在设计过程中,老师在百忙之中还挤出休息时间给我用电子邮件和电话的方式为我指点迷津,为我耐心讲解,给我提供大量的资料和教我查阅资料的便捷方法,还经常为我提供各方面的帮助,为我排忧解难。
在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不很好,但是在设计过程中所学到的东西是这次设计的最大收获和财富,使我终身受益。
我会带着这份求学精神,带着老师和同学们寄予我的厚望,好好地把握机会,在以后的生活、工作岗位上发挥自己最大的优势,实现自己的人生价值。
时间飞逝,大学的学习生活很快就要过去,在这四年的学习生活中,真的收获了很多,
以前上课的时候,老觉得什么都与自己的生活没有关联,什么课程都是无关紧要的,直到真正步入社会的第一步才发现,课题里的知识都是社会知识的缩小版,是精华所在,不知道学习重要性的人,永远都不会有所成长。
看了许多与优衣库有关的书籍,才真正感受到学习的重要性,柳井正的思想影响着整个优衣库,也影响着我,在近三十年的时间里,他的大脑思考几乎就没有停止过,他不断的学习新东西,不断的运用到优衣库中来,正因为他不断的创新,不断的改革,优衣库才会一直有行业里较为先进的运营模式,才会越来越出色。思路决定出路,所以,翻然醒悟之后,抓住一切机会学习吧!
本文是在指导老师的精心指导和修改下完成的,在此,我特别要感谢我的导师老师。指导老师以其严谨求实的治学态度、高度的敬业精神、孜孜以求的工作作风和大胆创新的进取精神对我产生重要影响,从论文的选题、修改到最终的论文定稿,从内容到格式,从标题到标点,他都细心讲解。没有指导老师的辛勤栽培、谆谆教诲,就没有我论文的顺利完成。
在论文的写作过程中,也得到了许多同学的宝贵建议,以及许多其他朋友的支持和帮助,在此一并致以诚挚的谢意。
时间的仓促及自身专业水平的不足,整篇论文肯定存在尚未发现的缺点和错误。恳请阅读此篇论文的老师、同学,多予指正,不胜感激!
毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,就毕业论文的撰写进行必要指导,具有重要的意义。(一)、毕业论文是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题的能力。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成毕业论文的撰写可以分两个步骤,即选择课题和研究课题。(二)、选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。第一、研究课题的基础工作——搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。调查的方法有:普遍调查、重点调查、典型调查、抽样调查。调查的方式有:开会、访问、问卷。最后,关于实验与观察。实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。第二、研究课题的重点工作——研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。第三、研究课题的核心工作――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。第四、研究课题的关键工作――执笔撰写。下笔时要对以下两个方面加以注意:拟定提纲和基本格式。第五、研究课题的保障工作――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。
荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光,而不去仔细追究和区分其发光原理。以下是我为大家精心准备的:纳米标记材料荧光碳点的制备探析相关论文。内容仅供参考,欢迎阅读!
纳米标记材料荧光碳点的制备探析全文如下:
近年来,半导体荧光量子点因其优良的光电性能在生物、医学及光电器件等领域得到了广泛应用. 但是用于生物和医学领域最成熟的量子点,大多是含重金属镉的CdTe,CdSe 和CdS 等量子点,限制了其在生物医学领域的应用. 因此,降低和消除荧光量子点的毒性,一直是研究者密切关注的课题. 直到2006 年,Sun 等用激光消融碳靶物,经过一系列酸化及表面钝化处理,得到了发光性能较好的荧光碳纳米粒子—碳量子点( CQDs) .
作为新型荧光碳纳米材料,碳量子点不仅具有优良的光学性能与小尺寸特性,还具有很好的生物相容性、水溶性好、廉价及很低的细胞毒性,是替代传统重金属量子点的良好选择. 水溶性碳量子点因其表面具有大量的羧基、羟基等水溶性基团,并且可以和多种有机、无机、生物分子相容而引起广泛关注,这些性质决定了碳量子点在生物成像与生物探针领域有更大的应用前景. Zhu H和王珊珊等将PEG - 200 和糖类物质的水溶液进行微波加热处理,得到了具有不同荧光性能的碳量子点,虽然利用微波合成碳量子点可以合成修饰一步实现,但是与水热法相比荧光量子的产率并没有显著地提高. 目前,该领域的科研工作主要集中在3 个方面: 碳量子点形成与其性能的机理特别是光致发光机理、如何简单快速的制备出性能优异的碳量子点以及碳量子点如何成功高效地应用于实际之中.
本文采用单因素法分析影响荧光碳量子点合成的几种因素,寻求高性能荧光碳量子点的最佳合成条件,并比较微波法和水热法合成荧光碳量子点的优劣,为制备出高性能荧光纳米标记材料性能提供一定的实验依据和科学方法.
1 实验部分
1. 1 试剂与仪器
葡萄糖( AR,中国医药集团上海化学试剂公司) 、聚乙二醇( PEG - 200,AR,中国医药集团上海化学试剂公司) 、硫代乙醇酸( TGA,AR,国药集团化学试剂有限公司) 、CS( 大连鑫蝶) 、牛血清蛋白( BSA > 99%,德国默克公司) 购自武汉凌飞生物科技公司) ; 盐酸( HCl,AR,信阳市化学试剂厂) ; 十二水合磷酸氢二钠( Na2HPO4·12H2O,AR,国药集团化学试剂有限公司) ; 二水合磷酸二氢钠( NaH2PO4·2H2O,AR,国药集团化学试剂有限公司) ; 氢氧化钠( NaOH,AR,国药集团化学试剂有限公司) .
荧光分光光度计( LS55 型,PerkinElmer,American) ; 紫外- 可见吸收光谱仪( U - 3010 型,Hitachi,Japan) ; 纯水仪( UP 型,上海优普实业有限公司) ; 台式电热恒温干燥箱( 202 - 00A 型,天津市泰斯特仪器有限公司) ; 傅立叶红外变换光谱仪( VERTEX70 型,德国BRUKER 公司) ; 透射电子显微镜( JEM -2100UHR STEM/EDS 型,日本) ; 微波反应器( Milestone, Italy) ; 电子天平( METTER - TOLEDO,梅特勒- 托利多仪器( 上海) 有限公司) ; 电动搅拌器( DJIC - 40,金坛市大地自动化仪器厂) ; 智能恒温电热套( ZNHW型,武汉科尔仪器设备有限公司) ; 数显恒温水浴锅( HH - S2s,金坛市大地自动化仪器厂) ; 紫外灯.
所有光谱分析均在室温下进行. 实验中所用水为电阻率大于18 MΩ·cm 的高纯水. 紫外- 可见吸光光度计设置为: 夹缝2 nm,扫描速度600 nm/min,扫描范围200 ~ 600 nm; 荧光分光光度计设置为: 激发波长为350 nm,扫描范围为350 ~ 650 nm,扫描速度600 nm/min. 激发夹缝: 10 nm,发射夹缝: 15 nm.
1. 2 碳量子点的制备
影响碳量子点荧光性能的因素较多,其主要因素有反应物摩尔比、反应温度和反应时间. 为更好的控制实验条件,提高碳量子点的性能,采用了三因素三水平的正交实验方法. 该方法以较少的实验次数完成多条件下最优选择. 选择碳源为葡萄糖,表面修饰剂为PEG,温度分别选择为150 ℃,160 ℃和180 ℃,时间分别选择为1. 5 min,2. 5 min 和3. 5 min,PEG 与葡萄糖的摩尔比分别选择为4,5和6. 此外在确定最佳条件时,除了考虑碳量子点的荧光强度之外,还要综合考虑实验条件、产物的毒性和生物相容性等因素.称取葡萄糖2 g,将其溶解到3 mL 水中,与不同体积的聚乙二醇( PEG - 200) 混合,得到澄清溶液,然后放在微波反应器或电热恒温水浴锅中,设定一定温度和反应时间,微波辐射或水浴加热,得到不同棕红色的溶液,即碳量子点原液; 再将碳量子点原液于不同转速下离心分离纯化,测定比较其光学性能,最后选定在6000 r /min 转速下离心分离纯化,取上层清液,稀释不同倍数用于表征.
1. 3 碳量子点的表征分析
将上述得到的碳量子点稀释不同倍数后,分别用U - 3010 型紫外- 可见吸收光谱仪和LS55 型荧光分光光度计测试制得的碳量子点的光致发光性能.
紫外可见吸收光谱测定: 将制备好的碳量子点稀释若干倍( 激发波长处吸收值为0. 1) ,先进行紫外扫描确定其吸收峰位置. 以碳量子点的紫外吸收峰波长为激发波长,激发和发射狭缝均为5. 0 nm,PMT 电压设置为700 V,激发波长是290 ~ 350 nm 进行多次荧光发射光谱扫描,确定激发波长为350 nm 时,其荧光发射峰位置为435 nm 左右,碳量子点的荧光谱峰更好.
荧光光谱测定: 取2. 5 mL 左右的待测碳量子点溶液于荧光比色皿中,在室温下用LS55 型荧光光谱仪检测其荧光,激发波长为350 nm,激发和发射狭缝宽度均为5 nm,扫描波长范围300 ~ 650 nm,扫描速度1 200 nm/min.
透射电子显微镜( 加速电压200 kV) 观察碳量子点样品的微观形态和尺寸; 将得到碳量子点原液等体积与无水乙醇混匀后滴在KBr 压片上后放到台式电热恒温干燥箱中干燥直到变干,然后放于傅立叶红外变换光谱仪中得到红外谱图.
2 结果与讨论
2. 1 微波合成碳量子点的因素分析
本实验选择反应物摩尔比( n) 、反应温度( T) 和反应时间( t) 3 种影响因素,每种因素选择3 种不同的水平,即三因素三水平正交实验方法安排试验,探讨微波法制备碳量子点时对其荧光强度的影响因素,找到最优的合成条件. 根据三因素三水平的条件,选择正交表34 型.
碳量子点合成中,不同影响因素在不同水平下的趋势变化,在同一因素下,随着水平的变化,实验指标也发生变化,根据图中趋势,可以得到微波合成碳量子点的最优条件是: PEG 与葡萄糖摩尔比为6,反应温度为180 ℃,反应时间为2. 5 min,在此条件下合成的碳量子的荧光强度最好.从趋势图还可看出,微波辅助反应时间并不是越长越好,但反应时间小于3. 5 min 时,碳量子点的的荧光强度有随反应时间减少而提高的趋势.
由以上正交实验的直观分析得到了优化条件,然后在该条件下微波合成了荧光碳量子点,优化条件下制备的碳量子点与实验组中最好的第9 号实验条件下制备的碳量子点的荧光发射光谱.在其他条件相同的情况下,优化合成的碳量子点的荧光强度为234,远远大于第9 号实验组的碳量子点的荧光强度153. 17.
改变前驱溶液pH 值( 分别为3,7和9) ,对实验结果进行分析处理,随着溶液pH 值的增加,碳量子点的荧光强度先减小再增加. 在前驱体为碱性条件即pH = 9 时,所得碳量子点荧光强度最大,在酸性条件pH = 3 时次之,在中性条件pH = 7 时最小. 其原因可能是在葡萄糖-PEG 体系中,制备出来的碳量子点表面含有丰富的羟基和羧基官能团( 在图8 中得到了证明) ,在酸性条件下,由于碳量子点表面大量羟基与H + 形成大量氢键,导致体系较为稳定,碳量子点能较好的分散,所以发出较好的荧光; 而在碱性条件下,碳量子点表面的羧基与OH - 的相互作用致使体系较为稳定,碳量子点也能很好的分散; 但是在中性条件下,生成的碳量子点由于高的表面能而发生团聚,致使粒子粒径增加,粒径分布变宽.
2. 2 微波法与水热法的比较
在上述相同的优化条件下,分别采用微波法和水热法2 种方法合成碳量子点,并对其光学性能进行初步比较.
2. 2. 1 碳量子点的紫外可见吸收光谱
2 种方式得到的碳量子点的紫外可见吸收光谱图,两者的吸收峰位置都是在280 nm 左右,吸收峰位置并没有随着加热方式的变化而变化,这说明2 种加热方式形成碳量子点的机制可能是一致的. 此外,在同等合成条件下,微波法制备的碳量子点的紫外可见吸收光谱强度小于水热法的吸收峰强度.
2. 2. 2 碳量子点的荧光发射光谱
将微波优化合成得到的一组碳量子点稀释后,依次增大激发波长,观察其荧光发射波长变化. 微波合成碳量子点在不同激发波长( 340 ~ 450 nm) 下的荧光发射光谱,随着激发波长的增大,荧光发射峰位置发生红移,荧光强度也先增大后减小,其中,激发波长为350 nm 时,碳量子点的荧光发射强度最大. 因此,选择350 nm 作为本实验中碳量子点的激发波长.
2. 2. 3 碳量子点的荧光机理探讨
碳量子点的荧光性能主要来源于2 种不同类型的发射,一种是其表面能的陷阱发射,另一种是其内在的状态发射,即电子和空穴的重新结合产生的发射,也就是通常所说的量子点的量子尺寸效应所导致的碳量子点的TEM 图射. 在本文中,一方面葡萄糖的高温热解生成的碳量子点,其表面能陷阱发射产生荧光; 另一方面,PEG 可以作为碳量子点的表面钝化剂. 而在本研究中,前驱体是葡萄糖和PEG的混合物,因此,PEG 在此合成体系中,一方面发挥了稳定剂的作用,另一方面也发挥了表面修饰剂的作用,PEG 含有大量的羟基等基团,在碱性条件下,羟基等官能团引入碳量子点表面,抑制了碳量子点的缺陷状态发射,使得能够产生荧光的电子和空穴的辐射结合更加便利,即内在的本征态发射更加容易,进而提高了碳量子点的荧光强度.
2. 2. 4 碳量子点的TEM
从中可以看出,碳量子点与半导体量子点类似,外貌呈圆球形,分散性较好,尺寸分布较均匀,平均粒径在5 ~ 8 nm 左右,表明在葡萄糖热解制备碳量子点的过程中,聚乙二醇作为分散剂和表面修饰剂起到了比较好的作用,能有效防止碳量子点团聚.
2. 2. 5 碳量子点的红外光谱
不同方法制备的碳量子点的红外光谱( a. 微波法; b. 水热法)在相同的优化条件下,微波法和水热法。
2种方法得到的碳量子点的红外谱图峰位和峰形基本一致,只是吸收峰强度略有不同,这可能与碳量子点的浓度有关.
羟基伸缩振动谱带出现在3 700 ~ 3 100cm - 1区域,在大多数含羟基的化合物中,由于分子间氢键很强,在3 500 ~ 3 100 cm - 1区域出现一条很强、很宽的谱带. 在3 370cm - 1附近2 种方法制备的碳量子点都有宽化的吸收峰,是O - H 键的伸缩振动特征峰,同时在指纹区1 101 cm - 1处和1 247cm - 1同出现较强的吸收峰,分别属于C - O - C的对称收缩和不对称伸缩振荡,证明了羟基的存在; 同时在1 643 cm - 1处观察到两者的吸收峰,这是C = O的伸缩振动,证明了羧基的存在. 由此判断,碳量子点表面带有羟基和羧基官能团,这不仅增强了量子点的水溶性和生物相容性,更为后续的修饰该类碳量子点提供了有益的指导.
3 结论
通过正交实验方法初步确定了微波法制备纳米荧光碳量子点的合适实验条件为: 反应时间为2. 5 min,反应温度为180 ℃,PEG 与葡萄糖摩尔比为6,pH = 9. 合成中影响因素从主到次顺序为: 反应时间> 摩尔比> 反应温度.同时发现极差R空白> R温度,表明实验过程中,还有其他重要的因素需要探讨,其中,最可能忽略的因素是搅拌.
在相同优化条件下,水热法合成的碳量子点的光学性能要略优于微波合成的,究其原因可能除了本文提到的是否使用搅拌装置有关外,可能还与合成时碳量子点的生长速度、表面修饰程度和状态等因素有关.这些因素的联合作用,导致荧光碳量子点晶格缺陷没有得到很好的控制,而表面缺陷、边缘效应等又会导致陷阱电子或空穴对的产生,它们反过来又会影响量子点的发光性质,有待今后进一步实验验证. 总之,2 种加热方式所制备的荧光碳量子点均具有较好的光学性能,可望用于荧光标记领域.
药物色谱分析课程的教学探索论文
药物色谱分析是药学类专业本科生及研究生学习阶段的专业基础课。本课程主要讲述色谱法的基本理论、气相色谱法、高效液相色谱法、毛细管电泳法和色谱联用技术,以及这些色谱分析法在化学药物、中药、生化药物及体内药物分析中的应用。药物色谱分析以介绍《中国药典》中被广泛采用的气相色谱法和高效液相色谱法为主,主要教学目的是使学生掌握各种色谱分析技术的基本原理与基本方法,在化学药物、生化药物、中药及体内药物分析中应用这些技术,并进行定性或定量分析,帮助学生依据不同的药物类型,建立最佳的色谱分析思路。这些色谱知识的学习与色谱方法的掌握有利于学生建立正确的体内外药物色谱分析方法。色谱分析法是非常重要的分离技术,具有分析效率高、样品用量少、分析速度快、灵敏度高等优点。在药品研发、生产、流通及临床应用各个环节中都已广泛应用,是药品质量控制必备的方法。目前,大多数学生并未认识到本课程的重要性,在学习过程中缺乏足够的兴趣,很多学生都是为了应付考试而学习,考试结束后,基本忘光了所学知识,因此,教学效果亟须提高,教学方法也要改进,让学生带着兴趣、带着问题进行学习,从而在以后的学习工作中,遇到有关色谱分析的问题能够游刃有余。
1.色谱分析在药物分析中占据重要地位
药物色谱分析课本的第一章是绪论,主要介绍色谱法的一些基本情况。如果教师照本宣科,按课本顺序依次介绍色谱法的定义、特点、分类和发展历史等,很难让学生觉察到这门课程有什么重要性,也很难使其对这门课程有足够的兴趣。学生已学习了药物分析,对色谱分析有所了解,所以本课程应该首先强调色谱分析技术在药物分析中的地位,让学生对课程内容充分重视。可以从以下3个方面介绍:
(1)用流程图的方式讲解从药品研发、生产到临床应用各个环节中色谱分析的用途;
(2)介绍色谱分析在不同药物种类中质量控制的应用,包括化学药物、中药、中成药及生物药物等;
(3)对比各国药典,介绍药典中应用色谱法的品种数,突出色谱法在药物分析中具有不可或缺的地位及其在药物定量分析、体内分析方面的地位尤其重要。
通过这些介绍,学生基本明白色谱分析的重要性,然后再介绍色谱法的定义、特点、分类、发展等。另外,不同色谱分析方法的重要性也不同,柱色谱、纸色谱及薄层色谱的内容可以一带而过。键合型色谱是重点,尤其是反相色谱是重点中的重点。在讲解中要讲清楚每种色谱分析方法在药物分析中是如何使用的,主要可以分析哪些药物,使学生有一个清晰的认识,有利于认识这门课的重要性。
2.多媒体辅助教学
为提高学生的学习兴趣,可较多地采用多媒体计算机辅助教学。相比于传统教学,多媒体辅助教学的优势在于克服传统教学的单一性,将学习内容进行多元整合。运用多媒体技术,将学习内容有关的文本、声音、图形、动画、视频等进行有机的融合,学生学习起来不会感觉枯燥乏味,这种多感官的剌激也可以提高学习效果。例如,在介绍有关色谱仪操作时,先用文字的形式讲述一遍,然后再播放仪器使用的小视频,这样学生对学习内容能更好地理解与掌握。另外,将各种多媒体技术合理安排,充分应用,能让学生愉快地学习,达到寓教于乐的目的。最后,很多多媒体技术对学生而言是新鲜的,如用Flash动画、3D图片去表现学习内容,往往能有效地吸引学生的注意力,从而提高他们的学习兴趣。
目前,互联网上有很多优秀的教学资源,可以通过建立群组与论坛的形式与学生进行问题的讨论。采用这种方法的好处有以下3个方面:
(1)通过对课本知识的讨论,有利于学生进一步理解书本上的重点与难点,增加学生的学习兴趣;
(2)网络上可以査找一些本学科的前沿知识(一般课本较少提到前沿知识),扩大学生的视野,使学生了解本学科的'动态;
(3)在网络上与学生互动可增加学生对教师的亲切感,使学生喜欢上这门课;
(4)这种课后的互动,让学生感觉到学习不仅仅是课堂听讲,课后的讨论也能受益匪浅。这种网络上的学习,需要教师投入较多的时间与精力,对教师是一个考验,要经常在群组中发布大家感兴趣的问题,触发学生互动的兴趣。
3.启发引导式教学
传统的教学方式以教师和教材为中心,向学生灌输知识,学生依靠死记硬背的方式,能够应付考试,拿到学分,但是不利于学生思维能力的提高,在以后的学习和工作中,遇到有关专业问题,仍然束手无策。启发引导式教学方式已在药物分析教学上取得较好效果,因此,可以将这种教学方式引入药物色谱分析的教学中,通过巧设问题,让学生边想边学,集中注意力,同时用适当的提问鼓励学生进行思考,真正地让学生主动学习、主动思考,使教与学紧密结合。例如,在讲解高效液相色谱时,要问学生在前面的章节,讲气相色谱时,为什么不说高效气相色谱?高效液相色谱的分离效果有多高?有没有分离效果更好的色谱?通过这些问题的思考,使学生基本掌握各种色谱方法分离效果的不同。
4.案例教学
教师通过对典型案例的分析,组织学生有针对性地进行讨论,引导学生从个别到一般,从具体到抽象,通过实际案例进一步理解和掌握课程的基本理论与方法,这种教学方法称为案例分析。这种教学法能体现学生的主体性,有很强的针对性。在药物色谱分析中应用案例教学法,能激发学生的学习兴趣,帮助学生提高对实际问题的分析和解决能力。例如,讲解气相色谱相关基本理论知识后,给学生展示一个用气相色谱法测定复方丁香吸入剂中有效成分含量的实例,可以帮助学生理解如何选择固定相成分,如何进行程序升温,加入内标有什么作用等内容。案例教学法也可以帮助学生理解一些难点。例如,讲解如何判定一种药物是否能用气相色谱法分析时,学生往往难以做出判断。课堂上通过对能用气相法分析的药物进行结构分析,并给出代表性药物,学生就容易理解这些内容。学生往往对具体实例有较深刻的印象,以后碰到类似问题能很快回忆起所学知识,因此,案例教学法较好地解决了理论与实践相结合的问题。
5.实践教学
药物色谱分析是一门技术性很强的学科,实验教学是药物色谱分析课程必不可少的环节。通常要开设填充柱气相色谱实验、毛细管柱气相色谱实验、反相高效液相色谱实验及薄层色谱实验。在有条件的情况下,可以开设毛细管柱气相色谱-质谱联用实验、高效液相色谱-质谱联用实验及毛细管电泳实验。这些实验大多都要用到大型精密仪器,所以要严格要求学生实验课前书写预习报告,实验课上认真听从教师讲解仪器操作规范及注意事项,规范操作仪器,认真做好实验记录和结果分析,以写出完整的实验报告。
在理论课上已经讲解了仪器的构成,但学生没有直接印象,可以利用实验课程,通过拆解仪器的方式,让学生进一步直观感受仪器的内部结构,并对每一个部件的详细结构,如何保养及使用注意事项进行讲述。实验课中所用仪器一般都有对应的软件程序,这个内容在理论课上是没有的,所以,应对每一种仪器对应的软件程序内容作详细介绍,让学生熟练应用这些软件。
通过一些实验操作,也可以让学生加深对一些知识点的理解。例如,通过改变流动相的组分、比例、流速、柱温等方式来改善色谱的分离能力。在实验课上就可以演示,如通过改变这些参数,让2个原本未分离的组分达到完全分离。待学生熟悉基本操作后,可以通过设计性实验,提高学生的创新能力?。如果有学生对色谱分析特别感兴趣,可以让他们组成一个兴趣小组,在教师的指导下完成一些科研课题,训练他们的科研能力。
综合运用上述5种教学策略后,课堂上更多的学生认真听讲,积极参与课堂讨论,课后有更多学生问一些色谱相关问题,这些都说明学生的学习兴趣明显增加,学习主动性得到提高,由死记硬背、应付考试的学习方式转变成主动接受知识,能够应用学到的知识解决一些实际问题。
高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。 2 .液 — 固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。] 3 .离子交换色谱法(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。 以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中) 当交换达平衡时: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系数为: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。 4 .离子对色谱法(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原理可用下式表示: X+水相 + Y-水相 === X+Y-有机相 式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X+Y---形成的离子对化合物。 当达平衡时: KXY = [X+Y-]有机相/[ X+]水相[Y-]水相 根据定义,分配系数为: DX= [X+Y-]有机相/[ X+]水相= KXY [Y-]水相 [讨论:DX与保留值的关系] 离子对色谱法(特别是反相)发解决了以往难以分离的混合物的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如核酸、核苷、生物碱以及药物等分离。 5 .离子色谱法(Ion Chromatography) 用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。 以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程): 抑制柱上发生的反应: R-H+ + Na+OH- === R-Na+ + H2O R-H+ + Na+Br- === R-Na+ + H+Br- 可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H+Br-,可用电导法灵敏的检测。 离子色谱法是溶液中阴离子分析的最佳方法。也可用于阳离子分析。 6 .空间排阻色谱法(Steric Exclusion Chromatography) 空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的担体作固定相的叫气液色谱。按色谱分离原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。按色谱操作形式来分,气相色谱属于柱色谱,根据所使用的色谱柱粗细不同,可分为一般填充柱和毛细管柱两类。一般填充柱是将固定相装在一根玻璃或金属的管中,管内径为2~6mm。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有~的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为~。