首页

> 学术论文知识库

首页 学术论文知识库 问题

600mw亚临界机组毕业论文

发布时间:

600mw亚临界机组毕业论文

大学生实习自我鉴定模板认识并融入这个团队,学习是拉近距离、融入团队的最好办法,也深刻体会到了团队的力量和魅力。大学生实习自我鉴定模板:在这三个月实习里面,在领导和同事的指导下,向行业学习知识,向同事请教经验,传授工作技巧,正是在这个过程中,认识到自己的弱处。实习期间我认真刻苦、吃苦耐劳,有上进心。为人诚恳、虚心好学、能够正确对待、处理生活及工作中遇到的各种困难,思想积极上进,接受能力和独立能力强,有很强的团队精神和集体荣誉感。做事认真负责,有很强的责任心。有强烈的上进心、事业心,有很强的对环境的适应能力,能很快融入集体。

在常规火电设备方面,国内正在从30万千瓦、60万千瓦亚临界机组向超临界、超超临界的60万千瓦和100万千瓦机组过渡。

国内发电设备制造业通过与国外合作生产的方式,从2002年开始,应用国外成熟、先进的技术,为国内电站设计制造60万千瓦和100万千瓦等级的超临界机组,目前订货量已超过100套。这些机组的设计、建造和运行,使我国对于超临界和超超临界机组关键技术的理解进一步加深。

目前,在超超临界机组制造方面,国内哈电、东方和上电三大发电设备企业通过引进消化国外技术,具备了加工制造100万千瓦超超临界火电机组的能力。2006年年底,由国内企业生产制造的3台100万千瓦超超临界火电机组已经陆续投运。

但是,由于外方对技术转让的严格限制,在设计技术与核心制造技术方面国内尚未完全实现自主化,尤其是电站机组关键材料方面问题更为突出,还有不少工作需要做。从世界范围来考察,试制超超临界参数机组的工作起始于20世纪50年代。

美国于1957年投运的第一台万千瓦超超临界机组的设计参数为31兆帕/621℃,1958年投运的万千瓦机组的参数为兆帕/649℃。由于当时技术水平的限制,这两台机组的运行可用率比较低。

目前,超超临界机组已广泛应用于世界上许多国家,最大容量已经达到130万千瓦(美国,1972年投运),最高效率已经达到49%(丹麦,2001年投运),研发和应用该技术较好的国家主要有美国、日本、德国、丹麦等。 。

在超临界与超超临界状态,水由液态直接成为汽态,即由湿蒸汽直接成为过热蒸汽、饱和蒸汽,热效率较高,因此超超临界机组具有煤耗低、环保性能好、技术含量高的特点,机组热效率能够达到45%左右。节煤是超超临界技术的最大优势,它比国内现有最先进的超临界机组的热效率提高2%到3%。以热效率提高1%计算,对一台30万千瓦的火电机组来说,一年就可以节约6000吨优质煤。超超临界机组发展的方向是在保持其可用率、可靠性、运行灵活性和机组寿命等的同时,进一步提高蒸汽参数,从而获得更高的效率和环保性能。

所谓超临界机组是指主蒸汽压力大于水的临界压力兆帕的机组,而亚临界机组通常指出口压力在兆帕的机组。

习惯上,又将超临界机组分为两个层次:一是常规超临界参数机组,其主蒸汽压力一般为24兆帕左右,主蒸汽和再热蒸汽温度为540~560℃;二是超超临界机组,其主蒸汽压力为25~35兆帕及以上,主蒸汽和再热蒸汽温度一般580℃以上。在超临界与超超临界状态,水由液态直接成为汽态,即由湿蒸汽直接成为过热蒸汽、饱和蒸汽,热效率较高,因此超超临界机组具有煤耗低、环保性能好、技术含量高的特点,机组热效率能够达到45%左右。

节煤是超超临界技术的最大优势,它比国内现有最先进的超临界机组的热效率提高2%到3%。以热效率提高1%计算,对一台30万千瓦的火电机组来说,一年就可以节约6000吨优质煤。

超超临界机组发展的方向是在保持其可用率、可靠性、运行灵活性和机组寿命等的同时,进一步提高蒸汽参数,从而获得更高的效率和环保性能。

指的是发电机组热力系统的参数,水的临界参数点在度。在这个参数之下属于亚临界,超过这个参数属于超临界。临界状态以后水和蒸汽的比重是一样的,不能用自然循环进行锅炉加热,必须采用强制循环。

对于发电机组的热力设备锅炉和汽轮机来说,额定的蒸汽参数超过就是超临界了,但是一般的超临界机组蒸汽压力24Mpa以上,温度不高,还是维持在545度、550度这样的水平。而超超临界机组的蒸汽压力再稍高一点25Mpa以上,温度有大的飞跃,达到了600度。这就是超临界和超超临界的具体所指。

超临界和超超临界发电机组已在发达国家广泛采用。

国外机组的可靠性数据表明,超超临界机组同超临界发电机组一样,可以实现高的可靠性。从环保措施看,国外的超超临界机组都加装了锅炉尾部烟气脱硫、脱硝和高效除尘装置,可以实现较低的污染物排放,满足严格的排放标准。

例如日本的超超临界机组的排放指标可以达到S02含量为70mg/m3(标准状态,下同),N0:含量为30mg/m3,粉尘5mg/m3可见,超超临界燃煤机组可以与燃用天然气、石油等机组一样实现清洁的发电。同时,超超临界机组提高了效率,相应地节约了发电耗水量。

超超临界机组是成熟、先进的技术,在机组的可靠性、可用率、热机动性、机组寿命等方面已经可以和亚临界机组媲美,且有了较多的商业运行经验。超超临界燃煤发电技术对于实现我国火电结构调整意义重大,是应大力发展的技术。

我国通过“七五”、“八五”期间的技术引进和消化吸收,具备了亚临界300MW、600MW机组设计、制造技术。20世纪90年代,我国通过引进一批超临界机组,带进了一些设计制造技术,基本掌握了超临界机组的电厂设计、安装调试和运行维修技术。

“十五”期间,超超临界燃煤发电技术的研发及其依托工程华能玉环电厂超超临界1000MW机组的建设,使我国电力工业的总体水平有了一个跨越性的发展。

超(超)临界发电技术的发展至今已有半个多世纪的历史.从20世纪50年代起,以英国、德国和日本为代表,就开始了对超(超)临界发电技术的开发和研究,而且起步就是超越临界参数.美国是世界上最早从事超(超)临界发电技术研究和应用的国家.1957年世界上第一台超超临界机组在美国Philo电站建成投产.机组容量125MW,蒸汽参数为31MPa、621℃/566℃/566℃.1基本概念:水的临界参数为:tc=℃,Pc=.在临界点以及超临界状态时,将看不见蒸发现象,水在保持单相的情况下从液态直接变成汽态.一般将压力大于临界点Pc的范围称为超临界区,压力小于Pc的范围称为亚临界区.从物理意义上讲,根据机组采用的蒸汽参数划分,只有超临界和亚临界之分,由于超超临界参数机组在我国投运的数量最多,超超临界是我国人为的一种区分,也称为优化的或高效的超临界参数.目前超超临界与超临界的划分界限尚无国际统一的标准,一般认为蒸汽压力大于25MPa,蒸汽温度高于580℃时的状态属于超超临界参数.超超临界一般是指火电方面,在物理学中没有这个分界点,只表示超临界技术发展的更高阶段,是常规蒸汽动力火电机组的自然发展和延伸.2具体参数:当蒸汽压力提高到27MPa时,就称为超超临界.3应用特点:1、使用超超临界技术时,直流锅炉没有气泡环节.2、要严格的控制机组的物料平衡关系.3、要求协调控制及时准确.。

谏壁发电厂是华东电网的主力电厂之一,除一~三期6台机组已退役拆除外,全厂总容量为3980MW。

目前共有四期6台在役发电机组,即四期(#7 、#8)五期( #9 、#10 )六期(#11 、#12)七期(#13 、#14 )。其中#7~#10是原上海锅炉厂70年代设计制造的产品,当时为国造最大发电机组,1997年开始,陆续由UP型直流锅炉改制成单炉膛双切圆控制循环锅炉,锅炉效率由改造前的89%提高到,调峰能力大大提高,机组出力也增大30MW,开创了同类老锅炉改造的先河。

#11、#12为“大代小”工程机组,出力330MW。于03年开工建设,04年9月投产。

其中11号机组在全国火电机组(300MW级)竞赛第36届年会上,获得国产机组唯一的特等奖。七期“上大压小”工程2*1000MW机组在已拆除机组的场地上进行扩建,工程选用上海超临界塔式炉,型号:SG-3040/。

2009年4月中旬,谏壁发电厂1X1000MW工程获国家发改委正式批复,第二台参与“评优”正按计划稳步推进。2009年5月26日,谏壁发电厂举行一系列隆重热烈的活动,喜迎建厂50周年.2009年5月28日,举行了盛大的1x1000MW机组开工典礼。

大型超临界锅炉的特点超临界火电技术由于参数本身的特点决定了超临界锅炉只能采用直流锅炉,在超临界锅炉内随着压力的提高,水的饱和温度也随之提高,汽化潜热减少,水和汽的密度差也随之减少。当压力提高到临界压力()时,汽化潜热为0,汽和水的密度差也等于零,水在该压力下加热到临界温度(℃)时即全部汽化成蒸汽。超临界压力临界压力时情况相同,当水被加热到相应压力下的相变点(临界温度)时即全部汽化。因此超临界压力下水变成蒸汽不再存在汽水两相区,由此可知,超临界压力直流锅炉由水变成过热蒸汽经历了两个阶段即加热和过热,而工质状态由水逐渐变成过热蒸汽。因此超临界直流锅炉没有汽包,启停速度快,与一般亚临界汽包炉相比,超临界直流锅炉启动到满负荷运行,变负荷速度可提高1倍左右,变压运行的超临界直流锅炉在亚临界压力范围内超临界压力范围内工作时,都存在工质的热膨胀现象,并且在亚临界压力范围内可能出现膜态沸腾;在超临界压力范围内可能出现类膜态沸腾。超临界直流锅炉要求的汽水品质高,要求凝结水进行100%除盐处理。由于超临界直流锅炉水冷壁的流动阻力全部依靠给水泵克服,所需的压头高,即提高了制造成本又增加了运行耗电量且直流锅炉普遍存在着流动不稳定性、热偏差和脉动水动力问题。另外,为了达到较高的质量流速,必须采用小管径水冷壁,较相同容量的自然循环锅炉超临界直流锅炉本体金属耗量最少,锅炉重量轻,但由于蒸汽参数高,要求的金属等级高,其成本高于自然循环锅炉。超临界机组具有无可比拟经济性,单台机组发电热效率最高可达50%,每kW?h煤耗最低仅有255g(丹麦BWE公司),较亚临界压力机组(每kW?h煤耗最低约有327g左右)煤耗低;同时采用低氧化氮技术,在燃烧过程中减少65%的氮氧化合物及其它有害物质的形成,且脱硫率可超98%,可实现节能降耗、环保的目的

关于亚临界论文范文资料

亚临界是物质存在的状态条件,是指某些物质在温度高于其沸点但低于临界温度,以流体形式且压力低于其临界压力存在的物质。

工程上,将某流体所处的压力(P)和温度(T)均超过临界压力(Pc)和临界温度(Tc)时的这种状态称为超临界。

从物理意义上讲,水的状态只有超临界和亚临界之分;而超超临界一般是应用在火电厂方面的概念,在物理学中没有这个分界点,只表示超临界技术发展的更高阶段,是常规蒸汽动力火电机组的自然发展和延伸。

由于超超临界参数机组在我国投运的数量最多,超超临界是人为的一种区分,也称为优化的或高效的超临界参数。

扩展资料

1、亚临界是物质存在的状态条件,是指某些物质在温度高于其沸点但低于临界温度,以流体形式且压力低于其临界压力存在的物质。

当温度不超过某一数值,对气体进行加压,可以使气体液化,而在该温度以上,无论加多大压力都不能使气体液化,这个温度叫该气体的临界温度。在临界温度下,使气体液化所必须的压力叫临界压力。

2、火电厂超临界机组和超超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是 ,临界温度是℃ ;

在这个压力和温度时,水和蒸汽的密度是相同的,就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31 MPa被称为超超临界。在工程上,也常常将25MPa以上的称为超超临界。

3、超超临界与超临界的划分界限尚无国际统一的标准。电力百科全书认为主蒸汽压力≥27MPa为超超临界机组。2003年,“国家高技术研究发展计划('863'计划)”项目“超超临界燃煤发电技术”中,定义超超临界参数为蒸汽压力≥25MPa,蒸汽温度≥580℃。

参考资料来源:百度百科-亚临界

参考资料来源:百度百科-超临界

参考资料来源:百度百科-超超临界

亚临界:亚临界是物质存在的状态条件,是指某些物质在温度高于其沸点但低于临界温度,以流体形式且压力低于其临界压力存在的物质。当温度不超过某一数值,对气体进行加压,可以使气体液化,而在该温度以上,无论加多大压力都不能使气体液化,这个温度叫该气体的临界温度。在临界温度下,使气体液化所必须的压力叫临界压力。

超临界:以水为例,超临界技术介绍如下:通常情况下,水以蒸汽、液态和冰三种常见的状态存在,且是极性溶剂,可以溶解包括盐在内的大多数电解质,对气体和大多数有机物则微溶或不溶。液态水的密度几乎不随压力升高而改变。

但是如果将水的温度和压力升高到临界点(Tc=℃,Pc=)以上,水的性质发生了极大变化,其密度、介电常数、黏度、扩散系数、热导率和溶解性等都不同于普通水。

超超临界:水的临界参数为:tc=℃,Pc=。在临界点以及超临界状态时,将看不见蒸发现象,水在保持单相的情况下从液态直接变成汽态。一般将压力大于临界点Pc的范围称为超临界区,压力小于Pc的范围称为亚临界区。

从物理意义上讲,水的状态只有超临界和亚临界之分;而超超临界一般是应用在火电厂方面的概念,在物理学中没有这个分界点,只表示超临界技术发展的更高阶段,是常规蒸汽动力火电机组的自然发展和延伸。由于超超临界参数机组在我国投运的数量最多,超超临界是我国人为的一种区分,也称为优化的或高效的超临界参数。

超超临界与超临界的划分界限尚无国际统一的标准。我国电力百科全书认为主蒸汽压力≥27MPa为超超临界机组。2003年,我国“国家高技术研究发展计划('863'计划)”项目“超超临界燃煤发电技术”中,定义超超临界参数为蒸汽压力≥25MPa,蒸汽温度≥580℃。

扩展资料:

亚临界生物技术应用于以下几个方面:

1、特种植物油:葡萄籽油、小麦胚芽油、DHA、ARA、γ-亚麻酸、黑加仑油、月见草籽油、沙棘籽油、蕃茄籽油、花椒籽油等。

2、植物蛋白:大豆蛋白、棉籽蛋白等开发利用。

3、色素:辣椒红色素、万寿菊叶黄素浸膏提取等。

4、脂溶性药品:除虫菊酯、印楝素提取等。

5、调味品:花椒皮麻味素、芥菜籽油、辣根、啤酒花等领域的低温保质萃取等。

6、昆虫油:黄粉虫、蝎子、林蛙卵、蚕蛹、蛐蛐、汉虾、蚂蚱、蝗虫、微生物等油萃取。

参考资料:百度百科——亚临界

水的临界压力是:,临界温度是℃,超过这个状态,就有汽水混合共存的状态,水变成蒸汽不需要气化潜热,这对效率有很大的提升。亚临界、超临界、超超临界都是人为定义:亚临界:超临界:超超临界:欧洲定义是大于25MPa,日本定义是大于600℃。国内定义是大于25MPa、600℃

亚临界实验实际是在全面禁试谈判后期形成的一个概念。1995年8月11日,美国总统克林顿宣布美国谋求达成“零威力”的全面禁试条约。但“零威力”的具体含义是模糊的。亚临界实验研究的是核武器初级中所用裂变材料在高能炸药或其它方式冲击(或爆轰)下的物理、化学行为,是直接为核武器的研究和发展服务的。如美国进行带有核材料的爆轰流体动力学实验,实验中所用核材料的数量以不发生自持链式反应为限,也就是说核材料在实验过程中始终处于亚临界状态。人们一般把这种实验称为亚临界实验或次临界实验

电机组装毕业论文

该¥解决的问题就得¥来解决

机电一体化毕业论文: 一、机电一体化技术发展历程及其趋势 自电子技术一问世,电子技术与机械技术的结合就开始了,只是出现了半导体集成电路,尤其是出现了以微处理器为代表的大规模集成电路以后,"机电一体化"技术之后有了明显进展,引起了人们的广泛注意. (一)机电一体化"的发展历程 1.数控机床的问世,写下了"机电一体化"历史的第一页; 2.微电子技术为"机电一体化''带来勃勃生机; 3.可编程序控制器、"电力电子"等的发展为"机电一体化"提供了坚强基础; 4.激光技术、模糊技术、信息技术等新技术使"机电一体化"跃上新台阶. (二)机电一体化"发展趋势 1.光机电一体化.一般的机电一体化系统是由传感系统、能源系统、信息处理系统、机械结构等部件组成的.因此,引进光学技术,实现光学技术的先天优点是能有效地改进机电一体化系统的传感系统、能源(动力)系统和信息处理系统.光机电一体化是机电产品发展的重要趋势. 2.自律分配系统化——柔性化.未来的机电一体化产品,控制和执行系统有足够的“冗余度”,有较强的“柔性”,能较好地应付突发事件,被设计成“自律分配系统”。在自律分配系统中,各个子系统是相互独立工作的,子系统为总系统服务,同时具有本身的“自律性”,可根据不同的环境条件作出不同反应。其特点是子系统可产生本身的信息并附加所给信息,在总的前提下,具体“行动”是可以改变的。这样,既明显地增加了系统的适应能力(柔性),又不因某一子系统的故障而影响整个系统。 3.全息系统化——智能化。今后的机电一体化产品“全息”特征越来越明显,智能化水平越来越高。这主要收益于模糊技术、信息技术(尤其是软件及芯片技术)的发展。除此之外,其系统的层次结构,也变简单的“从上到下”的形势而为复杂的、有较多冗余度的双向联系。 4.“生物一软件”化—仿生物系统化。今后的机电一体化装置对信息的依赖性很大,并且往往在结构上是处于“静态”时不稳定,但在动态(工作)时却是稳定的。这有点类似于活的生物:当控制系统(大脑)停止工作时,生物便“死亡”,而当控制系统(大脑)工作时,生物就很有活力。仿生学研究领域中已发现的一些生物体优良的机构可为机电一体化产品提供新型机体,但如何使这些新型机体具有活的“生命”还有待于深入研究。这一研究领域称为“生物——软件”或“生物——系统”,而生物的特点是硬件(肌体)——软件(大脑)一体,不可分割。看来,机电一体化产品虽然有向生物系统化发展趋,但有一段漫长的道路要走。 5.微型机电化——微型化。目前,利用半导体器件制造过程中的蚀刻技术,在实验室中已制造出亚微米级的机械元件。当将这一成果用于实际产品时,就没有必要区分机械部分和控制器了。届时机械和电子完全可以“融合”,机体、执行机构、传感器、CPU等可集成在一起,体积很小,并组成一种自律元件。这种微型机械学是机电一体化的重要发展方向。 二、典型的机电一体化产品 机电一体化产品分系统(整机)和基础元、部件两大类。典型的机电一体化系统有:数控机床、机器人、汽车电子化产品、智能化仪器仪表、电子排版印刷系统、CAD/CAM系统等。典型的机电一体化元、部件有:电力电子器件及装置、可编程序控制器、模糊控制器、微型电机、传感器、专用集成电路、伺服机构等。这些典型的机电一体化产品的技术现状、发展趋势、市场前景分析从略。 三、我国发展“机电一体化”面临的形势和任务 机电一体化工作主要包括两个层次:一是用微电子技术改造传统产业,其目的是节能、节材,提高工效,提高产品质量,把传统工业的技术进步提高一步;二是开发自动化、数字化、智能化机电产品,促进产品的更新换代。 (一)我国“机电一体化”工作面临的形势 1. 我国用微电子技术改造传统工业的工作量大而广,有难度 2. 我国用机电一体化技术加速产品更新换代,提高市场占有率的呼声高,有压力。 3. 我国用机电一体化产品取代技术含量和附加值低,耗能、耗水、耗材高,污染、扰民产品的责任重,有意义。在我国工业系统中,能耗、耗水大户,对环境污染严重的企业还占相当大的比重。近年来我国的工业结构、产品结构虽然几经调整,但由于多种原因,成效一直不够明显。这里面固然有上级领导部门的政出多门问题,有企业的“故土难离”“死守故业”问题,但不可否认也有优化不出理想的产业,优选不出中意的产品问题。上佳的答案早就摆在了这些企业的面前,这就是发展机电一体化,开发和生产有关的机电一体化产品。机电一体化产品功能强、性能好、质量高、成本低,且具有柔性,可根据市场需要和用户反映时产品结构和生产过程做必要的调整、改革,而无须改换设备。这是解决机电产品多品种、少批量生产的重要出路。同时,可为传统的机械工业注入新鲜血液,带来新的活力,把机械生产从繁重的体力劳动中解脱出来,实现文明生产。 另外,从市场需求的角度看,由于我国研制、开发机电一体化产品的历史不长,差距较大,许多产品的品种、数量、档次、质量都不能满足需求,每年进口量都比较大,因此亟需发展。 (二) 我国“机电一体化”工作的任务 我国在机电一体化方面的任务可以概括为两句话:一句话是广泛深入地用机电一体化技术改造传统产业;另一句话是大张旗鼓地开发机电一体化产品,促进机电产品的更新换代。总的目的是促进机电一体产业的形成、为我国产业结构和产品结构调整作贡献。 总之,机电一体化技术既是振兴传统机电工业的新鲜血液和源动力,又是开启我国机电行业产品结构、产业结构调整大门的钥匙。 四、我国发展“机电一体化”的对策 (一)加强统筹安排,协调发展计划 目前,我国从事“机电一体化”研究开发及生产的单位很多。各自都有一套自己的发展策略。各单位的计划由于受各自立足点、着眼点的限制,难免只考虑局部利益,各主管部门的有关计划和规划,也有统一考虑不足,统筹安排不够的问题,同时缺少综观全局的有权威性的发展计划和战略规划。因此,建议各主管部门责成有关单位在进行深入调查研究、科学分析的基础上,制定出统管全局的“机电一体化”研究、开发、生产计划和规划,避免开发上重复,生产上撞车! (二)强化行业管理,发挥“协会”作用 目前,我国“机电一体化”较热,而按目前的行业划分方法和管理体制,“政出多门”是难哆的。因此,我国有必要明确一个“机电一体化”行业的统管机构,根据目前国家政治体制改革和经济体制改革的精神,以及机电一体化行业特点,我们建议,尽快加强北京机电一体化协会的建设,赋予其行业管理职能。“协会”要进一步扩大领导机构——理事会的代表层面和复盖面,要加强办公室、秘书处的建设;要通过其精明干练的办事机构、经济实体,组织“行业”发展计划、战略规划的拟制;指导行业布点布局的调整,进行发展突破口的选择,抓好重点工程的试点和有关项目的发标、招标工作…… (三)优化发展环境、增大支持力度 优化发展环境指通过宣传群众,造成一种社会上下、企业内外都重视、支持“机电一体化”发展的氛围,如尽快为外商到我国投资发展“机电一体化”产业提供方便;尽可能为兴办开发、生产机电一体化产品的高新技术企业开绿灯;尽力为开发、生产机电一体化产品调配好资源要素等。 增大支持力度,在技术政策上,要严格限制耗电、耗水、耗材高的传统产品的发展,对未采用机电一体化技术落后产品限制强制淘汰;大力提倡用机电一体化技术对传统产业进行改造,对有关机电一体化技术对传统产业乾地改造,对有关技术开发、应用项目优先立项、优先支持,对在技术开发、应用中做出贡献的单位领导、科技人员进行表彰奖励等。 (四)突出发展重点,兼顾“两个层次” 机电一体化产业复盖面非常广,而我们的财力、人力和物力是有限的,因此我们在抓机电一体化产业发展时不能面面俱到、平铺直叙,而应分清主次,大胆取舍,有所为,有所不为。要注意抓两个层次上的工作。第一个层次是“面上”的工作,即用电子信息技术对传统产业进行改造,在传统的机电设备上植入或嫁接上微电子(计算机)装置,使“机械”和“电子”技术在浅层次上结合。第二个层次是“提高”工作,即在新产品设计之初,就把“机械”与“电子”统一起来进行考虑,使“机械”与“电子”密不可分,深度结合,生产出来的新产品起码正做到机电一体化。 结束语:本论文在各位老师的悉心指导和严格要求下已完成。在学习和生活期间,也始终感受着导师的精心指导和无私的关怀,我受益匪浅。在此向各位老师表示深深的感谢和崇高的敬意。不积跬步何以至千里,本设计能够顺利的完成,也归功于各位任课老师的认真负责,使我能够很好的掌握和运用专业知识,并在设计中得以体现。同时我在网上也搜集了不少资料,才使我的毕业论文工作顺利完成。在此向学院工程系的全体老师表示由衷的谢意。记得采纳啊

原创就要收费了……

机电一体化技术及其应用研究摘 要 讨论了机电一体化技术对于改变整个机械制造业面貌所起的重要作用,并说明其在钢铁工业中的应用以及发展趋势。 关键词 机电一体化 技术 应用1 机电一体化技术发展 机电一体化是机械、微电子、控制、计算机、信息处理等多学科的交叉融合,其发展和进步有赖于相关技术的进步与发展,其主要发展方向有数字化、智能化、模块化、网络化、人性化、微型化、集成化、带源化和绿色化。 数字化 微控制器及其发展奠定了机电产品数字化的基础,如不断发展的数控机床和机器人;而计算机网络的迅速崛起,为数字化设计与制造铺平了道路,如虚拟设计、计算机集成制造等。数字化要求机电一体化产品的软件具有高可靠性、易操作性、可维护性、自诊断能力以及友好人机界面。数字化的实现将便于远程操作、诊断和修复。 智能化 即要求机电产品有一定的智能,使它具有类似人的逻辑思考、判断推理、自主决策等能力。例如在CNC数控机床上增加人机对话功能,设置智能I/O接口和智能工艺数据库,会给使用、操作和维护带来极大的方便。随着模糊控制、神经网络、灰色理论、小波理论、混沌与分岔等人工智能技术的进步与发展,为机电一体化技术发展开辟了广阔天地。 模块化 由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、动力接口、环境接口的机电一体化产品单元模块是一项复杂而有前途的工作。如研制具有集减速、变频调速电机一体的动力驱动单元;具有视觉、图像处理、识别和测距等功能的电机一体控制单元等。这样,在产品开发设计时,可以利用这些标准模块化单元迅速开发出新的产品。 网络化 由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾。而远程控制的终端设备本身就是机电一体化产品,现场总线和局域网技术使家用电器网络化成为可能,利用家庭网络把各种家用电器连接成以计算机为中心的计算机集成家用电器系统,使人们在家里可充分享受各种高技术带来的好处,因此,机电一体化产品无疑应朝网络化方向发展。 人性化 机电一体化产品的最终使用对象是人,如何给机电一体化产品赋予人的智能、情感和人性显得愈来愈重要,机电一体化产品除了完善的性能外,还要求在色彩、造型等方面与环境相协调,使用这些产品,对人来说还是一种艺术享受,如家用机器人的最高境界就是人机一体化。 微型化 微型化是精细加工技术发展的必然,也是提高效率的需要。微机电系统(Micro Electronic Mechanical Systems,简称MEMS)是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通信和电源等于一体的微型器件或系统。自1986年美国斯坦福大学研制出第一个医用微探针,1988年美国加州大学Berkeley分校研制出第一个微电机以来,国内外在MEMS工艺、材料以及微观机理研究方面取得了很大进展,开发出各种MEMS器件和系统,如各种微型传感器(压力传感器、微加速度计、微触觉传感器),各种微构件(微膜、微粱、微探针、微连杆、微齿轮、微轴承、微泵、微弹簧以及微机器人等)。 集成化 集成化既包含各种技术的相互渗透、相互融合和各种产品不同结构的优化与复合,又包含在生产过程中同时处理加工、装配、检测、管理等多种工序。为了实现多品种、小批量生产的自动化与高效率,应使系统具有更广泛的柔性。首先可将系统分解为若干层次,使系统功能分散,并使各部分协调而又安全地运转,然后再通过软、硬件将各个层次有机地联系起来,使其性能最优、功能最强。 带源化 是指机电一体化产品自身带有能源,如太阳能电池、燃料电池和大容量电池。由于在许多场合无法使用电能,因而对于运动的机电一体化产品,自带动力源具有独特的好处。带源化是机电一体化产品的发展方向之一。 绿色化 科学技术的发展给人们的生活带来巨大变化,在物质丰富的同时也带来资源减少、生态环境恶化的后果。所以,人们呼唤保护环境,回归自然,实现可持续发展,绿色产品概念在这种呼声中应运而生。绿色产品是指低能耗、低材耗、低污染、舒适、协调而可再生利用的产品。在其设计、制造、使用和销毁时应符合环保和人类健康的要求,机电一体化产品的绿色化主要是指在其使用时不污染生态环境,产品寿命结束时,产品可分解和再生利用。2 机电一体化技术在钢铁企业中应用 在钢铁企业中,机电一体化系统是以微处理机为核心,把微机、工控机、数据通讯、显示装置、仪表等技术有机的结合起来,采用组装合并方式,为实现工程大系统的综合一体化创造有力条件,增强系统控制精度、质量和可靠性。机电一体化技术在钢铁企业中主要应用于以下几个方面: 智能化控制技术(IC) 由于钢铁工业具有大型化、高速化和连续化的特点,传统的控制技术遇到了难以克服的困难,因此非常有必要采用智能控制技术。智能控制技术主要包括专家系统、模糊控制和神经网络等,智能控制技术广泛应用于钢铁企业的产品设计、生产、控制、设备与产品质量诊断等各个方面,如高炉控制系统、电炉和连铸车间、轧钢系统、炼钢---连铸---轧钢综合调度系统、冷连轧等。 分布式控制系统(DCS) 分布式控制系统采用一台中央计算机指挥若干台面向控制的现场测控计算机和智能控制单元。分布式控制系统可以是两级的、三级的或更多级的。利用计算机对生产过程进行集中监视、操作、管理和分散控制。随着测控技术的发展,分布式控制系统的功能越来越多。不仅可以实现生产过程控制,而且还可以实现在线最优化、生产过程实时调度、生产计划统计管理功能,成为一种测、控、管一体化的综合系统。DCS具有特点控制功能多样化、操作简便、系统可以扩展、维护方便、可靠性高等特点。DCS是监视集中控制分散,故障影响面小,而且系统具有连锁保护功能,采用了系统故障人工手动控制操作措施,使系统可靠性高。分布式控制系统与集中型控制系统相比,其功能更强,具有更高的安全性。是当前大型机电一体化系统的主要潮流。 开放式控制系统(OCS) 开放控制系统(Open Control System)是目前计算机技术发展所引出的新的结构体系概念。“开放”意味着对一种标准的信息交换规程的共识和支持,按此标准设计的系统,可以实现不同厂家产品的兼容和互换,且资源共享。开放控制系统通过工业通信网络使各种控制设备、管理计算机互联,实现控制与经营、管理、决策的集成,通过现场总线使现场仪表与控制室的控制设备互联,实现测量与控制一体化。 计算机集成制造系统(CIMS) 钢铁企业的CIMS是将人与生产经营、生产管理以及过程控制连成一体,用以实现从原料进厂,生产加工到产品发货的整个生产过程全局和过程一体化控制。目前钢铁企业已基本实现了过程自动化,但这种“自动化孤岛”式的单机自动化缺乏信息资源的共享和生产过程的统一管理,难以适应现代钢铁生产的要求。未来钢铁企业竞争的焦点是多品种、小批量生产,质优价廉,及时交货。为了提高生产率、节能降耗、减少人员及现有库存,加速资金周转,实现生产、经营、管理整体优化,关键就是加强管理,获取必须的经济效益,提高了企业的竞争力。美国、日本等一些大型钢铁企业在20世纪80年代已广泛实现CIMS化。 现场总线技术(FBT) 现场总线技术(Fied Bus Technology)是连接设置在现场的仪表与设置在控制室内的控制设备之间的数字式、双向、多站通信链路。采用现场总线技术取代现行的信号传输技术(如4~20mA,DC直流传输)就能使更多的信息在智能化现场仪表装置与更高一级的控制系统之间在共同的通信媒体上进行双向传送。通过现场总线连接可省去66%或更多的现场信号连接导线。现场总线的引入导致DCS的变革和新一代围绕开放自动化系统的现场总线化仪表,如智能变送器、智能执行器、现场总线化检测仪表、现场总线化PLC(Programmable Logic Controller)和现场就地控制站等的发展。 交流传动技术 传动技术在钢铁工业中起作至关重要的作用。随着电力电子技术和微电子技术的发展,交流调速技术的发展非常迅速。由于交流传动的优越性,电气传动技术在不久的将来由交流传动全面取代直流传动,数字技术的发展,使复杂的矢量控制技术实用化得以实现,交流调速系统的调速性能已达到和超过直流调速水平。现在无论大容量电机或中小容量电机都可以使用同步电机或异步电机实现可逆平滑调速。交流传动系统在轧钢生产中一出现就受到用户的欢迎,应用不断扩大。参考文献1 杨自厚. 人工智能技术及其在钢铁工业中的应用[J].冶金自动化,1994(5)2 唐立新.钢铁工业CIMS特点和体系结构的研究[J].冶金自动化,1996(4) 3 唐怀斌. 工业控制的进展与趋势 [J].自动化与仪器仪表,1996(4) 4 王俊普. 智能控制[M]. 合肥:中国科学技术大学出版社,1996 5 林行辛. 钢铁工业自动化的进展与展望[J].河北冶金,1998(1)6 殷际英. 光机电一体化实用技术[M].北京:化学工业出版社,20037 芮延年. 机电一体化系统设计[M]. 北京:机械工业出版社,2004.电机功率转换的原理引言: 电机调速实质的探讨,是关系到近代交流调速发展的重要理论问题。随着近代变频调速矢量控制及直接转矩控制等调速控制理论的提出和实践,很多有关文献和论著都把调速的转矩控制确认为调速的普遍规律,并提出调速的实质和关键在于电磁转矩控制。然而,这种观点尚缺乏理论和实践的证明,值得商榷。 本文根据电机功率转换的普遍原理,提出并证明恒转矩调速的实质在于电机的轴功率控制,转速调节是功率控制的响应,其关键为如何通过电功率控制轴功率。 一、功率控制与转矩控制 根据机电能量转换原理,凡电动机都可划分为主磁极和电枢两个功能部分。主磁极的作用是建立主磁场,电枢则是与磁场相互作用将电磁功率转换为轴功率。 直流电动机的主磁极和电枢不仅结构鲜明,而且功能独立,无疑符合以上定义。而交流(异步)电动机通常以定子、转子划分构成,需加说明。 根据所述电枢定义,异步机的轴功率产生于转子,因此,异步机真正的电枢是转子。问题在于定子,一方面定子励磁产生主磁场,故定子是主磁极。另一方面,定子又通过电磁感应为电枢(转子)输送电磁功率,却不产生轴功率,因此定子又具有电枢的部分特征,这里我们把它称为伪电枢。定子的这种复合功能,是异步机区别于直流机的主要特征。 从电枢输出角度观察,电动机的轴功率与电磁转矩机械转速的关系为: PM=MΩ (1) 或 Ω=PM/M (2) 公式(2)除了给出了电机转速与轴功率和电磁转矩间的量值关系以外,同时表明,电机转速最终只能通过轴功率或电磁转矩两种控制获得调节,前者简称功率控制,后者简称转矩控制。 1. 功率控制 功率控制是以轴功率PM为调速主控量, 作用对象必然是电枢或伪电枢。电磁转矩在调速稳态时,取决于负载转矩的大小。 即 M=Mfz (3) 当负载转矩一经为客观工况所确定之后,电磁转矩就唯一地被决定了,因此电磁转矩不仅与调速控制无关,而且不能随意改变其量值。 电磁转矩对转速的作用表现在调速的过渡过程,转矩的变化是转速响应滞后的结果,此时,功率控制造成电磁转矩响应。 设电机调速前的稳态转速为Ω1,轴功率为PM1,调速后的稳态转速为Ω2,相应的轴功率变为PM2。 由于电磁转矩: M=PM/Ω (4) 故调速时,电磁转矩变为: M=PM2/Ω 由于受惯性的作用,在t=0的调速瞬时Ω=Ω1,故 M=PM2/Ω1 t=0 此时的电磁转矩将与原来的电磁转矩M1=PM1/Ω1不等,转矩平衡被破坏并产生动态转矩,电机转速在动态转矩作用下开始由Ω1向Ω2过渡,其变化规律为: Ω1=(Ω1-Ω2)e-t/T+Ω2 (5) 电磁转矩则为:M=PM2/(Ω1-Ω2)e-t/T+Ω2 随着时间增大,动态转矩减小,直至电磁转矩与新的负载转矩平衡,即: M=PM2/Ω2=Mfz, 转速稳定在Ω2不变,电机调速结束。 上述的调速过程可以由图1的框图说明。图1 功率控制的调速流程 功率控制作用的是电枢,主磁场或主磁通量保持不变,根据电机理论,电机的额定电磁转矩正比于主磁通量,受限于电枢的最大载流量。因此功率控制调速时,电机的额定电磁转矩输出能力不变,属于恒转矩调速。 2. 转矩控制 根据公式(2),电机转速在轴输出功率不变的前提下,与电磁转矩成反比。由于受电磁转矩以额定转矩为上限的约束,转矩控制实际上只能在额定转矩以下实现,因此属于恒功率调速。 电磁转矩的独立控制方法主要依据转矩公式: M=CMΦmIS (直流机) (6) 或 M=CMΦmI2COSφ2 (交流机) (7) 受控的物理量为主磁通Φm,由于主磁通量Φm产生于主磁极,因此转矩控制实际上是磁场控制,作用对象为主磁极。转矩控制调速同样要保证稳态时的转矩平衡,即: M=Mfz 由于调速稳态时,电磁转矩发生了变化,因此要求负载转矩适应于电磁转矩变化,即要求负载跟踪电机。 转矩控制实际是弱磁调速,主要用于额定转速以上的调速。鉴于本文重点讨论的是功率控制,故不赘述。 二、功率控制的方法与性能 电机调速的轴功率控制只能通过电功率间接控制来实现。以异步机为例,图2是其等效三端口网络。 图2.异步机的等效网络 其中电枢(转子)除产生轴功率输出外,还产生以感应电压u2和电流i2为参量的电功率响应。由于该功率与转差率成正比,故称转差功率,其端口简称Ps口。 如果电机转子为笼型,其绕组呈短路状,Ps口为封闭不可控的。反之为绕线型,Ps口则是开启可控的, 转子可以通过Ps口输出或输入电功率。由此可见,异步机的功率控制调速有两种方式,一种是通过伪电枢间接对电枢实现轴功率控制;另一种是通过Ps口直接控制电枢轴功率。 前者主要适用于笼型异步机,后者则适用于绕线型异步机。 1. 定子伪电枢功率控制。 图3.异步机定子功率控制调速 作为伪电枢,定子向电枢(转子)传输的电磁功率: Pem=P1-△P1 (8) 电枢的轴功率则为: PM=Pem-△P2 (9) 故 PM=P1-(△P1+△P2) (10) 可见,控制伪电枢的输入功率P1或增大其损耗△P1就可以控制电枢的轴功率,后者显然是低效率、高损耗的调速,不宜推荐。 控制P1调速的唯一方法是调压━━变频, 即所谓的变频调速。由于: P1=m1U1I1COSφ1 (11) 故对于电压源供电调节端电压U1是控制功率P1的必须手段。问题的关键是为什么不能单纯调压,而必须辅以变频?这是定子除了伪电枢的功能之外,还同时兼主磁极之故。 前已叙及,功率控制的要点有: ① 保持主磁通量不变 ② 作用对象是电枢或伪电枢 ③ 控制目标是轴功率 如果单纯调压而频率不变,定子的主磁极功能就要受到严重影响。根据电机理论,做为主磁极,定子的主磁通量: Φm=E/ =KE1/f1 ≈KU1/f1 (12) 恒频调压的结果,主磁通Φm将随U1下降而减小,形成了前述的转矩控制。更主要的是此时不但未能控制功率P1,反而增大了电机损耗,与目的绝然相悖。 设负载为恒转矩性质,由转矩平衡方程,电磁转矩: M=Mfz=const 又 M=CMΦmI1COSφ1 =CMΦmI2COSφ2 (13) 设功率因数不变,定转子电流I1、I2将随主磁通Φm下降而正比增大,其结果功率P1不变,但定转子损耗: △P1=m1I 12 r1 △P2=m2I 222 r1 将按电流的平方律增大。根据式(10),轴功率控制虽能实现,却属低效率高损耗的调速。 为此,异步机定子的功率控制调速,必须要将定子的主磁极和伪电枢两种功能游离开。针对同一定子绕组,一方面使主磁极产生的磁场保持稳定,同时又要控制其向电枢传递的电磁功率。 于是变频调速建立了一条重要原则,就是调压变频,且保证V/F(压频比)为常数,这样就确保了上述控制要求的实现。顺便指出,近代变频调速的矢量控制,实际上就是遵循这一原理。矢量控制的核心思想,是把磁场与转矩游离开,分别加以控制,认为调速的根本在于转矩,而事实上游离的却是磁场和电磁功率,虽然结果无误,但理论上必须加以澄清。 2. 转子功率控制 对于绕线转子异步机的调速,可以利用转差功率端口━Ps口直接控制轴功率。方法是由Ps口移出或注入转差功率。需要指出: ① 所述的转差功率应区别经典电机学中的转子损耗转差功率,为此将后者称为转子损耗功率,记以△P2。 ② 转差功率有电能与热能之分,分别记以Pes和Prs,两者性质不同,对调速的影响也不同。 图4.异步机转子功率控制调速 当在转子的Ps口引入电转差功率Pes时,转子的轴功率: PM=(Pem±Pes)-△P2 (14) 式中的Pem为定子向转子传输的电磁功率,电转差功率的负号表示从Ps口移出,正号表示从Ps口注入。Pes属电功率,故与电磁功率相合成,结果使轴功率PM发生变化,电机转速得到相应调节。 电转差功率调速的典型实例是串级调速和双馈调速,前者的电转差功率为负,流向为从转子移出,故实现的是额定转速以下的调速。后者的电转差功率可以双向流动,既可以移出,又可以注入,因此可以实现低同步和超同步两种调速。 当Ps口引入的是热转差功率Prs时, 转子的轴功率则为: PM=Pem-(△P2+Prs) (15) 显然热转差功率的引入,增大了电枢(转子)的损耗,轴功率随Prs的增大而减小,其典型例子是异步机转子串电阻调速。 三、功率控制的理想空载转速,效率与机械特性 根据电机学,电动机的理想空载转速主要取决于电枢的电磁功率,因有: Ω0=Pem/M (16) 由于电磁转矩为负载所决定,理想空载转速Ω0就决定于某一负载条件下电磁功率的大小。 功率控制调速的电枢功率可以综合表达为: PM=∑Pem-∑p2 (17) 相应的转速: PM/M=∑Pem/M-∑p2/M (18) Ω=Ω0-△Ω (19) 其中Ω0=∑Pem/M为功率控制调速的理想空载转速,因此调节电枢的电磁功率可以改变电机的理想空载转速。换言之,电机的理想空载转速取决于电枢的电磁功率。又,△Ω=∑p2/M 为电机的转速降。由此表明增大电枢损耗,可以增加电机转速降。 电机调速的效率表达为: η=PM/(P1-∑pi) =PM/(Pem-△P2) 因此,在一定的轴功率PM输出条件下,控制电磁功率的调速是高效率的节能型调速,而控制损耗功率的调速必然是低效率的耗能型调速。 公式(18)同时刻画出了功率控制调速的机械特性,当连续改变电磁功率∑Pem时,如果损耗功率不变,电机的理想空载转速随∑Pem连续变化,其机械特性为一族平行的曲线。而增大损耗,电磁功率不变时,电机理想空载转速不变,改变的只是转速降,其机械特性为一族汇交型曲线。如图5给出了两种调速的定性曲线。 图5 a.电磁功率调速特性 b.转速降调速特性 综上所述,可以得出以下结论: ① 电磁功率控制调节的是理想空载转速,损耗功率控制调节的是转速降。 ② 电磁功率控制是高效率节能型的调速,其机械特性必为平行曲线族。损耗功率控制属低效率耗能调速,其机械特性必为汇交型曲线族。 四、异步机调速的分类与方法 与按n= 60f1/p·(1-S)表达式不同,根据本文所述的电机调速功率控制理论,异步机调速可分类表示如下: 性质/方案 控制点/变量 方法 要点 五、结论 1. 电机调速的基本原理有两种,一为轴功率控制,二是转矩控制。转矩控制实际是磁场控制,适于恒功率调整。 2.轴功率控制的作用对象是电枢或伪电枢, 并最终只能通过电功率控制来实现。其中,电磁功率调节的是理想空载转速,损耗功率改变的是转速降。前者为高效节能型,后者为低效耗能型,两者的机械特性亦由此决定。 3. 轴功率控制的调速具有恒转矩特性,电磁转矩的变化是转速响应滞后所造成的,调速稳态时,电磁转矩只决定于负载,与控制无关。 4. 变频调速和电转差功率控制调速同属电磁功率控制调速,两者性能一致,并无本质差别。

风力机机组毕业论文翻译

The passage probe on the lightening protection design for the wind farm in Chaka,Qinghai-Tibet the design for the wind turbine generator system on the plateau in the damage of the WTGS from lightening、directness lightening protection、surge overvoltage prevention、grouding and so the characteristics of the climate in high-elevation areas is different from that in low-elevation areas,the design is surge overvoltage prevention and the reduction of the earth resistance to a reasonable level will be impacted greatly by different SPDs and the existence of words:Qinghai-Tibet Plateau,wind turbine generator system(WTGS),lightening protection,overvoltage,grouding也许会有些语法错误,请仔细看过,不当的地方自己改动下

金桥在线翻译下就行了

感应电机动态分析 当恒转矩应用于转子感应机,将运行在一个 固定滑。如果应用是不同的扭矩,然后的速度将有所不同转子以及。那个 的关系来描述: ( ) 其中J是转动惯量的发电机转子, U是角速度的 发电机转子(弧度/秒)的H ?是电磁转矩和U ?是扭矩适用于 发电机转子。 当适用于不同的扭矩相对缓慢的电网频率,准 稳态的办法可以采取的分析。也就是说,电动扭矩可 假定为一个函数的支路中所描述方程和前面的方程。 准稳态方法通常被用来评估风力发电机组的动力。 这是因为频率波动的风致扭矩和 机械振荡通常远远低于电网频率。上岗 发电机方程这种方式使用应用,例如,在动态风力发电机 驱动列车模型, DrvTrnVB 。这是描述Manwell等。 ( 1996年) 。 值得指出的是,异步电机有些“软”的动态 针对不断变化的条件比同步电机。这是因为感应 机器进行一个小但重要的速度变化(滑)作为扭矩或缩小 变化。同步电机,如前所述,在不断的操作速度,同 唯一的功角变化的扭矩不同。同步电机从而有一个非常 '硬'响应波动条件。

给你发了一篇

超临界机翼设计的先进性研究论文

以Takanashi提出的三维机翼设计理论为基础 ,研究与发展了一个基于欧拉方程和“正 反迭代、余量修正原理”的机翼设计方法。 用改进的无限插值方法生成绕机翼的O O贴体网格 ,采用三维欧拉方程作为流动分析计算的基本方程 ,该设计方法已用于某无人机机翼和一个超临界机翼设计 ,设计结果达到了预期的目标。

2016年11月1日,第11届中国国际航空航天博览会在珠海拉开帷幕。中国空军派出两架现役运-20运输机参加航展。据介绍,运-20运输机采用了超临界机翼设计,在同样动力的情况下足足比伊尔76提升了33%的运力。而作为首款交付航空公司使用的喷气式支线客机,ARJ-21客机也将参加此次珠海航展。无独有偶,ARJ-21客机也采用了超临界机翼设计。此外,参加本次航展的空客A350客机,英国空军A400M运输机等运输类飞机也都声称采用了超临界机翼设计。

图:运20运输机机翼特写

那么问题来了,被广泛采用的超临界机翼到底是何方神圣?它又有怎样的特点呢?让我们从源头说起。

气动特性的需求

运输类飞机的经济性和机翼升力阻力比关系极为密切。尤其是现代大型运输类飞机,其飞行马赫数处在高亚音速范围,机翼设计的重要性不言而喻。在这一速度范围内,气体的流动现象极为复杂,因此高亚音速大型运输类飞机的气动优化设计成为航空大国气动研究领域的重中之重。

大型运输类飞机的气动性能直接关系到飞机设计的成功与否,而气动特性又由飞机巡航马赫数与巡航升阻比的乘积反应,乘机越大,气动特性越好。为了提高运输类飞机经济性能,有两个选择:提高巡航马赫数或者巡航升阻比。然而一般情况下,高升阻比的翼型,其跨声速性能较差,这都会不可避免地产生强激波;相反,高亚音速翼型虽然提高了巡航马赫数,但其升阻比却相对较小。一直以来,追求高巡航马赫数和追求高升阻比是一对不可调和的矛盾,而超临界翼型的出现成功解决了这一矛盾。

超临界翼型的原理

翼型的设计使得气流流过机翼时能在上表面加速,上下表面气流的速度差导致压力差,这样形成升力。

图:传统翼型和超临界翼型外形对比

对普通翼型而言,前缘(头部)越尖,气流绕过时速度的增加越多,然后在翼型上表面流速继续增加,且翼型厚度越大,速度增加也越多。当飞行速度足够高时(相当马赫数~),翼型上表面的局部流速可达到音速,这时的飞行马赫数称为临界马赫数。飞行速度再增加的话,上表面便会出现强烈的激波,引起气流分离,使机翼阻力急剧增加。

而为了保持飞机飞行的经济性,飞行马赫数不宜超过临界马赫数。减小机翼厚度或采用后掠机翼可提高临界马赫数,但是这样会增加机翼重量,翼面积大,摩擦阻力也大,还有翼尖失速问题。那么怎样推迟大飞行马赫数下机翼上表面强激波的产生呢?答案便是超临界机翼。

超临界翼型设计的本质是弱激波翼型的设计,其头部比较丰满,降低了前缘的负压峰值使气流较晚到达声速,即提高了临界马赫数。同时超临界翼型上表面中部比较平坦,有效控制了上翼面气流的进一步加速,降低了激波的强度和影响范围,推迟了上表面的激波诱导边界层的分离。因此超临界翼型有着更高的临界马赫数和更高的阻力发散马赫数。

图:波音777的超临界机翼

超临界翼型的优势

相对于传统机翼,超临界机翼具有以下3方面优势。

图:传统翼型与超临界翼型气动特性对比

(1)在机翼厚度比和后掠角不变的情况下,可以将阻力激增马赫数提高。在不增加结构重量的情况下提高飞机速度,降低飞机的直接运营成本。

(2)对于给定的阻力激增马赫数和后掠角,可以采用较厚的机翼,增加机翼容积,也可以显著降低机翼重量,或者提高机翼展弦比。

(3)对于给定的阻力激增马赫数和厚度比,可以减少机翼后掠角,从而提高最大升力和起飞、着陆状态的升阻比,提高设计巡航升力系数,并且对于给定的展弦比,可以减轻机翼重量。

这些进步可以带来以下优势:减少机翼面积、降低机翼阻力,尤其在翼展不变时减小机翼弦长;在固定马赫数下降低等效空速,增加巡航高度,在远程飞行时节省燃油;减小马赫数,降低中短程运输飞机的燃油消耗。

以空客A340客机和波音747客机为例,空客A340飞机的载客能力只相当于早期波音747的四分之三,却具有更大的航程。尽管动力装置的改进和结构重量的减轻发挥了一定的作用,但A340飞机性能的提高主要来自于机翼的改进,A340飞机的翼展与波音747飞机相差不多,但其机翼面积只有波音747飞机的65%。

图:波音747与A340机翼平面形状对比

如今,超临界机翼已经成为各类大型飞机的标配,在世界各地的民用、商务和军用飞机上被广泛使用。它带来的效率提高,为航空业每年节省数十亿美元的燃料,显著减少了温室气体排放量。目前我国已基本掌握了超临界机翼技术,并已应用于正在研制的几款包括ARJ-21、C919和运-20在内的大飞机上。相信随着国内空气动力学的发展和我国航空工业的进步,会有越来越多使用超临界机翼的国产大飞机翱翔于天空。

出品:科普中国

制作:翱翔者联盟

监制:中国科学院计算机网络信息中心

“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。

本文由科普中国融合创作出品,转载请注明出处。

相关百科

热门百科

首页
发表服务