首页

> 学术论文知识库

首页 学术论文知识库 问题

关于量子力学的博士毕业论文

发布时间:

关于量子力学的博士毕业论文

物理学家,是指探索、研究世界的组成与运行规律的科学家。这是我为大家整理的关于物理学家学术论文,仅供参考!

对物理学家失误的解读

摘 要:通过在物理教学中客观介绍物理学家的失误,从而正确认识科学发展的曲折和科学家付出劳动的艰辛,并在实际探究的过程中体验物理学家研究问题的方法,发展科学探究所必需的创新思维,从而提高学生科学探究的能力。

关键词:失误;科学探究;创新思维

中图分类号:G420 文献标识码:A

文章编号:1992-7711(2012)10-081-1

在物理教学中,我们更多地介绍了物理学家成功的、正确的一面,而往往忽略了他们的失误。在物理教学中客观介绍物理学家的失误,通过对他们在特定历史条件下酿成失误原因的剖析,对中学物理教学具有积极的意义。

一、在物理教学中客观介绍物理学家的失误

事实上,物理大师也会走弯路,有失误。在物理学发展的过程中,这样的事例可以说是屡见不鲜的。发现放射性元素的贝克勒尔认为要找到比铀的放射性还要大得多的元素是不大可能的;牛顿推算光在介质中的速度比真空中大;电磁波的发现者赫兹由于实验的局限而错误地认为阴极射线不带电。

中子发现的历史更值得回顾。在查德威克发现中子前,在实验中已有迹象表明在核中可能存在一种中性子。例如,1930年德国物理学家玻特和他的学生利用α粒子轰击铍元素时,发现产生了一种穿透力极强的射线。后来居里夫人的女儿I?居里和她的丈夫约里奥对这种射线进行了研究。他们将这种射线射到石蜡上,测到了有反冲质子从石蜡放出,他们认为这反冲质子是由这种不带电的的射线所轰击出来的。但遗憾的是约里奥-居里夫妇和玻特等人都没能抛弃传统的旧观念,而断言为这种射线正是大家所知的Υ射线。太可惜了!尤其对约里奥-居里夫妇而言,只要根据打出质子的动能,仔细地推算一下,假如入射粒子是Υ光子的话,那么它的能量将达几十兆电子伏,要比实验测得的这种未知中性粒子的能量大得多,于是就会发现,这种未知中性粒子不可能是Υ射线。可惜旧的传统观念太深了,以致快到手的成果丢掉了。在正电子的发现过程中,同样的失误又一次发生在约里奥-居里夫妇身上,使他们成了正如恩格斯所描述的“当真理碰到鼻子尖上的时候,还是没有得到真理”的人。

纵观物理学家们的失误,造成他们作出错误分析或错失了重大科学发现的主要原因有两个:一是科学发现和创造是人类向未知领域不断探索的一个过程,而这个过程必然是复杂的、艰难曲折的,在这样的过程中出现一些失误是难免的;二是传统思想的束缚,科学发现和创造需要丰富的想象力,需要新思想、新观念,因循守旧、墨守成规就不可能作出科学发现,但突破传统观念总是非常不容易。

二、在物理教学中介绍物理学家失误的积极意义

在物理教学中,教师引导学生认识物理学家的失误,分析失误的原因,似乎会使学生产生对科学的怀疑,对科学家的不敬,在时代呼唤更多创新人才的今天,这并非不是一件好事,将有利于学生体会到人类认识自然,改造自然是个曲折艰苦的过程,是个反复修正、反复深化的过程;有利于确立不怕挫折的信念,增强学习中的毅力;有利于学生打破思维定势,活跃课堂气氛,培养创新思维能力;有利于树立学生挑战权威,服从真理的求知精神。

当然,仅仅介绍物理学家的失误,并不能达到上述目的,更要注意向学生讲述物理学家对待失误和挫折的科学态度和不屈的探索真理的精神。约里奥-居里夫妇不仅错失了发现中子的良机,后来又错失了发现正电子的机会。但他们从失败中吸取教训,始终以饱满的工作热情、坚忍不拔的意志投入研究工作,功夫不负有心人,他们终于在1934年获得了20世纪中最重要的发现之一——人工放射性,并荣获了诺贝尔物理学奖。中国科学家王淦昌教授因为自身或客观条件的限制在发现中子、验证中微子存在等物理研究方面几次和诺贝尔奖擦肩而过,但他并没有放弃对科学热诚的追求,而是进一步拓展研究领域,在众多领域里提出了自己独到的见解,直到年逾90,仍不时到研究室去,他提出的激光引发氘核出中子的想法,成为惯性约束核聚变的重要科研项目,一旦实现,这将使人类彻底解决能源问题。

在物理教学中引导学生辨别物理学家的失误和科学上的也是值得重视的一个方面,法国物理学的权威布朗洛发现N射线就是一场巨大的。对科学史上的揭示显然可以使学生正确理解物理学家的失误,而激发学生对科学家们由衷的敬佩。在实际的教学中我们似乎更应该让学生在进行相关科学探究的实践中重复物理学家的失误,比如在讲电磁感应相关内容时,笔者有意安排了这样的实验,将电流表的表面背对学生,在插入磁铁后,让学生跑到讲台后看指针的读数,学生看过常常露出不解的神情,“指针没动啊!”可磁铁确实在线圈中啊!如此,模仿了当年科拉顿所做实验的情景,并设置了相关的问题使学生明白科拉顿的失误和法拉第的成功在创新思想上的不同之处。

三、在物理教学中介绍物理学家失误的几点反思

1.介绍物理学家的失误,促进新的课程资源不断生成。

正视并合理开发日常教学中的错误资源可以丰富课程内容,激发学生的参与热情,促进新的课程资源不断生成,对师生创造性智慧的激发会起到十分重要的作用。为此,我们可以利用学生的错误激发认知冲突,促进学生思维碰撞;抓住学生因知识经验和思维方式不同而出现的错误的观点和想法,引导学生合作交流,促进生成;不轻易剥夺学生自主发现错误的机会,为教学的有效介入创造最佳时机。

2.介绍物理学家的失误,促进教师更好地锤炼教学艺术。

既然物理学家都可以有失误,对我们教师来说在教学中的失误也就没必要去遮遮掩掩。在教学中,教学双方也会因为各种情况而发生错误,错误可能来自学生,也可能来自教师。对于学生的错误,我们常常能从容应对,对于自己的失误,我们也不能回避,而是要认真反思,究其原因,寻其策略,从而提高教学设计能力和课堂教学水平。错误的价值有时并不在于错误本身,课堂教学中的错误,对学生来说是一次很好的锻炼机会,对老师来说也可以是一次机遇,在生成性的教学中教师正确处理失误是可以锤炼教学艺术,提高自身的专业水平的。

物理学家阿伯拉罕・派斯和他的物理学史著作解读与述评

摘 要:本文主要是对阿伯拉罕・派斯进行评述,探究其对于整个物理学做出的巨大贡献。与此同时,从其著作方面入手,加强关于著作方面的科学解读,希望能够充分继承这位伟大物理学家的精神,对其贡献进一步探究,从而推动整个物理学的不断发展。

关键词:阿拉伯罕・派斯 物理学史 著作 解读 评述

2000年,作为做出杰出贡献的一位伟大物理学家,同时又是一位科学史作家,阿伯拉罕・派斯不幸去世。派斯去世的原因,主要是心脏病发作,他最后的时光在哥本哈根度过,终年82岁。

派斯,1918年出生于荷兰,属于传统犹太人。派斯的中小学教育始于阿姆斯特丹。随后,凭借着自身优异的学习成绩,他非常顺利地进入大学继续学习和深造。1938年派斯顺利毕业,并获取了两个学位,一是物理学,二是数学。但派斯并没有满足于此,而是来到乌得勒支大学,进行个人学术的进一步深造,追随导师乌伦贝克。后来乌伦贝克定居美国,因此派斯的硕士毕业论文,由罗森菲尔德进行有效指导并完成。最终派斯在1940年硕士顺利毕业,取得了相应的硕士学位。然而在当时,德国已经发动世界大战,并逐渐占领荷兰。第二年,德国宣布,7月14日之后,整个荷兰的任何一所大学,严格禁止犹太人考取博士。这件事无疑影响了派斯,他努力赶写博士论文,限期真正到来之前,他最终顺利完成论文答辩。

纵观派斯的整个求学生涯,真是十分不易。然而,派斯随后将要面对的处境更加危险和艰难。当时,纳粹分子对犹太人进行压迫,这也使当地诸多物理学家,为免于遭受迫害而选择逃避,离开了培养自己的大陆。但是派斯不同,他没有离开故土荷兰。也正因为如此,战争爆发后,派斯提心吊胆,整天需要东躲西藏。访问他的当地物理学家也越来越少,除了克拉默斯,派斯较为重要的朋友。克拉默斯访问时,一般都带科学文献,两个人进行物理学知识的相关探讨。克拉默斯本来在莱顿大学承担教授职务,但后来,犹太人解雇现象较为严重,教授对德国人的残暴行为进行了抗议,德国占领大学之后,勒令当局关闭了学校。这对派斯的日常研究,即量子电动力学,造成了极大的不便。每当回首往事,派斯都感到非常不堪。荷兰当地犹太人,包括派斯的妹妹,普遍开始被抓,然后进入死亡集中营,遭到德国人残酷的杀害。而派斯自己,幸运的是能够免于这场灾难。灾难具体情况,详见其自传体著作《欧美记事》。

第二次世界大战结束之后,1946年,派斯到达哥本哈根。在那里,派斯会见了波尔,与其一家人相处融洽。与此同时,他与波尔展开了知识方面的沟通,彼此交流十分惬意。在波尔的大力推荐下,1946年秋,派斯前往美国进行访问和调查,访问的具体地点为普林斯顿,当地的一家高等研究所,但是在当时,这个研究所成立时间不长,物理学的相关研究并没有取得杰出成果。不过研究所的物理学家鉴于自身多年的经验,告诫派斯,研究过程中,如果一味闭门造车,是绝对行不通的,需要广泛涉猎。派斯听取了同行的建议,决定不再回欧洲,留下来潜心研究物理学。

派斯刚刚来到美国的时候,量子电动力学的研究取得了革命性的进展,理论物理学也得到了极大的发展。1947年,设尔特岛会议顺利召开,派斯有幸受邀参加。在这次会议上,施温格做出了科学量子力界的报告,报告非常详细。与此同时,“费曼图”这一理念得以提出。

派斯深深明白,量子电动力学领域,今后势必具有广阔的发展前景,但是这似乎已经和自己的关系不是那么密切了。尽管这方面的雄心有一定的挫败,但是派斯并没有被真正击败,而是转向宇宙线的相关领域。派斯变得更加努力,在加强探索的同时秉承更加积极的态度,针对现象进行科学合理的解释。基于此,派斯得以明确自身的方向,并着眼于基本粒子,研究工作也得到了充分的贯彻落实。

派斯经过大量研究,逐渐提出了协同产生规律等方面的内容,这在日后得到了有效证明和确立。后来,新量子数即奇异数,诞生并发展,关于这方面,派斯曾经与盖尔曼展开过合作,但是实验研究最终失败。

派斯仍然不放弃进行研究,最终提出了K介子混合理念。基于物理学本质来说,量子力学得到了充分诠释,态叠加原理也得到了完善。但是很多物理学家不禁产生了疑问,粒子混合究竟能否符合实际?然而,我们如果站在量子力学角度进行分析,透过基本粒子的本质,会发现观察量具有自带属性的特点,本身存在相应特征和形态。在态叠加原理的应用过程中,守恒电子数一旦满足这一相同条件,粒子混合就能实现。经过派斯等人的共同努力,K介子系统问题得到了充分解决。在这之后,粒子混合不断涌现。不久,科学界又提出了量子排这一概念。通过量子排方面的科学研究,粒子物理学得到了更快的发展,最终在一定程度上推动了原子物理学的发展,并对其形成一定反哺。基于此,量子力学概念得到普及和推广。量子排现象之所以提出较晚,很大一部分原因是人们不敢对其进行大胆想象。

派斯在其他领域同样做出过一定贡献,比如G宇宙领域。然而,在70年代末,派斯逐渐转向物理学史,注重加强这方面的探索和研究,朝着作家的方向发展,并在这方面进展顺利,例如爱因斯坦传记得到了广泛好评,波尔传记也同样大获成功,中文出版量相当可观。还有关于基本粒子方面的科学史巨著《基本粒子的物理学史》的中译本也问世。派斯造诣十分高深,熟知理论物理,对物理学史的叙述表现出一种深刻的洞察。除此之外,派斯语言能力超强,除了母语荷兰语外,他还熟悉地掌握了英语、法语、德语、丹麦语,这为他的科学史研究提供了极大的便利。

派斯的物理学著作,内容更加凸显真实性,如对科学界出现的错误等都进行了如实体现。特别是曾经承受的挫折、物理学走过的弯路,以及物理学家在长期探索过程中经历的迷惘、物理学家个人存在哪些不足等,他都较为直率地指出。

比方说,在爱因斯坦传中,派斯对爱因斯坦的不成熟之处以及其研究中走过的弯路、犯过的错误都进行了毫不客气的说明。再比如,书中指出,马赫原理虽然没有对物理学理论起过推动作用,但它仍然可能是未来的研究课题。

虽然派斯对波尔十分尊重和爱戴,但在波尔传记中对其并未有讳言。比方说,在量子力学领域波尔失误不少,尤其是波尔还曾否定已经被广泛认可的能量守恒定律,对此派斯在书中也如实进行了记录。除此之外,他还指出了哥本哈根阵营中泡利、狄克拉等人对波尔的不满之词。

由此可见,派斯在潜心著作的过程中,始终秉承公允的态度,并且敢于分析伟大物理学家的不足,敢于说出真话,态度十分端正,因而学术界对其十分认可和重视。派斯尤其重视书名,绞尽脑汁之后,才能拟定完成,而且一定要别出心裁。

1963年,派斯最终选择离开普林斯顿大学,来到了纽约,进入洛克菲勒大学工作,直到退休。1990年,派斯同他的第三任妻子――丹麦人类学家尼可莱森结婚,结婚之后,派斯每年往来穿梭于纽约和哥本哈根之间。2000年,派斯的《科学英才:20世纪物理学家群像》问世,这部著作是派斯从个人视角对自己所认识的物理学家进行的速写,是他的最后一部著作。

参考文献:

[1] 史明宇,陈绍军.“社会事实”与“自然物质”客观性存在的条件比较――社会学与量子力学的对话[J].理论月刊,2013(2).

[2] 刘昊淼.浅析量子力学无限方势阱――通过无限深势阱来理解量子力学非定域性[J].神州(上旬刊),2013(9).

[3] 胡化凯.20世纪50―70年代中国对哥本哈根学派量子力学诠释的批判[J].科学文化评论,2013,10(1).

[4] 张占新,莫文玲,王凤鸣等.通过计算氢原子的玻尔半径,加深对量子力学的理解[J].大学物理,2011(30).

[5] 朱安远,朱婧姝,郭华珍等.20世纪最伟大的科学巨匠――阿尔伯特・爱因斯坦(下)[J].中国市场,2013(46).

先用一句话来直观地表述爱因斯坦到底有多伟大,到底有多厉害,我们形容一个人的伟大和厉害程度都会用到这样一句话:某某领域的爱因斯坦!

一句话胜过千言万语!

那么爱因斯坦究竟取得过哪些成就呢?

大家多少肯定都有所了解。现代物理学有两大基石,相对论和量子理论,而爱因斯坦与这两大基石都有密切的关系!

首先,爱因斯坦是量子力学的奠基人之一,因发现光电效应而获得了诺贝尔奖,让我们知道光子波粒二象性,为之后量子力学的发展奠定了坚实基础!

而爱因斯坦最伟大之处在于他的狭义相对论和广义相对论。如果爱因斯坦创立爱因斯坦之前的物理学环境已经相当成熟,洛伦兹,庞加莱等人已经比较接近狭义相对论,那么广义相对论完全就是爱因斯坦一个人的功劳,凭借他异于常人的大脑和思维模式,独自一人提出了颠覆人类传统认知的相对时空观!

而如今,不管在哪个行业,也不管是男女老少,爱因斯坦这个名字可谓无人不知无人不晓!甚至可以这样说,爱因斯坦是人类 历史 上最伟大的两位物理学家之一,另一个是牛顿,想必没有谁反对吧!至于爱因斯坦和牛顿谁更伟大,仁者见仁智者见智,那是另一个问题!

如果说爱因斯坦是人类 历史 上,最伟大的人之一,我想这个评价一点都不为过,而且爱因斯坦虽然是一个物理学家,但他对于人类的贡献,却横跨了无数的领域,所以美国时代周刊在1999年的时候,将爱因斯坦列入20世纪,全世界最具影响力的100人之一,我想这一点就足以说明,爱因斯坦的伟大成就了。

其实当我们现代人还在享受生活,甚至吃喝玩乐的时候,爱因斯坦已经横空出世了,他在1906年的这一年当中,发表了5篇划时代意义的论文,这5篇论文以我们今天的角度去看,几乎每一篇都是诺贝尔奖级别的,而这一年爱因斯坦仅26岁,试问又有几个人能在26岁这个年纪,创造出这般的成就。

那么从1906年开始,爱因斯坦便开始了开挂一般的人生,他在接下来的十年当中,又发表了诸多的物理学论文,包括像固体比热,临界乳光,以及广义的相对论等,那么这个时候,爱因斯坦已经是享誉全球了,他的理论也被物理学界所认可,那么唯一的问题来了,爱因斯坦什么时候才能获得诺贝尔奖。

那么在1919年的时候,著名的物理学家普朗克便提名,要求将爱因斯坦列入诺贝尔奖的获选者之一,原因是因为广义的相对论,已经超越了过去几百年,统治物理学的牛顿定律了。

而且在1919年11月的时候,英国皇家学会正式宣布,相对论是人类 历史 上的最高思想,那么在种种因素之下,诺贝尔奖委员会在2021年,将当年的物理学奖授予爱因斯坦,所以爱因斯坦简直就不是人类……

这么说吧,爱因斯坦的成就让他可以成为人类有史以来最伟大的两位物理学家之一(另一位当然就是牛顿)。现代 科技 的发展基于现代物理学,而现代物理学的两大支柱——相对论与量子力学,爱因斯坦一人贡献了超过一半之多。

在20世纪初,物理学面临着两大难题,一个与迈克尔逊-莫雷的光干涉实验有关,还有一个与黑体辐射有关。对于第一个问题,爱因斯坦创造性地提出了狭义相对论,由此掀开了物理学革命,宣告着新的物理时代的到来。此后不久,爱因斯坦又着手解决引力问题,提出了广义相对论。也就是说,爱因斯坦几乎是仅凭一己之力创立了相对论。由于相对论的预言超前当时 科技 太多,很多都是等到几十年甚至一个世纪之后才得到实验的证实。

对于第二个问题,普朗克提出了量子假说,由此宣告量子力学的诞生。不久后,爱因斯坦提出了光量子假说,解释了光电效应,后来他也因此获得诺贝尔物理学奖。在量子力学进一步发展之后,虽然爱因斯坦对量子力学中的一些诠释很不满,但他提出了很多尖锐的批评又极大促进了量子力学的发展。因此,量子力学有现在的高度,这与爱因斯坦的贡献密不可分。

毫无疑问,爱因斯坦为现代物理学的发展奠定了极为重要的基础,他是当之无愧的人类史上最伟大的两位物理学家之一。

施郁

(复旦大学物理学系)

20世纪的物理学有两大支柱,量子力学和相对论。相对论包括狭义相对论和广义相对论。爱因斯坦以一人之力,1905年创立了狭义相对论,1915年又将它推广到广义相对论。 很多人对量子力学的创立做出了贡献,爱因斯坦是其中之一,而且是重要的“之一”。 爱因斯坦对量子力学的贡献表现在一下几方面。 1. 继普朗克引入作用量子的概念之后,爱因斯坦于1905年提出电磁波由一份一份的光量子组成。在这篇文章中,作为光量子假说的一个应用,爱因斯坦讨论了光电效应。而这个关于光电效应的讨论就是他1922年获得1921年诺贝尔物理学奖的基础。2. 爱因斯坦1916年提出电磁辐射的量子理论。后来人们在此理论基础上发展了激光。 3. 1924年,爱因斯坦提出玻色-爱因斯坦凝聚。 4. 1935年,爱因斯坦与合作者在质疑量子力学的完备性时,发现后来被薛定谔称作“量子纠缠”的特殊性质。

20世纪或者说17世纪牛顿发现牛顿三定律和万有引力定律以后,物理学界一共有三大发现:相对论、量子力学和规范场论。其中爱因斯坦独自发现了相对论。并且对于量子力学的发展也有突出贡献。因此,他对物理学界的贡献恐怕在短时间内,根本不可能有人可以超越。

当然虽然有的人因为爱因斯坦发现的相对论,适用范围更广,更接近事物发展的本质,就说爱因斯坦甚至比牛顿还要伟大。这也不符合事实。要知道牛顿在200年前就可以发展出改变世界的理论,从而使人类可以进入理性思考的时代。这是人类 社会 一次跨越式的进步。因此,可以毫不夸张的说,没有牛顿打下的良好基础,就不可能产生爱因斯坦。

解答区的一个叫做@普明在学 的人,我送你四个字:痴人说梦。不过,佛家本来就推崇“梦”,他们分不清现实和梦 或者把现实当成是梦。也就是说,佛家的思想是扭曲的,不能正确的反应 社会 现实,以至于恬不知耻的想把爱因斯坦拉到佛家来。

这个@普明在学 妄想说:“如果爱因斯坦还活着,我想他最愿意做的就是研究佛学,研修佛法。”还吹嘘说:“佛法有他对宇宙各种能量运转规律的完美解答。”并且在神经兮兮的幻想——爱因斯坦由于修炼了佛法,成佛了,且看他鬼扯:“他通过研修佛法,终于明白了,彻悟了。”

科学从来不讲究所谓的“悟”。“悟”这个字,本身就带着神棍气息。宗教家说的“悟”,其实不过是胡思乱想,乱想越乱,类似心灵鸡汤,何曾是真正的悟,其本质是“误”,错误的误。科学不神秘,不过是脚踏实地,每日刻苦钻研的学问。

好比有一座大山,科学就是每天挖山,今天挖一点土方,明天挖一点土方,后天再挖一点,日复一日的挖下去……终有一日,把这一座大山挖空、挖尽。科学从来不妄想掌握了某种神通,一下子让大山自行飞走,或者让大山化为乌有。

你问爱因斯坦有多么厉害,爱因斯坦不过是用了正确的方法挖山,挖的比其他人更快一点。

佛家却吹嘘所谓的“悟性”,其实就是躺在地上拼命的做梦,等有一天梦见大山原来是不存在的,就是“彻悟”了。

而所谓“佛法有对宇宙各种能量运转规律的完美解答。”这更是无知低劣的臆想,佛法既然如此万能,为什么连地球是圆形的都不知道?其实,佛法是古人在南亚此大陆狭隘的世界观上空想出来的,很多都是没有依据的瞎说。而获知宇宙规律,需要的是严谨的科学方法之 探索 。

真理不是“彻悟”出来的,而是科学者前赴后继的挖出来的。历代“高僧大德”,他们悟了一辈子,为什么没有一个人成佛?

在138年前的3月14日,一个拥有外太空智慧的重大人物出现了,这位震惊世界的人物名为:阿尔伯特·爱因斯坦。

在过去100年中,世界经历了前所未有的变化。

科技 进步影响了世界的改变

如爆炸般进化的科学技术

以及那个前所未有的超级大脑

阿尔伯特·爱因斯坦

1905年3月,提出光量子说,解释了光电效应,于1921年获得诺贝尔奖。

1905年6月,提出狭义相对论,推翻了牛顿绝对时空观的经典理念,重复赋予了物理学新的定义。

1905年9月,从狭义相对论中得到质能方程(E= mc?2;),给予了人类从远古时期以来所能掌握的最强大的力量(核能)。

仅仅一年的时间,爱因斯坦建立起了现代物理学的两大根基——相对论和量子力学,原本应该经过几十年不懈努力才能诞生的科学成就,被爱因斯坦如开外挂一般一年完成。

1915年,广义相对论的诞生,打开了人类文明对宇宙的真正认知。从此之后人类可以真正有信心把目光投向深空,未来也因此有了全新的高度。

更令人惊叹的是,广义相对论的诞生几乎没有任何前人的积累,全凭爱因斯坦单枪匹马创造而出,强行把人类文明加快一个世纪的进程。

这就是智慧的力量

有些人的智慧可以完成无比复杂的计算和谋略

有些人的智慧可以在最短的时间内做出最快的反应和判断。

有的机器不仅所向披靡,还能满足你的爱美之心。

而他的智慧,你们不得不承认,那是一种超越了时代和认知,将宇宙万物容纳在脑中的终极思考。

一别人都谈他怎么厉害,我来砸个场,谈谈他多“不厉害”吧

1927年索尔维会议

1901年 爱因斯坦22岁,这一年是爱因斯坦一生中最落魄彷徨的一年,虽然拿到了毕业证,但班里一共五位同学,他未来妻子同班同学米列娃没有拿到毕业证,其余三名都顺利留校担任助教。爱因斯坦提出了留校申请,被拒之门外,试着像瑞士德国波兰的物理学家申请助教职位,但都石沉大海。

“我已经长大成人,可是仍然无所作为,一点忙也帮不上,这真使人肝肠寸断。我只能加重家庭的负担。确实,如果当初根本没有生我,情况可能会好一些唯一使我坚持下来的,唯一使我免于绝望的,就是我自始至终一直在自己力所能及的范围内竭尽全力,从没有荒废任何时间。日复一日,年复一年,除了读书之乐外,我从不允许自己把一分一秒浪费在 娱乐 消遣上。” 这是爱因斯坦在最落魄的时候写给妹妹玛雅的信,他最无助的时候一度想放弃科学志向,改行去卖保险。 第一次读到这段文字的时候,不敢相信这个屌丝和我们现在很多985,211大学多年寒窗苦读,但毕业就失业的学生有什么区别?

四年后的1905年3月,爱因斯坦完成光电效应论文。4月,用新理论测量分子半径完成博士论文。11天后爱因斯坦关于布朗运动的论文完成对原子学说盖棺定论。6月 ,关于移动物体的电动力学论文出世,也就是狭义相对论,改变人类认识宇宙的方式。最后一篇论文关于质能方程的论文,推导出 E=MC2,5篇论文的发布建立起现代物理学两大基石 ——相对论和量子力学。

什么叫厉害?

1896年 爱因斯坦在阿劳中学时与同学合影

——————————————————————————————————————

补充一下 爱因斯坦

1879年\t1岁。阿尔伯特·爱因斯坦出生于德国乌尔姆市(3月14日)。

1881年\t2岁。妹妹玛雅出生。

1884年\t5岁。父亲给他看一个罗盘。

1885年\t6岁。开始在慕尼黑上学。

1888年\t9岁。进入慕尼黑的卢伊特波尔德高级中学学习。

1889-1892年\t10-13岁。开始自学数学和科学。没有行受戒礼。

1894年\t15岁。未等毕业离开卢伊特波尔德高级中学。赴意大利和父母会面。

1895-1896年\t16-17岁。在瑞士阿劳州立中学学习。

1896年\t17岁。放弃德国国籍。

1896-1900年\t17-21岁。在苏黎士的瑞士联邦理工学院学习并毕业。

1901年\t22岁。取得瑞士国籍。申请科研职位无果。发表第一篇科学论文。

1902年\t23岁。女儿出生。开始在伯尔尼的专利局工作。(6月23日)

1903年\t24岁。和米列娃·玛里奇结婚。女儿可能被收养。与索洛文和哈比希特创建“奥林匹亚科学院”。

1904年\t25岁。长子汉斯出生。

1905年\t26岁。完成五篇科学论文(第二篇是其博士论文),分别关于光量子(3月)、分子大小(4月)、布朗运动(5月)、狭义相对论(6月)和E= mc2(9月)

1906年\t27岁。运用量子理论完成固体比热的论文。

1907年\t28岁。发现对广义相对论至关重要的等效原理。

1908年\t29岁。闵可夫斯基用四维时空重新表述狭义相对论。

1909年\t30岁。在萨尔茨堡讲演,提出波粒二象性。离开专利局,到苏黎世任理论物理学教授。

1910年\t31岁。次子爱德华出生。

1911年\t32岁。到布拉格任理论物理学教授。在布鲁塞尔出席第一届索尔维会议。

1912年\t33岁。回苏黎世任理论物理学教授。

1914年\t35岁。迁居柏林,任普鲁士科学院院士。与米列娃分居,米列娃和儿子回到苏黎世。公开反对德国国家主义者发动战争。

1915年\t36岁。发表广义相对论(11月)

1916年\t37岁。完成关于辐射的量子理论的论文,提出自发辐射和受激辐射概念。

1917年\t38岁。完成关于宇宙结构的论文,引入宇宙学常数。

1918年\t39岁。完成引力波的论文。欢呼德意志帝国在第一次世界大战中的垮台。

1919年\t40岁。与米列娃离婚,与表姐爱尔莎结婚。英国天文学家对日食的观测结果(5月29日)证实广义相对论所预言的光线弯曲。

1920年\t41岁。德国开始攻击相对论和“犹太物理学”。

1921年\t42岁。初访美国,为耶路撒冷的希伯莱大学筹款。

1922年\t43岁。访问日本。被授予1921年诺贝尔物理学奖。

1923年\t44岁。访问巴勒斯坦。在希伯莱大学首次发表演讲。发表统一引力和电磁力的首次尝试。

1925年\t46岁。发表关于玻色-爱因斯坦统计和玻色-爱因斯坦凝聚的两篇论文。

1925-1926年\t46-47岁。海森堡、薛定谔等人创立量子力学。爱因斯坦表示怀疑。

1927年\t48岁。出席索尔维会议,开始与玻尔就量子力学展开争论。

1929年\t50岁。在普朗克70岁生日时获马克斯·普朗克奖章。

1930-1933年\t51-54岁。三赴加州理工学院讲学。

1933年\t54岁。纳粹掌权后宣布不再回德国。从普鲁士科学院辞职。迁居美国,在普林斯顿高等研究院工作。不再访问欧洲。

1935年\t56岁。发表关于量子力学的爱因斯坦-波多尔斯基-罗森佯谬。

1936年\t57岁。第二个妻子爱尔莎在普林斯顿去世。

1938年\t59岁。与英菲尔德合作出版《物理学的进化》。长子汉斯及家眷移居美国。

1939年\t60岁。妹妹玛雅来到普林斯顿。在致罗斯福总统的信上签字,敦促研制原子弹对付德国。

1940年\t61岁。入美国国籍(保留瑞士国籍)。

1943年\t64岁。开始为美国海军做战时工作,但未参与原子弹研制工程。

1946年\t67岁。担任原子科学家紧急事务委员会主席。支持军控,敦促建立世界政府。反对美国的种族主义。

1948年\t69岁。经诊断患动脉瘤。前妻米列娃在苏黎世去世。

1950年\t71岁。在遗嘱中指定遗稿存放在耶路撒冷的希伯莱大学。反对研制氢弹。接美国联邦调查局局长胡佛命令,被秘密调查是否是从事颠覆活动的共产主义分子。

1951年\t72岁。妹妹玛雅在普林斯顿去世。

1952年\t73岁。以色列政府邀请担任总统,被拒绝。

1953-1954年\t74-75岁。公开反对麦卡锡主义,引发激烈争论。

1955年\t76岁。在罗素-爱因斯坦宣言上签字,反对核武器扩散。在普林斯顿去世(4月18日),临终时仍在思考统一理论。

爱因斯坦一手建立起来了现代物理学的两大支柱之一的相对论,这可是完全凭借爱因斯坦一人之力建立起来理论。即便是量子力学,爱因斯坦也是发起者之一。可以说,现代物理学80%都归属于爱因斯坦理论管,可见爱因斯坦的厉害之处。

如果说旧物理学归属于牛顿,那么现代物理学则归属于爱因斯坦!也不说别的,仅仅爱因斯坦的一个引力场方程(广义相对论),就可以吃遍天下,把整个宏观宇宙囊括进去。我们现在知道的很多相对论预言,都是出自这个引力场方程的解。例如时空弯曲,引力波,黑洞等等,随便一个相对论的预言,都够一群科学家研究一辈子。比如大名鼎鼎的霍金,就是研究爱因斯坦相对论预言的天体--黑洞而出名。

既然这个引力场方程(广义相对论)如此厉害,那它到底长什么样呢?看下面式子:

是不是觉得很简单?就几个字母而已,那如果你看看下面的字母含义再说:

是不是感觉有点意思了,是的,这个引力场方程是一个二阶非线性偏微分方程组,数学上想要求得方程的解是一件非常困难的事。爱因斯坦运用了很多 近似方法,从引力场方程得出了很多最初的预言。那我们看看黑洞是怎么解出来的:

此引力场方程第一个严格解就是史瓦西解出来的,解出来了一个黑洞,简称史瓦西黑洞。没错,著名电影<星际穿越>里面的黑洞,就是一个史瓦西黑洞:

以上就是史瓦西解方程的过程,最终解出来这么一个式子:

没错,这个就是史瓦西黑洞。看完之后,各位网友觉得怎么样?

我来谈谈的对爱因斯坦的工作的看法,第一个谈谈爱因斯坦对布朗运动的看法,因为最近刚好在做布朗运动,Fokker—Planck方程相关的东西。爱因斯坦在布朗运动上做出的贡献不仅是突破性的,还是激励性的,他首次提出了爱因斯坦关系描述布朗运动,这一创举随后又被朗之万在1908年用他认为特别简单的朗之万方程正面,需要说明的是,朗之万的工作虽然物理图像清晰,但是在数学上还是差了一点,后来爱因斯坦、朗之万的工作被发展为Fokker—Planck方程,被普遍的应用于非线性模型上。另一方面,爱因斯坦的工作激励了另外一位数学家,维纳,维纳在数学上严谨的完善了前人在布朗运动的工作,严格的布朗运动理论被建立起来,后来又产生了伊藤积分,这一套理论成为欧式期权定价Black—Scholes模型的基础。第二,他对狭义相对论的贡献,实际上狭义相对论中的洛伦兹变换中的一部分早在1905年之前就被提出了,与爱因斯坦同期的庞加莱等人也有了和爱因斯坦类似的初级想法。爱因斯坦对狭义相对论的贡献主要是两点1.大胆的推翻Newton时空观,才用Maxwell方程组作为新时空观的基础,赋予了洛伦兹变化真实的物理意义2.接受其老师闵可夫斯基的想法,将代数形势作为狭义相对论的核心,这才产生了我们所说的四维时空,并且也为他提出广义相对论打下了基础。第三,他对广义相对论的贡献,最为能反应出其天才的一面的,是爱因斯坦场方程的构造居然是他猜出来的(实际上他使用了错误的办法),这要比数学家希尔伯特采用作用量严格证明的要早,其次,能够大胆的采用黎曼几何也是很重要的,在这一点上闵可夫斯基的四维时空形式贡献很大。从狭义相对论和广义相对论的产生可以看出,老爱敢于质疑人们思维里认为是理所应当的东西,这是他能获得巨大成功的原因。第四,光电效应,光电效应是爱因斯坦获得诺奖的项目,这个项目实际上是和普朗克方程与实验、波尔模型与氢原子光谱一同打造了旧量子论的核心,也为薛定谔提出薛方,海森堡的矩阵力学奠定了基础。除此以外,爱因斯坦对德布罗意博士论文的肯定也直接导致了一大堆新观点,诺奖的诞生。爱因斯坦还肯定了玻色的工作,并提出了所谓爱因斯坦玻色凝聚的东西,在当今凝聚态物理中也有巨大贡献,还有EPR佯谬,导致了量子纠缠理论的发展,最近潘建伟的量子隐态传输也有一部分功劳是老爱的(我跟的老板也是做这个的)。引用我第二崇拜(第一爱因斯坦)的物理学家朗道的观点,爱因斯坦是个级的物理学家,他与物理之神牛顿只差。爱因斯坦的一生,激励了无数后来人投身物理学中。他是以一人之力斩开物理学头顶乌云的人,这就是老爱的伟大,也是我们崇拜他的原因!最后,如有谬误,欢迎大家斧正。应评论区要求,补充下爱因斯坦和牛顿两者的比较,首先,爱因斯坦比牛顿低这是最后一个物理全才朗道的看法,并不是我的看法,而且这个看法一直以来都被坚信(这是有原因的)首先,牛顿的贡献主要在数学,力学,和热光声的小方面中,可以说,当代物理专业的学生学的四小力学,除了电学,基本都脱胎牛顿哪一套。需要特别指出的是,牛顿的数学贡献,第一,不仅仅是微积分,还有非常著名的牛顿迭代法等,第二,关于牛顿和莱布尼茨,他两个实际上切入微积分的角度不同,事实上,如果没有牛莱之争,微积分学发展可能不会发展的如 历史 上那么迅速,牛顿那一套比较偏向物理,而莱布尼茨从几何上多一点,基本所有现代的微积分学教材都保留着牛顿和莱布尼茨的双重特征,即物理模型和几何模型并重。那么牛顿和爱因斯坦谁更伟大呢?这需要建立一个评价标志。第一,影响力(时间方面),所有的当代物理学家/数学家都是牛顿的徒子徒孙,这一点牛顿占有。第二,在世时的影响受众数,这一点爱因斯坦占优。第三,其理论的意义,这一点我认为基本上是不分高下的,他们两个人都是开创了物理学新纪元的人。第四,理论在应用上的影响力,这一点牛顿的更为普遍,但诸如原子能,GPS的影响力在今天也是非常巨大的,平手。第五,其理论在文化领域的贡献,这一点爱因斯坦的相对论简直是为人类开了脑洞了,爱因斯坦胜。实际上对二者评价的高低,与评价者所处的时间有很大关系。今天的人多给爱因斯坦评价多,其中又一个很重要的原因是,牛顿那一套在今人眼里已经是常识了,相比起来,爱因斯坦的理论更具神秘性和高大感,但如果我们把它放到朗道那个时间,这一点是未必的,因为那时候相对论方兴未艾,而且爱因斯坦的一些观点也遭包括哥本哈根学派在内的许多人诟病,那个时候对爱因斯坦评价确实能比波尔高一点,但绝不会超越牛顿。另外一点,所有的神话中神都是古代的,而物理学的远古之神就是牛顿,这其实是很自然的,人们对近代人物的争议是要比古人多的。对当时的朗道而言,爱因斯坦的确很神,但物理的神是牛顿,实际上物理学的确需要一个远古的神。当然,我更喜欢爱因斯坦。//感谢

@王海

@Ray Chi

随着科学技术的发展,人们对世界的了解越来越深刻,当然通过天神的观察再来惩罚一些恶人,这种说法并不可靠。但在一些微观世界里面,这些微观粒子好像就是拥有灵性一样,会懂得识别观察者的观测,这就不得不说双缝干涉延迟实验了。

早在牛顿提出光的粒子性之前,就已经有人提出了光的波动性,他就是惠更斯。那时候惠更斯已经提出了光的一套综合理论,对于光的传播、反射定律和折射定律,都能解释一些相应的自然现象。

但这个理论在一些其他的自然现象的解释当中就遇到了困难。同一时期,另外的一位伟大科学家牛顿,就提出了光的粒子性,它认为光是有很多不同颜色的粒子混合在一起,并且可以通过三棱镜折射出不同的颜色,牛顿也通过光的粒子性来建立起光的颜色理论。

由于当时牛顿在科学界上的地位已经非常高,现在常常所讨论的万有引力定律就是由牛顿证明的,而且他还是英国皇家科学院院长,加上他的这个身份,人们认为牛顿所提出来的光的粒子性更拥有权威性,所以在之后的很长一段时间内,光的粒子性都占有了非常大的位置。

到了1807年,有一个医生改行研究物理学的,他就是托马斯·杨,他设计出了光的双缝干涉实验,以此来证明光的波动性。但牛顿在英国科学界的地位非常牢固,这种新的实验带来的证明,并没有在英国得到很好的传播,但这个实验一传到了法国之后,就得到了法国科学家的确认,并且使他们对光的波动性的确认。

不过这并无法否定光的粒子性学说,基本上科学界对于光的性质又分成了两派,其中一派支持光的波动性,另一派是支持光的粒子性。这又引起了人们的争论,人们纷纷通过实验来证明自己支持的学说,但在很长的时间里,谁也无法说服谁,总的来说还是光的波动性占据了上风。

随着光电效应被人们所发现,紧接着爱因斯坦也提出了光量子学说,可以很好的解释了光电效应,又使得人们对光的粒子性得到重新的认识。爱因斯坦也因此获得了1921年的诺贝尔物理学奖。

由于这些新的发现,和任何一派的学说都无法说服对方,所以物理学者不得不承认,光除了波动性之外,还拥有粒子性,这也就是波粒二象性。

1924年,在光的波粒二象性启发下,法国的物理学家德布罗意认为,不仅仅是只有光才会拥波粒二象性,他认为一切的微观粒子,包括电子、质子和中子,都应该拥有波粒二象性。

德布罗意按照这一思路,并且应用了狭义相对论,计算出了这些波长与速度之间的关系,并且还弄成了一篇博士毕业论文,但当时他的导师无法作出决定,就将这篇论文发给了爱因斯坦,请爱因斯坦对论文进行评价。

此时的爱因斯坦在科学界已经拥有了很大的权威,他的评论自然会在科学界上受到很大的重视,而爱因斯坦所给出的评价,大概也就是这篇论文里面拥有的一些狠心很有趣的思想等等。

有了爱因斯坦的回信,对论文进行评审的评审委员会成员也就不敢随意地下定论了,在论文的答辩过程中,他们就问德布罗意应该如何才可以通过实验验证他的这个假设。

按照这个假设,德布罗意认为可以通过电子加速之后投射到一些晶体上,这样就可以给电子进行衍射实验,以此来证实电子拥有波动性。其实当时已经有一些科学家利用电子来进行衍射实验,但他们并没有获得成功,在德布罗意的假设指导下,他们给电子加大了能量,最终使实验获得了成功,也证实了电子拥有波动性,德布罗意也因此获得了1929年的诺贝尔物理学奖。

值得一说的是,德布罗意原来只是读 历史 的,后来才转行去读物理,但却获得了如此巨大的发现,所以说转行的人也有可能从中获得很大的成就。

也正是因为发现了电子的波动性,所以人们就利用电子去做一些以前的波动性实验,像双缝干涉实验也就是其中的一种。

但电子是可以一个一个地发射的,当只发射一个电子的时候,难道电子还可以进行自我干涉?人们通过实验发现,还真的发现了电子自我干涉的现象,当电子进入到其中一个缝的时候,它就会一分为二,这样就可以自我干涉,并且产生干涉条纹。

这个现象让人们百思不得其解,就像是踢一个足球,且可以同时的将它踢进两个球门,这种现象对于人们来说是匪夷所思的。

然后科学家为了想了解电子穿过双缝之后到底做了什么?所以在后面加了一个监控器,以此来对电子进行行为监测,但令人想象不到的是,加了这个监测器之后,人们完全无法监测得到后面的干涉条纹。

这种现象就更加诡异了,当加了监测器之后,电子之间的自我干涉就消失了,试验可以得到的结果就是双缝,但当人们关闭监测器进行实验的时候,干涉条纹又出现了。

这就是它们的诡异之处,但在实验中加入了一个监测室之后,可以得到完全不同的两种结果,就好像人们想要观察电子的时候,电子就好像会通灵一样,完全就表现出了另外一种姿态,还故意不让人们观察它的另外一种姿态,科学家也无法解释这种现象。

其实这一现象已经指向,这些微观粒子并不是一种物质而已,而是拥有一种意识,当人们想要对它进行观察的时候,它却有意识的改变了这种姿态。也正是因为这种现象,才令科学家感到恐惧。

综上所述 ,科学家对于双缝干涉延迟实验的恐惧,并不是对于这个实验的恐惧,而是对于这些微观粒子的表现的恐惧,因为从实验的结果来看,这些微观粒子就好像拥有了意识一样,可以自主的进行改变姿态,并不是一种单纯的物质,这当然会令科学家感到恐惧了。

如果说宇宙不是完美的,它有BUG(漏洞),你信么?双缝干涉实验似乎一步步地发现了这个宇宙“漏洞"

当我们在水中丢下一块石头,那么水面就会产生波纹,如果同时丢下两块石头,两个水波之间就能够出现交叉的干涉条纹。这就是波能够互相干涉的特征。

双缝干涉实验既在一个光源前放置一个开了两条缝隙的不透明挡板,挡板后面再放置一个能够观测到的背景。当我们打开光源,会看到背景上出现明暗相间的条纹,这就是简单的双缝干涉实验。 这个实验证明了光是一种波! 因为光在穿过两条缝隙后产生只有波特有的干涉,相反的波被抵消,相向的波被增强,导致背景上明暗相间的条纹。(日常生活中主动降噪耳机就是利用了这个原理,用相反的声波抵消了噪音)

下面我们把实验升级一下,光源变得非常小,背景换成高灵敏高分辨的底片。打开光源后,一开始我们看到了无数随机分布的小点,随后这些小点越来越多最终形成明暗相间的条纹!实验升级后证明光是一种粒子并且还具备波的特征 , 也就是光的 波粒二象性 !

虽然双缝干涉实验已经让人赞不绝口,不过科学家们还是在这个实验上再次升级。将光源变成一次发射一粒的电子!电子要通过这块挡板只能随机通过两条缝隙。

我们知道,要干涉就必须有对象,没有对象怎么被干涉?然而这一次实验结果出事了,即便单个电子在随机穿过两条缝隙后依然在最后形成了干涉条纹。

这个结果震惊了科学界!为什么单个电子能够自我干涉?难道他还有一个分身?更诡异的是当我们观察电子是通过哪一条缝隙时,干涉条纹消失了。当取消观察时,干涉条纹又神奇的出现了!冥冥中仿佛有一双眼睛窥视着我们,只能让我们看到电子穿越缝隙的路径(粒子特征)或者电子的干涉条纹(波特征)其中之一!

看到这里,你也许认为上面的实验会有很多未知的漏洞,我们观察电子时已经打扰了电子的正常运动导致电子属性改变,只是我们没有办法找出这个因素。接下来科学家用更加复杂精密的方法来做双缝实验。将一个光子分离成一对纠缠的光子A和B(纠缠的量子能够无视距离影响对方)

AB分别做双缝干涉实验(互不影响的环境),而B距离感应屏比A远,这样 A会比B要先到达感应屏 。当我们在B实验中放置相机观测到B通过双缝的路径时,A实验的干涉图像消失,显然,纠缠的两个光子是互相影响了,B得不到的波属性A也得不到。接下来,我们通过技术手段把B获得的路径信息擦除,然后A和B都出现了干涉条纹。这里就出现了两个个非常诡异的现象。 测量到光子的路径信息只是"泄露”,没有主管观意识去查看,干涉条纹会消失!把这个路径信息擦除掉,干涉条纹又会出现!

更诡异的是,实验中我们设定从B获得路径信息时,A早就已经到达了感应屏形成了图像!这时候擦除B的路径信息,A感应屏已经"拍好照"的图像会鬼魅般地变成干涉条纹!

很多人一开始认为,观察光子路径就是人类意识干预了实验。不过我们从最后一个实验得知,在延迟选择实验中,测量到的路径信息,你看与不看,宇宙程序它已经认定了你泄露了天机!光子波动属性就被隐藏了!我们得不到干涉图像。如果我们把这个泄露的天机抹除掉,宇宙程序马上修复了光子的波动性,让我们得到了干涉图像。没想到的是,我们人类在实验室上利用量子纠缠钻了个空子,让图像形成之后再得到路径信息。接着我们再去选择是泄露还是擦除,宇宙程序任然按照原来的指令执行了。让已经形成的图像变了回去(曾经不干涉的光子,在曾经又干涉了。这话很绕)?这是不是意味着我们找到了一个宇宙程序的BUG,用现在的决定,改变了过去!还是另有其他原因?我们生存的宇宙,这个看不到边无比真实的世界,难道是一个设定好的“程序”?或者说宇宙这个看似无比完美运行的世界其实还有一些漏洞。如果人类将来利用这些漏洞未来的世界会发展成什么样子?

很多人听过双缝干涉实验后会认为“玄之又玄”,于是有了“遇事不决量子力学”。实际上,量子力学是人类了解宇宙底层逻辑的敲门砖,而双缝干涉实验则是量子力学核心的显现,下面我聊聊双缝干涉实验到底多“诡异”,它揭示了宇宙哪些核心?

由于量子太过抽象,因此我们把量子现象过渡薛定谔的猫,再回到双缝干涉实验就容易理解了。这是薛定谔给我们理解量子力学的好例子。

话说啊,有个封闭的盒子里面装一只猫,然后一个量子装置连着毒药瓶,猫的生死取决于量子性质,如果量子发生衰变猫死,反之则没事。换句话说,猫的生死间接表现了量子的性质。实验的问题是猫最后是死的,还是活的?

各路大佬都说出了自己的看法,主流看法有三个:

哥本哈根学派,波尔:这是只 量子猫,它在盒子里的概率是100%的可能性是活的,同时100%可能性是死的,两种状态同时存在,叠加在一起,当你打开盒子一瞬间,猫的生死才会表现出来,生死的结果是随机的。

爱因斯坦、薛定谔:猫50%是死的,50%是活的,我们打开盒子之前它就已经死了,或者还活着,我们打开盒子看到的是结果,而不是诱发结果。

爱因斯坦:波尔,按你的意思是打开盒子时,上帝发现有人要来看结果了,赶紧摇号决定了猫的生死?

波尔:你别管上帝能干什么!

休·埃弗雷特:安静安静,我还没说呢!首先波尔的叠加态我是认同的,但是100%+100%=200%,打开盒子前与打开盒子后应该守恒才对,因此我认为如果打开盒子时猫死了,那么活着的猫应该存在于另外一个世界中——平行宇宙。

爱因斯坦、薛定谔、波尔:你厉害, 我们竟然不知道如何证明你说的是错的!

故事先到这里,看得懂看不懂没关系,先说结果:波尔是对的!而平行宇宙证明不了,最多算假说。在这个故事中有几点很重要:

1. 猫即死又活的状态——叠加态

2.打开盒子意味着观测, 观测会让叠加态随机坍缩为单一状态 。(上帝摇号!)

3.前两点, 打开前与打开后,还隐含了波粒二象性。 (下面再说)

接下来我们看双缝干涉,这事要先从牛顿说起,源于一个看似简单,然而谁都答不上来的问题——光是什么东西?

图:牛顿三棱镜实验

牛顿作为当代学霸,为光学做出了不少贡献,比如阳光是由多种光混合而成的三棱镜实验就是他搞出来的。他认为光又能反射,还折射,运动轨迹会改变,就像乒乓球扔墙上会反弹回来,因此它最小的单位应该是粒子。

十九世纪,托马斯·杨反击牛顿,他只干了一件事,让一束光通过了两条小缝,后面有块感应屏。“按照牛顿的说法”这个实验的结果应该是两条条纹,如下面:

实际上却出现了下面的结果:

于是老杨说光就像下面的水波一样,其实波:

通过缝隙的光波变成了两个波,两个波接触干涉,出现和水一样的现象,于是在屏幕上显示出干涉条纹。

这就是双缝干涉实验,但是诡异的事情是量子力学的双缝干涉实验。

好景不长,随着黑体辐射实验,普朗克发现光能量是一份一份不连续的,爱因斯坦发现光电效应,即光与原子作用时是以粒子的形式交换能量的。于是大家重新审视双缝实验,对它进行升级。

既然光是一粒一粒的,那么我们把光子一粒粒通过双缝会发生什么?(实际实验用的是电子,道理是一样的)

大佬们很快地照着两条缝像机关枪一样发射一梭子电子,显示屏上随机出现大量的粒子,但站远点看这些粒子同样组成了干涉条纹。既然是粒子,为何会发生干涉?

于是有人认为一大堆电子在一起挤来挤去的所以发生了干涉,有点像儿童乐园里的海洋球,当你跳进去,海洋球虽然是一粒一粒的,但是会像波一样往向外扩散,于是就有了虽然是粒子但同样会发生干涉。但真的只是这样吗?

图:实验结果

科学家再次做了实验,改成了“手枪式”发射,“啪”打一发电子,电子到达了感应屏,再打下一发,杜绝了两个电子在运动时发生干涉。然而科学家懵了,快点打和慢点打,结果是一样的,屏幕还是出现了波动性,才会出现的干涉条纹,而不是两条条纹!也就是说单个电子发生了干涉,那么它和谁干涉呢?就两个缝,它只能选一个穿过,另一个缝没有电子出来,上哪干涉去?

为了解决了问题,大佬们就在实验中安上了光电探测器“去看它”,看看电子是如何完成干涉的!结果发现电子老老实实的在感应屏上形成了两条条纹。大家:上帝,告诉我发生了什么!

先按不靠谱的平行宇宙理论来解释:你不看时,电子即从A缝过去,又从B缝过去,然后发生了干涉,你可以理解为量子出现了一个分身。如果你去看它,宇宙就分裂了,如果电子从A缝进入,那么平行宇宙中的电子就从B进入,是我们去探测引起了宇宙的分裂,导致处于两个宇宙中的电子(分身)无法形成干涉。

波尔的解释:前半段和平行宇宙一样,电子处于叠加态,这是一个波的状态,但当你去看它,就随机坍缩成了粒子态。

爱因斯坦:无法解释!肯定有什么我们还没弄清楚的,反正上帝是不会摇号的。

图:我们印象中电子在原子中是这样的

图:实际上它是这样的,因此也叫电子云,具有概率性、波动性。

到目前的科学研究成果来看,波尔是对的。量子具有波粒二象性,这是量子力学的核心。一个电子同时具有波与粒子的性质。

当它没有坍缩成粒子时,虽然也是以单个粒子发射,但波的性质也在发挥着作用,当你发单个电子就类似于发射出水波,你发射了一堆电子,其实就是在发射一堆波,这些波都会按着干涉后的结果显示在感应屏上。当你探测电子,它坍缩成单独的粒子性质,所以一堆电子打出去,没有发生干涉,只出现两条条纹。

如果不理解量子的性质就会觉得,我不看出现干涉条纹,我看了却不干涉了,似乎有点“恐怖”,理解了就理所当然了,量子力学是目前人类发现的宇宙最底层的逻辑,它可以解释宇宙起源,大到宇宙的构成,小到组成宇宙最小结构的粒子的形成。

量子力学博士毕业论文

物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。

《 物理学在科技创新中的效用 》

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.

《 应用物理学专业光伏技术培养方案研究 》

一、开设半导体材料及光伏技术方向的必要性

由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。

二、专业培养方案的改革与实施

(一)应用物理学专业培养方案改革过程

我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。

(二)专业培养方案的实施

为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。

三、 总结

半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。

有关物理学博士论文推荐:

1. 有关物理学论文

2. 物理学论文范文

3. 物理学论文

4. 物理学教学专业毕业论文

5. 物理学实验本科毕业论文

6. 物理学本科毕业论文

物理学家,是指探索、研究世界的组成与运行规律的科学家。这是我为大家整理的关于物理学家学术论文,仅供参考!

对物理学家失误的解读

摘 要:通过在物理教学中客观介绍物理学家的失误,从而正确认识科学发展的曲折和科学家付出劳动的艰辛,并在实际探究的过程中体验物理学家研究问题的方法,发展科学探究所必需的创新思维,从而提高学生科学探究的能力。

关键词:失误;科学探究;创新思维

中图分类号:G420 文献标识码:A

文章编号:1992-7711(2012)10-081-1

在物理教学中,我们更多地介绍了物理学家成功的、正确的一面,而往往忽略了他们的失误。在物理教学中客观介绍物理学家的失误,通过对他们在特定历史条件下酿成失误原因的剖析,对中学物理教学具有积极的意义。

一、在物理教学中客观介绍物理学家的失误

事实上,物理大师也会走弯路,有失误。在物理学发展的过程中,这样的事例可以说是屡见不鲜的。发现放射性元素的贝克勒尔认为要找到比铀的放射性还要大得多的元素是不大可能的;牛顿推算光在介质中的速度比真空中大;电磁波的发现者赫兹由于实验的局限而错误地认为阴极射线不带电。

中子发现的历史更值得回顾。在查德威克发现中子前,在实验中已有迹象表明在核中可能存在一种中性子。例如,1930年德国物理学家玻特和他的学生利用α粒子轰击铍元素时,发现产生了一种穿透力极强的射线。后来居里夫人的女儿I?居里和她的丈夫约里奥对这种射线进行了研究。他们将这种射线射到石蜡上,测到了有反冲质子从石蜡放出,他们认为这反冲质子是由这种不带电的的射线所轰击出来的。但遗憾的是约里奥-居里夫妇和玻特等人都没能抛弃传统的旧观念,而断言为这种射线正是大家所知的Υ射线。太可惜了!尤其对约里奥-居里夫妇而言,只要根据打出质子的动能,仔细地推算一下,假如入射粒子是Υ光子的话,那么它的能量将达几十兆电子伏,要比实验测得的这种未知中性粒子的能量大得多,于是就会发现,这种未知中性粒子不可能是Υ射线。可惜旧的传统观念太深了,以致快到手的成果丢掉了。在正电子的发现过程中,同样的失误又一次发生在约里奥-居里夫妇身上,使他们成了正如恩格斯所描述的“当真理碰到鼻子尖上的时候,还是没有得到真理”的人。

纵观物理学家们的失误,造成他们作出错误分析或错失了重大科学发现的主要原因有两个:一是科学发现和创造是人类向未知领域不断探索的一个过程,而这个过程必然是复杂的、艰难曲折的,在这样的过程中出现一些失误是难免的;二是传统思想的束缚,科学发现和创造需要丰富的想象力,需要新思想、新观念,因循守旧、墨守成规就不可能作出科学发现,但突破传统观念总是非常不容易。

二、在物理教学中介绍物理学家失误的积极意义

在物理教学中,教师引导学生认识物理学家的失误,分析失误的原因,似乎会使学生产生对科学的怀疑,对科学家的不敬,在时代呼唤更多创新人才的今天,这并非不是一件好事,将有利于学生体会到人类认识自然,改造自然是个曲折艰苦的过程,是个反复修正、反复深化的过程;有利于确立不怕挫折的信念,增强学习中的毅力;有利于学生打破思维定势,活跃课堂气氛,培养创新思维能力;有利于树立学生挑战权威,服从真理的求知精神。

当然,仅仅介绍物理学家的失误,并不能达到上述目的,更要注意向学生讲述物理学家对待失误和挫折的科学态度和不屈的探索真理的精神。约里奥-居里夫妇不仅错失了发现中子的良机,后来又错失了发现正电子的机会。但他们从失败中吸取教训,始终以饱满的工作热情、坚忍不拔的意志投入研究工作,功夫不负有心人,他们终于在1934年获得了20世纪中最重要的发现之一——人工放射性,并荣获了诺贝尔物理学奖。中国科学家王淦昌教授因为自身或客观条件的限制在发现中子、验证中微子存在等物理研究方面几次和诺贝尔奖擦肩而过,但他并没有放弃对科学热诚的追求,而是进一步拓展研究领域,在众多领域里提出了自己独到的见解,直到年逾90,仍不时到研究室去,他提出的激光引发氘核出中子的想法,成为惯性约束核聚变的重要科研项目,一旦实现,这将使人类彻底解决能源问题。

在物理教学中引导学生辨别物理学家的失误和科学上的也是值得重视的一个方面,法国物理学的权威布朗洛发现N射线就是一场巨大的。对科学史上的揭示显然可以使学生正确理解物理学家的失误,而激发学生对科学家们由衷的敬佩。在实际的教学中我们似乎更应该让学生在进行相关科学探究的实践中重复物理学家的失误,比如在讲电磁感应相关内容时,笔者有意安排了这样的实验,将电流表的表面背对学生,在插入磁铁后,让学生跑到讲台后看指针的读数,学生看过常常露出不解的神情,“指针没动啊!”可磁铁确实在线圈中啊!如此,模仿了当年科拉顿所做实验的情景,并设置了相关的问题使学生明白科拉顿的失误和法拉第的成功在创新思想上的不同之处。

三、在物理教学中介绍物理学家失误的几点反思

1.介绍物理学家的失误,促进新的课程资源不断生成。

正视并合理开发日常教学中的错误资源可以丰富课程内容,激发学生的参与热情,促进新的课程资源不断生成,对师生创造性智慧的激发会起到十分重要的作用。为此,我们可以利用学生的错误激发认知冲突,促进学生思维碰撞;抓住学生因知识经验和思维方式不同而出现的错误的观点和想法,引导学生合作交流,促进生成;不轻易剥夺学生自主发现错误的机会,为教学的有效介入创造最佳时机。

2.介绍物理学家的失误,促进教师更好地锤炼教学艺术。

既然物理学家都可以有失误,对我们教师来说在教学中的失误也就没必要去遮遮掩掩。在教学中,教学双方也会因为各种情况而发生错误,错误可能来自学生,也可能来自教师。对于学生的错误,我们常常能从容应对,对于自己的失误,我们也不能回避,而是要认真反思,究其原因,寻其策略,从而提高教学设计能力和课堂教学水平。错误的价值有时并不在于错误本身,课堂教学中的错误,对学生来说是一次很好的锻炼机会,对老师来说也可以是一次机遇,在生成性的教学中教师正确处理失误是可以锤炼教学艺术,提高自身的专业水平的。

物理学家阿伯拉罕・派斯和他的物理学史著作解读与述评

摘 要:本文主要是对阿伯拉罕・派斯进行评述,探究其对于整个物理学做出的巨大贡献。与此同时,从其著作方面入手,加强关于著作方面的科学解读,希望能够充分继承这位伟大物理学家的精神,对其贡献进一步探究,从而推动整个物理学的不断发展。

关键词:阿拉伯罕・派斯 物理学史 著作 解读 评述

2000年,作为做出杰出贡献的一位伟大物理学家,同时又是一位科学史作家,阿伯拉罕・派斯不幸去世。派斯去世的原因,主要是心脏病发作,他最后的时光在哥本哈根度过,终年82岁。

派斯,1918年出生于荷兰,属于传统犹太人。派斯的中小学教育始于阿姆斯特丹。随后,凭借着自身优异的学习成绩,他非常顺利地进入大学继续学习和深造。1938年派斯顺利毕业,并获取了两个学位,一是物理学,二是数学。但派斯并没有满足于此,而是来到乌得勒支大学,进行个人学术的进一步深造,追随导师乌伦贝克。后来乌伦贝克定居美国,因此派斯的硕士毕业论文,由罗森菲尔德进行有效指导并完成。最终派斯在1940年硕士顺利毕业,取得了相应的硕士学位。然而在当时,德国已经发动世界大战,并逐渐占领荷兰。第二年,德国宣布,7月14日之后,整个荷兰的任何一所大学,严格禁止犹太人考取博士。这件事无疑影响了派斯,他努力赶写博士论文,限期真正到来之前,他最终顺利完成论文答辩。

纵观派斯的整个求学生涯,真是十分不易。然而,派斯随后将要面对的处境更加危险和艰难。当时,纳粹分子对犹太人进行压迫,这也使当地诸多物理学家,为免于遭受迫害而选择逃避,离开了培养自己的大陆。但是派斯不同,他没有离开故土荷兰。也正因为如此,战争爆发后,派斯提心吊胆,整天需要东躲西藏。访问他的当地物理学家也越来越少,除了克拉默斯,派斯较为重要的朋友。克拉默斯访问时,一般都带科学文献,两个人进行物理学知识的相关探讨。克拉默斯本来在莱顿大学承担教授职务,但后来,犹太人解雇现象较为严重,教授对德国人的残暴行为进行了抗议,德国占领大学之后,勒令当局关闭了学校。这对派斯的日常研究,即量子电动力学,造成了极大的不便。每当回首往事,派斯都感到非常不堪。荷兰当地犹太人,包括派斯的妹妹,普遍开始被抓,然后进入死亡集中营,遭到德国人残酷的杀害。而派斯自己,幸运的是能够免于这场灾难。灾难具体情况,详见其自传体著作《欧美记事》。

第二次世界大战结束之后,1946年,派斯到达哥本哈根。在那里,派斯会见了波尔,与其一家人相处融洽。与此同时,他与波尔展开了知识方面的沟通,彼此交流十分惬意。在波尔的大力推荐下,1946年秋,派斯前往美国进行访问和调查,访问的具体地点为普林斯顿,当地的一家高等研究所,但是在当时,这个研究所成立时间不长,物理学的相关研究并没有取得杰出成果。不过研究所的物理学家鉴于自身多年的经验,告诫派斯,研究过程中,如果一味闭门造车,是绝对行不通的,需要广泛涉猎。派斯听取了同行的建议,决定不再回欧洲,留下来潜心研究物理学。

派斯刚刚来到美国的时候,量子电动力学的研究取得了革命性的进展,理论物理学也得到了极大的发展。1947年,设尔特岛会议顺利召开,派斯有幸受邀参加。在这次会议上,施温格做出了科学量子力界的报告,报告非常详细。与此同时,“费曼图”这一理念得以提出。

派斯深深明白,量子电动力学领域,今后势必具有广阔的发展前景,但是这似乎已经和自己的关系不是那么密切了。尽管这方面的雄心有一定的挫败,但是派斯并没有被真正击败,而是转向宇宙线的相关领域。派斯变得更加努力,在加强探索的同时秉承更加积极的态度,针对现象进行科学合理的解释。基于此,派斯得以明确自身的方向,并着眼于基本粒子,研究工作也得到了充分的贯彻落实。

派斯经过大量研究,逐渐提出了协同产生规律等方面的内容,这在日后得到了有效证明和确立。后来,新量子数即奇异数,诞生并发展,关于这方面,派斯曾经与盖尔曼展开过合作,但是实验研究最终失败。

派斯仍然不放弃进行研究,最终提出了K介子混合理念。基于物理学本质来说,量子力学得到了充分诠释,态叠加原理也得到了完善。但是很多物理学家不禁产生了疑问,粒子混合究竟能否符合实际?然而,我们如果站在量子力学角度进行分析,透过基本粒子的本质,会发现观察量具有自带属性的特点,本身存在相应特征和形态。在态叠加原理的应用过程中,守恒电子数一旦满足这一相同条件,粒子混合就能实现。经过派斯等人的共同努力,K介子系统问题得到了充分解决。在这之后,粒子混合不断涌现。不久,科学界又提出了量子排这一概念。通过量子排方面的科学研究,粒子物理学得到了更快的发展,最终在一定程度上推动了原子物理学的发展,并对其形成一定反哺。基于此,量子力学概念得到普及和推广。量子排现象之所以提出较晚,很大一部分原因是人们不敢对其进行大胆想象。

派斯在其他领域同样做出过一定贡献,比如G宇宙领域。然而,在70年代末,派斯逐渐转向物理学史,注重加强这方面的探索和研究,朝着作家的方向发展,并在这方面进展顺利,例如爱因斯坦传记得到了广泛好评,波尔传记也同样大获成功,中文出版量相当可观。还有关于基本粒子方面的科学史巨著《基本粒子的物理学史》的中译本也问世。派斯造诣十分高深,熟知理论物理,对物理学史的叙述表现出一种深刻的洞察。除此之外,派斯语言能力超强,除了母语荷兰语外,他还熟悉地掌握了英语、法语、德语、丹麦语,这为他的科学史研究提供了极大的便利。

派斯的物理学著作,内容更加凸显真实性,如对科学界出现的错误等都进行了如实体现。特别是曾经承受的挫折、物理学走过的弯路,以及物理学家在长期探索过程中经历的迷惘、物理学家个人存在哪些不足等,他都较为直率地指出。

比方说,在爱因斯坦传中,派斯对爱因斯坦的不成熟之处以及其研究中走过的弯路、犯过的错误都进行了毫不客气的说明。再比如,书中指出,马赫原理虽然没有对物理学理论起过推动作用,但它仍然可能是未来的研究课题。

虽然派斯对波尔十分尊重和爱戴,但在波尔传记中对其并未有讳言。比方说,在量子力学领域波尔失误不少,尤其是波尔还曾否定已经被广泛认可的能量守恒定律,对此派斯在书中也如实进行了记录。除此之外,他还指出了哥本哈根阵营中泡利、狄克拉等人对波尔的不满之词。

由此可见,派斯在潜心著作的过程中,始终秉承公允的态度,并且敢于分析伟大物理学家的不足,敢于说出真话,态度十分端正,因而学术界对其十分认可和重视。派斯尤其重视书名,绞尽脑汁之后,才能拟定完成,而且一定要别出心裁。

1963年,派斯最终选择离开普林斯顿大学,来到了纽约,进入洛克菲勒大学工作,直到退休。1990年,派斯同他的第三任妻子――丹麦人类学家尼可莱森结婚,结婚之后,派斯每年往来穿梭于纽约和哥本哈根之间。2000年,派斯的《科学英才:20世纪物理学家群像》问世,这部著作是派斯从个人视角对自己所认识的物理学家进行的速写,是他的最后一部著作。

参考文献:

[1] 史明宇,陈绍军.“社会事实”与“自然物质”客观性存在的条件比较――社会学与量子力学的对话[J].理论月刊,2013(2).

[2] 刘昊淼.浅析量子力学无限方势阱――通过无限深势阱来理解量子力学非定域性[J].神州(上旬刊),2013(9).

[3] 胡化凯.20世纪50―70年代中国对哥本哈根学派量子力学诠释的批判[J].科学文化评论,2013,10(1).

[4] 张占新,莫文玲,王凤鸣等.通过计算氢原子的玻尔半径,加深对量子力学的理解[J].大学物理,2011(30).

[5] 朱安远,朱婧姝,郭华珍等.20世纪最伟大的科学巨匠――阿尔伯特・爱因斯坦(下)[J].中国市场,2013(46).

量子力学可以写的毕业论文

电驴一抓一大把

1975年,霍金以数学计算的方法证明黑洞由于质量巨大,进入其边界的物体都会被其吞噬而永远无法逃逸。黑洞形成后就开始向外辐射能量,最终将因为质量丧失殆尽而消失。而这种辐射并不包含黑洞内部物质的信息。这些信息应当在黑洞中保留下来。但是一旦黑洞消失,这些信息也就丧失了。这些信息的去向之谜就构成了所谓的“黑洞悖论”。而该假说与量子物理学的理论背道而驰。量子物理学认为,类似黑洞这样质量巨大物体的信息是不可能完全丧失的。 美国科学家质疑相对论宇宙中并不存在“黑洞”?据美国媒体报道,美国加州劳伦斯·利弗莫尔国家实验室物理学家乔治·卓别林(GeorgeChapline)表示,宇宙中并不存在着所谓的“黑洞”,并认为人们通常所指的黑洞神秘物 质实际上是“黑能(dark-energy)星体”。长期以来,黑洞已经成为了科幻小说中的重要材料之一。不少人认为,天文学家可以通过间接方式来观察到黑洞的存在,而巨型恒星死亡后就会形成黑洞。但卓别林认为,恒星死亡只会形成“黑能”物质。过去数年中,天文学家对银河系的观察表明,宇宙的70%左右是一种奇怪的“黑能”所组成,正是它们在加速着宇宙的膨胀。卓别林说:“几乎可以肯定地说,宇宙中并不存在着黑洞。”黑洞是爱因斯坦广义相对论中最为著名的预言之一。广义相对论解释了受巨型恒星重力影响,会导致时空结构产生扭曲的现象。该理论认为,当某颗恒星死亡后,会受自己的重力影响而缩成一个点。但卓别林却认为,爱因斯坦本人也不相信黑洞的存在。1975年,量子力学专家们表示,黑洞边界确实发生了一些奇怪的事情:遵守量子法则的物质对轻微干扰变得极为敏感。卓别林说:“这个发现很快就被大家忘记了,因为它不符合广义相对论的预言。然而今天看来,它却是完全正确的发现。”他认为,这种奇怪的活动正是时空“量子阶段转变”的证据。卓别林认为,死亡后的恒星并不会简单地形成一个黑洞,而是在该时空内部,它却充斥着黑能,并具备重力影响。卓别林称,在某颗黑能星的“表面”,它看起来很像一个黑洞,并能制造强大的重力牵引。然而在它的内部,黑能的“负”重力又有可能将物质重新弹出来。如果某颗黑能星体积很大,任何反弹出来的电子转变成了正电子,然后会在高能辐射中消灭其他电子

议论文是由论题,论点,论据,论证诸多要素组成。论题,即作者在文章中提出来要进行论述的问题,或说是论证的对像。论点,又叫论断,它是作者对所论述的问题提出的见解,主张和表示的态度。论据,是指用来说明观点的材料。论证,就是运用论据说明论点的逻辑过程和方法。

举例是论证的一种手段,也是最直观的,不让我举例,让我归缪么?你可以先简述量子力学的发展然后 论点1 使人们认识了微观,扩大了人们的视野,影响了人们的哲学观点(西方物理与哲学渊源很深) 用例子说明论点2 激发了人们的探索热情 以致20世纪初物理学突飞猛进 进而刺激了新的科技革命 例子论点3 量子理论用于实际(核能,计算机)为人们学习研究提供了工具与能源(核能现在还不明显,但100年以后石油煤烧完后呢) 例子等等等等

关于博士学位的论文

博士毕业学位论文如何选题

论文选题技巧之博士毕业学位论文如何选题-博士生入学后,即应开始考虑博士学位论文的选题,搜集相关资料,对其可行性进行自我论证。在自己思考相对成熟后,再与导师讨论和论证。取得导师的同意后,初步确定选题,然后进一步搜集文献资料,做好开题准备。

博士生毕业之后也需要写毕业论文,今天文无忧论文格式网就为大家介绍一下博士毕业论文的写作要点。博士生入学后,即应开始考虑博士学位论文的选题,搜集相关资料,对其可行性进行自我论证。在自己思考相对成熟后,再与导师讨论和论证。取得导师的同意后,初步确定选题,然后进一步搜集文献资料,做好开题准备。

博士学位论文的选题至少应当具备以下五点:

(1)“值”,选题要考虑本学科研究的前沿性或现实的可操作性,具有重要的理论意义和实践意义,值得研究;

(2)“新”,选题具有新颖性,要尽量选择别人没有研究或者虽有研究但没有突破的课题,避免重复研究;

(3)“能”,对于该选题,博士生本人已有相当的积累,自己能够写好;

(4)“小”,选题要小,不是越小越好,而是要小题大做,指一篇博士学位论文只是解决一个基本问题,只有选题小,资料才能搜集全,挖掘才能深入,论文才能真正做好;

(5)“专”,选题应当和宪法学与行政法学专业紧密相关,属于本专业博士点研究方向的范围。

博士学位论文的开题一般在第一学年结束前(当年6月底)进行。各门课程考试以及综合考试合格者,方可开题。开题前,博士生撰写书面开题报告,并且至少应当提前三天将开题报告送博士生培养指导小组各位导师一人一份。开题报告应当包括如下内容:(1)选题的理论意义和实践意义;(2)选题在国内外的`研究现状(文献综述);(3)论文准备解决的基本问题;(4)论文拟采用的研究方法;(5)论文的初步框架;(6)论文的写作计划。

开题时,先由博士生进行报告,然后由博士生培养指导小组的各位导师对选题的可行性及论文的结构等进行评价,提出意见。不符合要求的,要限期改进,否则不得进入论文的下一阶段。开题报告通过后,博士生即应开始博士学位论文的写作。博士学位论文必须在导师的指导下由博士生本人独立完成。博士生用于博士学位论文写作的时间一般不少于1年。一篇博士学位论文的字数不得少于12万字。

在写作中,应当注意:(1)博士学位论文必须有一个命题(即博士学位论文所要论证的原创性观点)。整个博士学位论文应当紧紧围绕这一具有原创性的命题的论证而展开。命题不能过多,只能有一个。千万不能将博士学位论文写成面面俱到、缺乏论证的教科书。(2)在写作时间上必须抓紧,宜早不宜迟。到中期汇报时论文字数要过半,不低于6万字。

博士学位论文写作的中期汇报,一般安排在第四学期结束前(当年5月底6月初,一般安排在上届博士学位论文答辩结束的第二天)进行。每位博士生都必须参加中期汇报,不参加中期汇报的博士生,不得参加博士学位论文的预答辩和正式答辩。

博士生进行中期汇报,应撰写书面报告,并送交博士生培养指导小组各位老师一人一份。中期汇报的书面报告主要应包括如下内容:(1)论文写作的进展情况;(2)在写作过程中遇到的主要问题;(3)在写作过程中调整后的论文提纲。

博士研究生学位论文开题报告指南

博士论文是由攻读博士学位的研究生所撰写的学术论文。它要求作者在博士生导师的指导下,选择自己能够把握和驾驭的潜在的研究方向,开辟新的研究领域。由此可见,这就对作者提出了较高要求,它要求作者必须在本学科的专业领域具备大量的理论知识,并对所学专业的理论知识有相当深入的理解和思考,同时还要具有相当水平的独立科学研究能力,能够为在学科领域提出独创性的见解和有价值的科研成果。因而,较之学士论文、硕士论文,博士论文具有更高的学术价值,对学科的发展具有重要的推动作用。

一、开题报告的目的、意义

博士学位论文开题报告是开展学位论文工作的基础,是保证学位论文质量的重要环节。

开题报告是博士生在导师指导下撰写并由导师审查批准的学术文件。准备开题过程是导师对博士生进行课题指导的重要步骤,也是师生在所选课题范围内共同切磋,整理、确定论文思路及主线的重要科学活动。

开题报告是博士生向由本学科专家组成的评审小组汇报博士学位论文的选题依据、研究内容及研究方案等,即汇报博士学位论文“为什么做?做什么?怎么做?”。由本学科专家进行集体审议,检查学位论文选题是否正确、研究内容是否恰当、研究方案是否合理,同时也检查博士生对拟进行的研究题目理解是否深入、对相关研究领域研究现状了解是否全面、为进行课题研究所做的主观与客观上的准备是否充分等。在此基础上,评审专家还将从不同侧面、不同角度对论文的科学思路、研究方法等重要问题提供咨询、建议和帮助,使论文工作的.方向、内容和方案更为合理。

二、开题报告工作安排

1、博士生必须将学位论文开题报告书面材料提交导师审阅,经导师同意后,方可进行口头报告。

2、由各博士点组织本学科及相关学科的博导、教授5~7人,组成开题报告评审小组,听取博士研究生的口头报告,并对报告内容进行评议审查。

3、博士学位论文开题报告的时间由博士生导师根据博士生工作进度情况确定,但一般应于入学后的第三学期结束前完成,最迟应于第四学期结束前完成。

三、开题报告的内容

1、课题来源及研究的目的和意义;

2、国内外在该方向的研究现状及分析;

3、主要研究内容;

4、研究方案;

5、进度安排,预期达到的目标;

6、为完成课题已具备和所需的条件和经费;

7、预计研究过程中可能遇到的困难和问题以及解决的措施;

8、主要参考文献。

四、对开题报告的要求

1、在掌握大量有关文献资料的基础上,对国内外在该研究方向上(特别是学科前沿)的研究动态、近年来取得的主要进展、主要研究方法及已有成果进行全面的介绍和分析,对引用的文献和论述要准确注明出处。

2、明确阐明课题研究的目的和课题的理论水平及实际意义。

3、阅读的主要参考文献应在50篇以上,其中外文资料不少于二分之一,参考文献中近五年内发表的文献一般不少于三分之一,且必须有近二年内发表的文献资料。教材、技术标准、产品样本等一般不应列为参考文献。

4、开题报告应以正规答辩的方式进行。博士生进行口头报告的时间应不少于30分钟,书面报告的字数应不少于万字。

五、评审工作

1、开题报告的评议结果为通过或不通过。口头报告及答辩结束后,评审小组应举行内部会议讨论是否准予通过,并对通过的报告提出补充、修正意见。

2、开题报告结束后,评议小组要填写《博士学位论文开题报告评议结果》并上报学生培养处,内容包括论文选题的合理性、可行性及对文献综述、博士生的工作能力等方面的评议。

3、对通过的开题报告,博士生应根据评审小组的意见进行修改,经导师审阅通过后,交学科部研究生秘书保存。学生培养处定期组织专家小组对开题报告进行抽查。

4、未通过者必须在三个月内再次进行开题报告。第二次学位论文开题报告仍未通过者,将按《哈尔滨工业大学研究生学籍管理实施细则》第22条规定进行处理。

5、博士生在申请博士学位时提交的博士学位论文,其研究方向和主要内容应与开题报告基本一致。论文的主要研究方向有变动时,必须重新进行开题报告。

六、开题报告保存

开题报告结束后,评议小组应将开题报告及《博士学位论文开题报告评议结果》上报各学科部教学秘书,并由学科部负责保存至学生毕业后一年。

关于化学分析的博士毕业论文

我有绑定IP的高校帐号,可以帮你下载相关资料。 请加入文献检索互助团队,打造百度知道优秀团队

分析化学的内容应进行改革[J].大学化学,1999(14).[2]方明建.应用化学专业分析化学课程的教学与实践[J].高等理科教育,2004(2).[3]敖登高娃.关于《定量分析化学》课程教学方法改革的研究与实践[J].内蒙古教育,2005(4).毕业论文搜...

化学是以实验为基础的学科,重视实验教学,挖掘实验全面的教育教学功能,在新课改的背景下愈显重要。下面是我为大家整理的化学实验毕业论文,供大家参考。

摘要:无机及分析化学实验作为生物专业大学阶段开设的第一门必修实验课,对他们后续理论课程和实验课程的学习有非常大的导向作用。笔者结合自己多年无机及分析化学实验的教学经验,针对当前无机及分析化学实验的教学现状,在培养良好的科学实验素养、与专业方向的衔接以及建立科学全面的成绩评定方面进行了探讨。

关键词:无机及分析化学;生物专业;实验教学

生物技术革命被认为是第六次科技革命的核心内容。现代生物学是在分子水平上建立的生物学,而化学是研究分子的科学,大化学革命是生命科学革命的重要基础[1]。因此,对于生物科学等近化学专业的学生而言,学习无机及分析化学对于他们学习基础知识和专业知识都是不可或缺的。国内外农学、生物、环境等一些近化学专业都陆续开设了这门课程,无机及分析化学实验是与之相对应的实验课程,是生命科学系学生进入大学学习的第一门实验课[2]。由于这些基础课程大部分是由化学学院讲授这门课程,所以在课时、实验内容和衔接方面存在诸多改进的空间。具体表现在以下几个方面:首先,学时少,目前只有24个学时实验,同类院校最少也是32学时,这样短的实验安排并不利于实验教学的开展;考核方法有待探讨;针对性不强,目前无法做到实验操作与生物科学专业学习的对接[3]。针对这些问题,有必要对这门实验课程的教学方法和教学效果进一步探讨,笔者结合自己多年的讲授经验,主要在以下方面作了探索。

1注重培养良好的科学实验素养

任何一门化学实验课的开设目的不仅仅是让学生掌握实验技术本身,更关键的是学生在一次次的实验中逐渐养成严谨的实验态度和素养。这些非智力性的科学实验思维对于学生在将来的职业生涯中树立严谨的工作作风和实事求是的科学态度也大有裨益[4]。但大一新生刚刚告别中学学习阶段,"重理论轻实验"的思想根深蒂固,笔者为新生讲授无机及分析化学实验过程中,发现很多同学以"应付"的态度对待实验课:预习报告按部就班的抄袭实验教材,实验过程中追求实验速度不注重实验细节,实验报告数据涂改和杂乱等现象比较普遍。因此,从一开始就应该端正他们的实验态度、培养严谨求实的科学实验素养,这对于大一新生后续课程的学习尤为关键。在学期开始前,开设的每个实验项目以书面形式传达到每个实验小组,上课前,每位学生要按照要求写好预习报告,实验原始数据要记录在实验报告上,实验完成后老师签字确认后才能离开。有些实验根据教材上的内容操作得不到预期的结果,其关键在于实验细节的操作需要注意,这时候就需要教师要亲自示范学生容易出现的错误操作,讲解操作的要点和注意事项。有个别实验的操作在实验教材上没有明确说明,而对实验成败非常关键的地方,我们在化学实验的教育理念中,更注重从细节处入手。如预习报告,数据处理时要养成正确的“有效数字”概念;在化学试验中,不但要有正确的分析方法和准确的实验操作,对分析结果进行正确的记录和处理对于学生养成严谨的科学态度也是非常关键的。

2整合实验内容,注重与专业方向有所衔接

目前我校针对生命科学系学生开设的无机及分析化学实验主要沿袭了无机化学实验和分析化学实验的内容,目的是使近化学类专业学生熟悉化学实验的基本知识,掌握化学实验的基本操作技能。但化学实验内容与生物专业的衔接还显得欠缺,学生的学习兴趣不浓,导致填鸭式实验课,整个实验课程结束了,前面的实验内容也就忘得差不多了。在教学过程中,有些学生会问"这些实验的目的是什么?","这些实验能够解决什么生物问题?"。其中一个原因是开设的实验课原先是针对化学专业学生所开设的,并没有很好地考虑专业衔接和融合。笔者认为加大化学实验项目与生物专业融合的方法是开设一些化学实验在生物学科中的应用性的实验项目。如根据课时和教学计划可以选择性开设葡萄糖含量的测定(碘量法),土壤中腐殖质含量的测定(重铬酸钾法),生理盐水中氯化钠含量的测定(银量法),禾本植物叶子中叶绿素含量的测定(分光光度法),缓冲溶液的配置等这些既有化学应用又有生物因素的实验项目。

3建立科学全面的成绩评定

为了真实客观地反映学生的实验水平,建立具体可行的成绩评定规则对于激发学生的学习积极性有很大帮助。实验课的成绩评定既要关注对基础实验知识的掌握,更要考虑体现出对于日常实验过程的重视。所以,实验课的成绩评定有两个方面的加权:所学实验基础知识笔试占40%,平时实验过程的成绩占60%。平时实验过程的成绩包括实验报告评分、实验操作、实验态度等因素。为了让学生养成独立思考的能力,实验报告中讨论部分更加看重学生通过实验课的心得和感受总结实验过程,如果只是参考学习资料的答案而没有结合自身实验去写讨论部分将影响实验报告最终成绩。另外,特别注重平时的实验过程也是非常必要的,记录实验数据时要求真实;实验完成以后老师要检查学生的实验数据并签字后才能离开实验室。通过这些具体措施,学生撰写实验报告的态度有很大程度改观,取得了良好的教学效果。总之,无机及分析化学实验是新生的第一门实验课,能否学好这门课程对后续课程有示范作用。通过端正学生实验态度,整合实验内容以及建立激励性考核办法可以促进实验教学改革的深入和达到推进素质教育改革目标。

参考文献

[1]徐光宪.大化学与技术革命是第六次科技革命最主要的核心内容[J].科技导报.2013,31(25),3.

[2]谢建平,陈春华,谢东坡,等.化学生物农学类院系化学实验课程教学改革与管理探讨[J].安徽农业科学,2011,39(15):9444-9445.

[3]王丽红,朱团.无机及分析化学实验教学改革的研究[J].科技创新导报,2012(15):158.

[4]陈东莲,黄润均,袁爱群.分析化学实验教学中非智力因素的培养[J].教育与职业,2012(2):92-93.

摘要:针对无机化学实验课程教学中存在的问题,为适应21世纪科技发展对人才素质的要求,以开放式实验教学的模式代替传统式实验教学的模式。以学生为主导地位,让学生进行开放式实验,使学生由被动学习转为主动学习,从而提高学生综合素质和实际操作能力。

关键词:开放式无机化学实验教学改革

化学是以实验为基础的科学,而实验教学又是化学理论教学的重要组成部分,要学好化学就必须做好实验教学。化学的四大分支学科之一的无机化学是以无机化学实验为基础的一门学科。无机化学实验是长江师范学院化学化工学院和生命科学与技术学院各专业跨入大学校园后所接触的第一门基础实验课程,是老师与学生在教学科研相结合所要经历的一个阶段。无机化学实验具有独特性:一是所用仪器设备、药品种类等都很多;二是需要学生掌握的基本操作虽然简单但是多样化;三是实验现象复杂。为了提高学生的综合能力,让学生有机会多练习实验操作,必须对以往传统的实验教学模式进行改革,让实验由封闭式转向开放式,让学生开展多开放性、设计性实验,以达到培养高素质人才来适应社会发展的需要。

1传统实验教学模式

无机化学实验经过多年的教学实践改革后,形成了一套比较成熟的传统实验教学模式。正是这种传统的实验教学模式使得实验教学存在很多难以解决的教学问题,比如在实验教学过程中,教学形式是单一的讲解式,而且所讲内容也是沿用了好多年的陈旧内容;教学课件使用多年,没有一点创新;学生也只是按老师的要求照方抓药,没有一点学习热情,也没有学习主动性,更谈不上在做实验的过程中有创造性思维了;实验中能力培养差;实验设备利用不合理;培养出来的学生根本不能达到当今社会对人才需要的要求。随着社会的发展需要,高综合素质人才需要越来越多,那么,还按传统的实验教学模式是培养不出当今社会所需的高素质人才的。所以,为了能够满足当今社会人才的需要,就必须打破传统的实验教学模式,改变这种扼杀学生创新思维能力培养的教学模式,尽快实现改革创新,以便能更好地给学生以发展空间。

2开放式的教学模式

为了培养高素质、高能力的创新型人才,本课题组对化学化工学院2012级、2013级、2014级一年级学生的无机化学实验课程的教学模式进行了改革。主要从实验内容、实验时间、组织方式、教学评价等方面进行开放。

实验内容的开放

传统的实验教学内容都是由老师指定的单一的基础类实验,这样就不利于学生的个性化发展。实行教学改革后,开放式实验教学内容发生很大的变化。老师将根据新的课程目标提出多个实验模块,包括基础类、验证类、综合类、设计类、自主类等等。基础类和验证类实验是每位学生必须做且必须掌握的实验项目,主要是对学生进行基本能力的训练,为综合类、设计类、自主类奠定基础的。综合类和设计类包括必选和任选实验,必选实验是在教师提出的必选实验项目中,学生自己选择若干个实验,自己设计实验方案并完成实验;任选实验模块是由教师提出一些解决实际问题的综合实验,教师只是提出问题而不提供具体的解决方案,学生在综合运用所学知识的基础上,根据实验室的实验资源拟定切实可行的解决方案并独立完成实验,从而激发学生的学习热情,发展创新思维。自主类实验是由学生根据自己的情况,自己选题,自己拟定实验方案,自主完成的实验,很具有个性化发展。

实验时间的开放

时间上的开放分为定时开放和预约性开放:定时开放是指学生在工作时间进入实验室做实验;预约性开放是指周末和寒暑假时学生采用集体预约和个人预约相结合的方式进入实验室做实验。

教学组织的开放

开放式实验教学成功与否,关键在于指导教师的组织。具体方案是:首先给学生分成若干小组,每组选派一名组长,组长负责管理本小组成员并分配任务。各小组查阅大量文献后提出问题,接着同小组讨论问题,最后自拟题目提出实验设计方案并交由老师审核。老师审核如果实验方案没新意就不能通过,学生将重新立定方案;如果有新意,审核通过,学生再与老师预约实验时间并完成实验,提交实验报告。整个组织实验过程都由学生自己完成,学生占主导地位,老师只起到引导作用。但是有一点是老师必须及时了解和掌握学生实验的整体情况,保证师生之间的信息反馈。

教学评价的开放

开放式实验教学,考试形式应该多种多样。实验成绩的评定不再是单一的平时实验报告的成绩总评,而是平时成绩和每次项目考核相结合。具体的评价方式是:学期课程总成绩=平时成绩(20%)+项目考核总成绩(80%)。平时成绩按统一标准从实验态度、出勤情况、预习等方面进行评定。每次项目考核成绩由实际操作、数据记录、回答问题、实验结果、完成书面报告等方面评定。每次项目操作过程中及操作完毕后,老师根据学生实验操作情况、回答老师提出的有关实验内容的问题情况和实验结果成功与否即时给出每次项目操作成绩。书面报告成绩给出以实验报告为依据。所占分值为:每次项目考核成绩=项目操作成绩(60%)+书面报告(40%)。项目考核总成绩等于多次项目考核成绩的平均值。

3结语

通过对2012级,2013级,2014级连续三年的各专业的无机化学实验教学模式进行改革,在无机化学实验教学上取得了很好的效果。整个教学在教学主体、教学内容、教学方法和教学目的等方面都发生了翻天覆地的变化。整个改革过程学生是最大的收益者,学生成为了教学的主体,不再是机械式的操作者,这样就使得学生的协作能力、设计能力、创新能力以及团队合作精神等综合素质都有很大程度的提高。这一教学模式的改革,很好的培养了大一学生的独立思考的能力,使得学生在从高中到大学阶段的过渡期发生了一个质的飞越,让学生明白了学习不是被动而是主动的,同时也很好的发展了学生的个性,为学生的以后学习阶段打下了良好的基础。

参考文献:

[1]史锐,成冰.浅谈无机化学实验教学改革与实践[J].辽宁中医药大学学报,2007,9(4):206.

[2]曹高娟,蒋文静.农林院校《实验化学》教学改革初步建议[J].教育改革,2011,9(24).

[3]赵新华主编.无机化学实验(第四版)[M].高等教育出版社,2014.

好难呐 亲自实验去吧

相关百科

热门百科

首页
发表服务