首页

> 学术论文知识库

首页 学术论文知识库 问题

大数据的研究论文

发布时间:

大数据的研究论文

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

浅谈基于大数据时代的机遇与挑战论文推荐

在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。

浅谈基于大数据时代的机遇与挑战论文

1、大数据的基本概况

大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。

2、大数据的时代影响

大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:

(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。

(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。

(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。

另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。

3、大数据的应对策略

布局关键技术研发创新。

目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。

提高软件产品发展水平。

一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。

加速推进大数据示范应用。

大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。

优化完善大数据发展环境。

信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。

大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。

结构

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

1、论文题目

要求准确、简练、醒目、新颖。

2、目录

目录是论文中主要段落的'简表。(短篇论文不必列目录)

3、内容提要

是文章主要内容的摘录,要求短、精、完整。

4、关键词定义

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。

5、论文正文

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出问题-论点;

b.分析问题-论据和论证;

c.解决问题-论证方法与步骤;

d.结论。

6、参考文献

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。

7、论文装订

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

大数据研究杂志

摘 要:大数据的产生给未来信息技术带来新的机遇与挑战。大数据对数据处理的有效性、实时性提出了更高要求,需要根据大数据的特点对当前数据处理技术实施变革,从而形成更有益于大数据采集、存储、处理、管理、分析、共享的新兴技术。本文从大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。

关键词 :大数据 物联网 信息处理 海量计算

一、大数据的产生与发展现状

随着物联网、云计算等信息技术的飞速发展,大数据技术(Big Data)也越发进入人们的视线。大数据是用传统方法或工具很难处理或分析的数据信息。目前,人们对大数据的理解还不够全面和深入,关于大数据的含义也没有一个统一的定义。亚马逊大数据科学家John Rauser认为:大数据是超过任何一台计算机处理能力的庞大数据量。Informatica 的中国区首席顾问但彬指出:大数据是海量数据与复杂类型的数据的结合。而维基百科则把大数据定义成诸多大而复杂的、难以用当前数据库处理的数据集合。

大数据研究受到国内外学术界和工业界的广泛关注,已成为当今信息时代全世界讨论的热点。2008年,Nature杂志就推出大数据专刊,计算社区联盟也在同一年发表了报告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,报告阐述了解决大数据问题所需的关键技术以及所面临的挑战。美国奥x政府于2012年3月在白宫网站发布了《大数据研究和发展倡议》,提出了通过收集、处理海量、复杂的数据信息,从而提升能力,加快科学和工程领域的创新步伐,转变学习教育模式,强化美国本土的安全”。2011年1月,微软公司同惠普公司合作开发了一系列能够提升生产力,同时提高决策速度的设备。此外,欧盟委员会也提出驾驳大数据浪潮的战略思路,日本发布的《面向 2020 的 ICT综合战略》也提出需要构造大量丰富的数据基础。

近年来,我国也积极开展对大数据的研究。2011年10月,工信部确认京沪深杭等 5 城市为“云计算中心”试点城市。2012年6月,中国计算机学会青年计算机科技论坛也举办了“大数据时代,智谋未来”学术报告研讨会。大数据及其科学研究方法涉及应用领域很广,并将与国计民生密切相关的科学决策、金融工程以及知识经济领域紧紧接合。

二、大数据的特点

目前,企业界和学术界都一致认为,大数据具有4个“V”特征,即:容量(Volume)、种类(Variety)、速度(Velocity)和至关重要的`价值(Value)。

(1) 容量(Volume)巨大。海量的数据集从TB 级别提升到PB 级别。

(2) 种类(Variety)繁多。大数据数据源有多种,数据格式和种类不同于以前所规定的结构化数据范畴。

(3)价值(Value)密度低。如视频的例子,在不间断连续监控的过程中,可能有意义的数据仅有一两秒。

(4)速度(Velocity)快。包含大量实时、在线数据处理分析的需求1秒钟定律。

三、大数据应用的领域

大数据产业的发展将推动全球经济由粗放型向集约型转变,这将对提升企业整体竞争力和政府监管能力具有意义深远的影响。

商业作为大数据的重要应用领域。沃尔玛公司通过对消费者购物行为等一系列非结构化数据的分析,了解不同顾客的购物习惯,公司从所销售的数据进行分析,从而选出适合在一起搭配出售的商品;淘宝也针对买家开设了大数据平台,为客户量身打造了一整套完善的网购体验产品。

大数据在金融业也起到了至关重要的作用。美国Equifax公司利用大数据技术,通过对其的数据库中与财务有关的记录海量信息进行索引处理和交叉分享,从而得到客户的个人信用等级,以推断出客户的支付需求与能力。

随着大数据在医疗与生命科学研究过程中的广泛应用和不断扩展。2010年,中国公布的《十二五规划》指出:要重点建设国家级、省级和地市级三级医疗卫生信息平台,建设电子病历和电子档案两个最为基础的数据库。各级医院也将在医疗信息仓库、数据中心等领域加大投入,医疗数据信息的存储将愈加被关注,医疗信息中心的关注焦点也将由传统的计算领域转为存储领域。

除此之外,大数据在制造业领域也有着广阔的应用。制造业企业积累了广泛的数据信息,在开展对业务数据进行技术管理的同时,企业需要通过大数据处理技术来帮助决策者从数据库储存的海量信息中找到有价值的信息,并且对其进行分析处理,从而增强决策的正确性、规避风险。

四、大数据所面临的挑战

大数据技术使人们能够更好地利用之前不能使用的各个数据类型,找出被忽略的信息,促进企业组织更加高效、智能。但随着对大数据研究的不断深入,人们也更加意识到当大数据技术向人们敞开“方便之门”的同时,也带来了众多的挑战:

(1)大数据需要更为专业化的管理技术人才。

(2) 大数据的合理利用需要解决容量大、类别多和时效性高的数据处理问题。

(3)大数据的利用对信息安全提出了更高要求。

(4)大数据的集成与管理问题。

这些挑战已成为关系到未来大数据发展的重要因素,同时也成为未来引领大数据发展的推动力。

五、结束语

大数据已经逐步渗透到人们工作生活的诸多领域中,对于大数据的研究也在不断的深化。本文针对大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。大数据的发展还处于初级阶段,还有更为广阔的空间需要人们不断开拓,如何合理地利用大数据、更加高效地处理大数据来为人们服务仍需要广大研究者不断地研究和探索。

参考文献:

[1]刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报,2014,46(6):957- 972.

[2]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,23(4):168-172.

[3]刘俊.基于大数据流的Multi-Agent系统模型研究[J].计算机技术与发展, 2007,17(5):166-169.

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

如果是以下这些领域,可以考虑汉斯出版社的《数据挖掘》期刊:数据结构、数据安全与计算机安全、数据库、数据处理、知识工程、计算机信息管理系统、计算机决策支持系统、计算机应用其他学科、模式识别、人工智能其他学科。

大数据的论文研究方向

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

大数据的研究领域可以说很宽泛,也是未来很长一段时间的热点领域。目前大数据的研究方向主要聚焦在下面五个方面。

1、可视化大数据分析。进行分析之前,需要对数据进行探索式地考查。在此过程中,可视化将发挥很大的作用。对大数据进行分析以后,为了方便用户理解结果,也需要把结果展示出来。尤其是可视化移动数据分析工具,能追踪用户行为,让应用开发者得以从用户角度评估自己的产品,通过观察用户与一款应用的互动方式,开发者将能理解用户为何执行某些特定行为,从而为自己完善和改进应用提供依据。

2、AI。包括大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合。得益于以云计算、大数据为代表的计算技术的快速发展,使得信息处理速度和质量大为提高,能快速、并行处理海量数据。

3、跨学科领域交叉的数据融合分析与应用。由于现有的大数据平台易用性差,而垂直应用行业的数据分析又涉及领域专家知识和领域建模,目前在大数据行业分析应用与通用的大数据技术之间存在很大的鸿沟,缺少相互的交叉融合。因此,迫切需要进行跨学科和跨领域的大数据技术和应用研究,促进和推动大数据在典型和重大行业中的应用和落地,尤其是与物联网、移动互联、云计算、社会计算等热点技术领域相互交叉融合。

4、大数据安全和隐私。大数据时代,各网站均不同程度地开放其用户所产生的实时数据,一些监测数据的市场分析机构可通过人们在社交网站中写入的信息、智能手机显示的位置信息等多种数据组合进行分析挖掘。然而,大数据时代的数据分析不能保证个人信息不被其他组织非法使用,用户隐私安全问题的解决迫在眉睫。安全智能更加强调将过去分散的安全信息进行集成与关联,独立的分析方法和工具进行整合形成交互,最终实现智能化的安全分析与决策。

5、大数据治理。大数据将打开各行各业的数据“潘多拉魔盒”。社交网站、电商巨头、电信运营商乃至金融、医疗、教育等行业,都将加入大数据的“淘金”热潮,政府部门同样会从大数据中获益匪浅。如何将海量数据应用于决策、营销和产品创新?如何利用大数据平台优化产品、流程和服务?如何利用大数据更科学地制定公共政策、实现社会治理?所有这一切,都离不开大数据治理。可以说,在大数据战略从顶层设计到底层实现的“落地”过程中,治理是基础,技术是承载,分析是手段,应用是目的。

撰写大数据导论论文需要按照一定的步骤进行,下面是一个简单的指南:

大数据的研究现状论文

商业银行经营管理问题研究论文

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是我整理的商业银行经营管理问题研究论文,一起来看看吧。

一、商业银行经营管理存在的问题

(一)银行内控机制不健全,规避银行风险不到位

健全的银行内控机制能够有效的对银行风险进行规避,在我国近年来发生的金融事件中,都体现出我国商业银行的内控机制存在问题,造成重大损失。建立健全我国商业银行的内控机制,是银行发展的关键。大部分银行有针对自身发展特点的内控规章制度,但是这种机制在不合理的激励约束下,在支行行长的权利过大,造成相应的监督机制不能够顺利进行的情况下,在电子化控制水平较低的情况下,造成商业银行的内控机制不能够很好地发挥效果,阻碍了商业银行规避风险的能力②。

(二)经营管理的方法落后,无法满足业务需求

尽管我国的商业银行在国际影响下也实行了资产负债比例管理,但是没有很好的进行落实,很多银行都是吸收更多的存款,却忽视了成本,这与外国银行追求效益的目标所取得的效果是截然不同的。这种经营管理的落后,造成我国商业银行的经营管理机制并不健全,使得不能够很好地发挥作用,在竞争中处于不利地位。

(三)分业模式对商业银行造成限制

为了降低风险,我国商业银行实行了分页的经营模式,但是这种方式却导致了我国商业银行的发展受到了限制。这种分页的经营模式,使我国商业银行难以满足企业所需的国际水平的金融产品和业务服务,使一些企业选用外国的银行作为自己的支持后盾。

(四)员工的专业水平不高,易造成风险

银行的许多工作人员只是单纯的完成数字任务,认为只要完成了任务就能够保证银行发展。忽略了员工素质对整体的发展提高作用。

二、商业银行经营管理问题的对策

(一)建立健全适合银行发展的内控体制

在经营管理的改革中,建立健全内控体系是商业银行发展的必然趋势,对于支行行长的权利要进行适当的控制,行长要明确自己的职责,不能盲目行使权利。要强化支行的内控体制建设,通过一系列的方法使支行的内控逐渐的科学化。

(二)改变经营管理模式,提高竞争力

商业银行的根本目的是盈利,因此要在这一目标的趋势下,不断地进行经济管理体制的改革,要运用现代管理技术,加强计算机技术的运用,进行精细的分工,对银行上下进行系统的培训,提高员工的经营管理理念,增强银行的竞争能力。改变经营管理模式还要积极吸收国外的有利经验为自己所用,并且不断地进行创新③。

(三)提高员工的整体素质

要加强员工的思想教育,提高员工的素质,对于员工的岗位特点,进行系统、针对的培训,对于员工的工作银行要进行明确划分,使银行的岗位得到具体的落实,并且岗位责任有人可寻,对员工要进行奖励与约束并存的管理机制,使员工意识到工作责任心的重要性,对员工的知识技能要进行定期的检查,做到用员工之所长,谋银行之发展。

三、结语

商业银行的发展对于我国整个金融业的发展有着积极的推动作用,我国商业银行的经济管理在经济全球化的背景下,竞争能力较弱,跟不上发展的步伐。加强我国商业银行的经营管理,对于一些金融风险起到规避的作用,对于银行自身的发展以及参与国际竞争能力都有很大的提高。

【摘 要】

随着移动互联网、云计算、大数据挖掘技术的不断发展,大数据在银行业领域的应用日趋深入。论文以大数据时代为背景,对大数据在商业银行中的应用现状和存在的问题进行研究。论文运用SWOT分析法对商业银行目前的优势、劣势、机遇和挑战进行分析,发现现阶段银行业在经营管理上的问题,结合大数据应用,从精准营销、客户关系管理、风险控制和用户信用管理四个方面,提出优化商业银行经营管理的策略。

【关键词】

大数据;商业银行;经营策略

1.商业银行业大数据应用的特点

2017年人民银行和银保监会分别在《中国金融业信息技术“十三五”发展规划》中提出,商业银行要引入大数据等新技术,推进大数据基础设施建设,加快推动银行业务创新,加强风险控制能力。大数据已经被提升到了国家战略高度,在银行业运用过程中取得了一定的成果[1]。

数据容量大。我国商业银行长期的业务开展,使得银行业“天然”拥有海量数据,商业银行的主要数据是围绕柜面业务系统、信贷管理系统和风险控制系统等产生结构化数据。商业银行推出的电子金融服务系统,使得一些非结构化的数据信息开始产生,包括指纹和人脸识别等。数据结构复杂,移动互联的发展促使半结构化、非结构化数据爆发式增长。数据资产化,利用价值大。商业银行在稳健经营中对数据的准确性有很高的要求,利用好银行已有的海量数据,应用在客户识别、风险识别和产品营销等不同场景下,更好地实现数据资产的增值。

2.基于大数据应用的商业银行经营策略的SWOT分析

拥有的优势(Strength)

成本控制优势。随着信息技术发展,商业银行能够实现现有业务流程的自动化,大大降低了物理网点的工作人员数量,降低了银行的运营成本。随着云计算能力的提高和技术的成熟,云计算系统中的数据均保存在“云”端,减少关于IT基础设施的建设、单位数据存储和处理的成本。

营销效率优势。商业银行通过本身的海量数据进行深度挖掘,对客户进行静态特征、行为特征、倾向预测三个层次的刻画,构建客户体系,进行营销活动的精确推送。通过分析客户上下游相互关系,了解客户间业务等往来情况,发掘新的潜在客户,确定交叉销售目标,提高了客户服务效率及营销精准度。

风险管理优势。银行在传统风险控制方面积累了丰富经验,这些为大数据挖掘、传输、存储与安全应用提供了相对成熟的基础环境。将大数据、人工智能等技术作为风控工具应用到风险控制工作,提升风险控制效率和精准度。

存在的劣势(Weakness)

业务同质化。我国商业银行盈利的主要业务是贷款业务,少有针对客户需求设计开发的特色产品。因此,大数据的应用范围可以深入其他能够盈利的业务,如银行业的中间业务。利用大数据优势,找准银行的自身业务定位,打造差异化的竞争模式。

数据共享程度不高。各家商业银行均拥有自己的系统,出于自身利益考虑,几乎不存在分享机制,导致大数据基础建设效率低、数据利用率低、在整体上缺乏系统性,各银行只能描绘客户在本行的交易画像,不能展示出客户的金融全貌。

拥有的机会(Opportunity)

强化优势。商业银行传统所具备的安全、稳定、诚信等优势可以通过大数据应用进一步巩固强化。在风险管理中进一步利用大数据,提高银行自身的安全性。在营销方面,不断完善客户画像,了解客户真实需求,实现精准营销。成本控制方面,随着大数据技术的不断成熟,人力成本、设备成本和运营成本也将不断降低[2]。

金融产品的创新。在大数据时代,银行业不断进行产品创新,以满足客户个性化需求。这就需要深入了解客户的核心需求,利用大数据建立数据模型,为其定制专属于消费者自己的金融产品,提升用户的体验满意度。

面临的威胁(Threat)

银行业与互联网金融企业的竞争加剧。信息技术的快速发展,促使互联网金融呈现出爆炸式的发展态势。互联网金融模式具有资金配置效率高、交易成本低、支付便捷、普惠性等特点。互联网企业加快布局金融业,对整个银行业的核心业务产生冲击,挤占了原本属于传统银行业的利润空间。

数据的安全性问题。首先,随着互联网技术的发展,数据量的大幅增加导致了数据的严重失真,大量无序低效的无用信息混进数据库形成垃圾数据,增加信息误读的风险。其次,商业银行运用云平台也伴随着一定的风险:一是网络系统与存储中心可能存在漏洞引起技术安全风险;二是海量客户信息与个人隐私信息的泄露风险。

3.基于大数据应用的商业银行经营管理优化策略

精准营销

大数据应用更强调相关关系释放出的潜在价值。商业银行拥有海量数据,可利用聚类分析,挖掘出更多数据中含有的潜在特性,帮助商业银行进行市场细分。通过大数据挖掘中的关联分析相关关系,发掘新的潜在客户,确定交叉销售目标。大数据不断推进金融产品创新。商业银行通过大数据挖掘为客户提供差异化服务和定制化价格。根据对海量数据的分析预测,建立相应策略模型,掌握客户的消费习惯和行为特征,实现创新式的营销、无缝多渠道的销售、个性化的服务[3]。

客户关系管理

商业银行业务同质化严重,客户管理十分重要。在互联网背景下,金融脱媒现象加速,碎片化金融产品抓住了市场需求,提供差异化产品的同时也剥夺了银行的客户资源。因此,运用大数据挖掘方法可以为商业银行提供更精确的客户关系管理。商业银行可以与其他行业或大数据公司形成合作关系,以获取客户出行、交易习惯等数据,进行客户信用评分,当客户提出需求时,商业银行利用人工智能进行判断。商业银行还可利用大数据更精准地预测客户流失概率,并对相应超过客户流失概率阈值的客户实行定制化客户挽留措施[4]。

风险控制

银行业作为高经营风险的行业,风险控制是其生存和发展的基础。通过大数据技术扩容传统商业银行风险管理的数据源并处理半结构化和非结构化的各类数据,构建大数据风险管控平台,全面收集客户的数据。注重内外部数据的融合,整合银行内部积累的金融信息,同时,获取外部数据或公共信息等数据,降低信息不对称程度,增强风险控制能力。建立风险管控模型,可以借鉴国内外同业的做法,设计符合实际要求的模型,根据实际情况开展训练,输入实际的数据进行模型训练和验证,合理地改进模型的配置参数,提高模型的准确度[5]。

信用管理

商业银行信用风险管理对商业银行的贷款决策具有显著影响。商业银行要构建人工和数据相结合的模式,运用大数据挖掘技术,集合内外信息资源,形成覆盖所有机构、所有客户、所有产品的实时监测分析和预警控制网络,提高信用风险预警水平。利用大数据,实现贷款业务的贷前、贷中和贷后全过程管理。强化贷前风险识别,在客户审批阶段,依托行内信用数据库、评级系统及反欺诈平台,提前对客户可能存在的违约风险进行精准判断;强化贷中审批自主化,大数据信贷审批系统以风控评分卡模型的自动审核为主,加以人工审核进行辅助的模式;强化贷后风险监测,商业银行要建立信贷投放、资产质量等多维度的信用风险日常监测指标体系。

【参考文献】

【1】韩雪峰,朱青,马文捷.商业银行应用大数据的安全风险防范研究[J].江苏商论,2017(11):88-92.

【2】齐贵柱,齐苑博.大数据时代商业银行大数据分析研究[J].财经界,2019,500(01):128-129.

【3】屈波,王玉晨,杨运森.互联网金融冲击下传统商业银行的应对策略研究--基于SWOT分析方法[J].西部金融,2015(1):41-45.

【4】严文枢.关于商业银行大数据应用的思考和探析[J].福建电脑,2014(7):68-69.

【5】信怀义.商业银行大数据的应用现状与发展研究[J].中国金融电脑,2016(8):26-28.

【摘要】

在经济全球化迅速发展以及改革开放不断扩大的机遇中,我国各行各业得以迅猛发展,其中我国银行业的发展举世瞩目,取得了许多长足的进步。但是,机遇与挑战通常是并存的,在银行业场迅速发展的同时,商业银行之间的角逐也逐渐激烈起来。因此,我国商业银行也面临着许多挑战。比如,在商业银行的经营管理中,还存在着许多风险与不足,与此相关的经营管理体制也未能及时的建立健全。商业银行若是想在如此激烈的角逐占有一席之地,就必须对其管理中存在或者潜在的风险加以预测并且进行防范。本论文根据商业银行经营管理中的出现的情况进行分析,通过一些成功经验,提出对风险的预测以及防范策略。

【关键词】

商业银行 经营管理 风险 防范措施

一、商业银行经营管理中存在的风险

(一)银行出现的不良贷款率较高

银行经营管理中出现风险种类十分多,但是主要对银行经营造成影响的是银行资产的质量风险。而对于资产的质量起到关键性作用的.是贷款的质量,许多银行存在的风险大多是由不良贷款引发的。依据近过去几年的数据统计,我国商业银行的不良贷款率相对于国外的主要商业银行还是偏高的,因此得出不良贷款率仍旧是造成我国银行资产质量风险的主要原因之一。

对不同种类企业的还贷能力进行准确评估存在一定难度,这给银行贷款的发放与回收带来困难。对于部分经营能力较强、企业规模大并且实力相对雄厚的企业,这部分企业绝大多数已经具备上市的资格,在相关行业中具有稳定地位。因此,在商业银行放贷中十分抢手,银行也十分愿意向其发放贷款。但是,相对的一些企业经济效益并不是十分理想,对于银行的贷款不能及时返还,造成银行信贷资金的危机,使其流动性受到限制。近年来由于经济增速的下降,大量企业盈利能力降低,对于商业银行的贷款质量造成了一定不利影响。

(二)员工的综合素质不高

在银行经营管理风险中,员工是主要的操作人员。但是,由于不少员工的综合素质以及学习水平不足,也成为影响银行经营管理风险的主要因素之一。员工的总体水平是企业竞争力的直接影响因素。但是我国银行员工的综合素质还不能满足银行业务发展的需求,更有甚者,有部分员工缺乏职业道德素养,利用个人的职位谋取或者侵犯银行利益,在进行工作的同时,出现了挪用公款、贪污等违法行为,对银行业务的发展造成不利影响。其次,就是银行员工的个人工作水平以及经验不足,对经营管理岗位的需求无法满足,缺少长远发展的眼光,不能应对随时出现的风险,成为阻碍银行发展的因素。

(三)个人信用系统的不完善

在银行经营管理中存在的影响因素之一是个人信用系统的不完善。银行业务中的重要组成部分是个人信贷,为了能够让个人信贷能够及时的返还,银行一般是要对贷款人的个人信用进行审查,对于一些没有良好的个人信誉的客户,将不会同意其贷款要求。但是,从银行业务对于个人信用的审查流程来看,普遍存在的问题是,对个人信用审查的不严格以及相关的贷款信用管理体制尚未健全。如今信用系统中涉及贷款人的各种信息以及身份证明并不能对贷款人的信用情况进行真实有效的反映。个人信用系统的不完善以至于出现对贷款人的可支配资金、可抵押的资产或是其收入情况不能全面掌握,或是贷款人出现一些伪造信息的情况。个人信用系统的不完善最终导致的结果是银行的贷款不能在规定时间内及时的收回,从而对整体运转系统造成影响。

二、银行经营管理中的防范策略

(一)资产配置进行优化,降低不良贷款率

对资产配置进行优化,从而降低不良贷款率。这不仅能降低银行风险爆发的概率,还会银行业务的发展有着促进作用。首先,要提高资产的质量,就要对资本的运作水平进行提高。要对银行业务中长期贷款进行科学的设置,使银行的流动性得以保障。其次,对金融科技的创新能力进行强化,将大数据、云计算等技术运用到贷款过程中,收集、分析各类数据,使银行能够精确的了解贷款过程中各种信息,使不良贷款率降低。最后,对于出现的不良贷款采取相应的手段,对其进行约束,并且对审款、放款、贷款等流程进行严格把控,增强信用贷款的管理,推进银行经营的进步以及银行业务的发展。

(二)提高员工综合素质

员工的综合素质与银行能否顺利发展有着不可磨灭的联系,根据这一实际状况,银行应当对员工的综合素质引起重视,增强员工的综合素质,建成一支高素质、复合型人才队伍。第一,在招聘中进行严格要求,对人才的综合素质进行严格的考察与测评,既要对其专业能力进行考评,还要对其职业道德素质以及道德水平进行测评,使其能够保持对工作的热情以及在工作中能够发挥其能动性,积极的承担自己的责任。第二,对银行员工进行定期的培训,提供外出学习先进经验的机会,使其的专业知识不断更新,不断的积累先进经验。第三,在金融市场风云变幻中,银行也必将随之变动。因此,要求员工能够及时掌握市场的行情,通过对市场行情的分析开拓自己的眼界,提高员工对风险的敏感度。第四,要提高员工的综合素质水平,必须要定期的对员工进行考评,严格对其行为进行把关,有助于形成良好的学习氛围,促进员工综合素质的进步。

(三)建立健全信用系统

建立健全信用系统对推进银行经营管理有着关键性的作用,同时也是信贷业务能否良好展开的必要保障。在贷款业务的进程中,信用系统能否建立健全对贷款人的信用审查部分有着重要的推动作用。第一,银行在信贷业务中要完善信用审查环节,对其工作流程严格把关,对贷款人信息进行精确严格的问询,保证其信息的准确性。第二,在建立健全信用系统的过程中,要求银行员工在工作时,要对贷款人的信息填写进行具体的指导,并且明确的对其进行提示,要求其填写关于信用贷款的所有相关信息,包括其可抵押资产、收入来源、总体资金以及贷款资金的用途等详细信息。第三,对于贷款人填写的信息,银行后期应该进行仔细核查,并定期对其进行追踪,使信用系统的健全得以保障,从而降低潜在的信用风险。

三、结语

在经济全球化带动我国银行发展的同时,我国银行的竞争也日益激烈。在各种风险因素的影响下,银行的经营管理也存在着各种不同的风险。在商业银行经营管理中,风险的存在是不可回避的问题。因此,银行应该通过各种手段对已出现的或是潜在的风险采取解决措施或是提前预测,有效的规避风险。只有提高对风险认识的敏感度,才能对出现的风险坦然面对,继而能够使银行能够顺利发展,为我国经济发展做贡献。

首先介绍大数据带来的好处,然后介绍大数据带来的弊端。

大数据带来的好处

1、大数据便利我们的生活:

自助缴水、电、燃气、电视费,汽车摇号、手机充值、违章查询、公积金查询、手机代开发票、查询法院案子进展,这是运用大数据促进保证和改善民生的典型事例。此外,大数据还运用到智能家居中,智能照明体系等。

2、大数据便利看病:

大数据最强大的应用就是电子医疗记录的收集。每一个病人都有自己的电子记录,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。大数据收集病人信息,可以尽早发现疾病,对于患者来说,不但降低了身体健康受损的风险,同时也能够减少医疗支出。

另一个创新是可穿戴设备的应用,这些设备能够实时汇报病人的健康状况。这些新的分析设备具备同样的功能,但能在医疗机构之外的场所使用,降低了医疗成本,病人在家就能获知自己的健康状况,同时还获得智能设备所提供的治疗建议。

3、大数据便利我出行:

人们的出行越来越离不开大数据的协助,运用电子地图,初来乍到的游客可以在生疏的城市自由行走;繁忙一天的上班族可以查询最快回家的交通方法;出租车司机经过语音导航,知晓前方路程状况,防止堵车或超速违章。

大数据仍是缓解交通压力的利器,它可以猜测未来交通状况,为改善交通状况供给优化方案,这有助于交通部门进步对路程交通的把控才干,防止缓和解交通拥堵。

4、利用大数据提升自己:

大数据技能不只能够提高人们使用数据的效率,并且能够实现数据的再使用和重复使用,进而大大降低交易成本,提升人们开发自我潜能的空间。

大数据的弊端

1、个人数据隐私与安全

大数据会记录浏览习惯,购买习惯,常用淘宝支付宝这些软件的人,消费能力、购物习惯、活动产所、收入情况、生活质量、年龄、身高、体重、鞋码、三围、口味等,都是可以分析出来的,这些基本囊括了我们的生活。

个人数据安全就成了一个大问题,一旦数据泄露(或被买卖),可能会对用户人身财产、国家和公司的安全造成威胁。

2、大数据杀熟

杀熟,即同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。

包括滴滴出行、携程、飞猪、京东、美团、淘票票等多家互联网平台均被曝疑似存在“杀熟”情况,涵盖在线差旅、在线票务、网络购物、交通出行等多个领域,特别是OTA(Online Travel Agent)在线差旅平台较为突出。

大数据的价值体现

1、对许多顾客供给产品或服务的企业可以运用大数据进行精准营销。

2、做小而美形式的中小微企业可以运用大数据做服务转型。

3、面对互联网压力之下,有必要转型的传统企业需求与时俱进充沛运用大数据的价值。

在当前的“大数据”时代,人们可能会受到大数据带来的损失。大数据分析包括使用来自多个来源的大量数据进行链接和分析,以发现预测人类行为的模式。即使在完全合法的情况下,这样的分析也会伤害到人们的利益。

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文

研究论文的数据

论文数据来源有:

1、专业行业网站或统计网站(年鉴)。 主要依据主题的相关专业行业网站获取数据,同时注意记录各种数据源。

2、相关的新闻报导,或者是学术文献文献作为数据的来源。 但需要对最新的数据进行整理。

3、上市公司的年报或者市政府门户统计的经济数据,这种数据相对来说比较宏观的数据,准确一点。

4、相应的内部员工提供。 通过访谈、问卷调查、运营数据收集等获得。

资料:

论文是一个汉语词语,拼音是lùn wén,古典文学常见论文一词,谓交谈辞章或交流思想。 当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。

它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

创建论文数据分析计划提示:

1、系统化

学生可以通过将研究数据系统化来开始论文数据分析。收集想法,思考哪些方面是重要的,而哪些会让自己的想法变得混乱。思考自己所收集信息的真正价值,信息的数量不会帮助论文写作,质量更加重要。

2、结构

组织论文分析。对于学生和读者来说,一切都应该非常清楚。无论主题多么复杂,都应该将其分成几部分,并按顺序排列,使人们能够对问题的所有要点有一个很好的了解。每一章都应该是自己的一个小想法。

3、词汇

论文中不应该有自己不理解的任何词汇,因为很可能读者也不会理解。对于不理解的术语,或者在写作过程中学到的术语,应该在创建论文分析时进行解释。

4、因果关系

在收集数据并将材料系统化后,学生应该退后一步,考虑因果关系。应分析关键点的有效性。如果已经做好了系统和结构部分,这应该不会太复杂。

5、重要性

从理论和实践上思考论文的要点。如果不了解大局,就无法制定好的论文数据分析计划,这就是整篇论文的意义所在。

6、简化

最后,论文数据分析计划可以帮助写作。不要浪费太多时间将已经很复杂的任务复杂化。目标应该清晰,过程要简化。

相关百科

热门百科

首页
发表服务