首页

> 学术论文知识库

首页 学术论文知识库 问题

大数据有趣研究论文

发布时间:

大数据有趣研究论文

是的,大数据对史学研究的影响是一个有趣且具有研究价值的话题,可以作为论文题目。在过去,史学研究主要依赖于文献、史料、考古发现等传统的研究方法。而现在,随着大数据技术的发展,史学研究也开始采用数据挖掘、数据分析等技术进行研究。大数据技术可以帮助史学研究者更好地分析历史事件、发现历史规律,从而对历史研究提供更深入、全面的认识。例如,通过大数据分析历史文献,可以快速发现历史事件的规律性和趋势;通过大数据挖掘历史记录,可以发现历史事件背后的联系和趋势;通过大数据分析考古发现,可以更好地理解古代人类的生活方式、思想、文化等等。因此,探究大数据对史学研究的影响,可以从技术、方法、应用等多个方面进行深入研究,对推动史学研究方法的创新和发展有着积极的作用。

大数据,听到这个名字时,你一定想的是:“这一定是关于计算机的吧!”其实,大数据是数学的一类。

但具体什么是大数据呢?我觉得可以这么理解:“大”就是指大的范围,“数据”就是数的信息,合在一起就是大量的数的信息,但这个解释似乎不太对,所以我又加了一句,大数据的意思是把大量的数据进行整理分析最后得到答案。

那怎么进行数据分析?通过我的学习,我有了大概的了解,我认为首先要把信息集中起来,不能太分散,一样的东西要放在一起;其次要找出每一类中的'相同点,再进行归纳;最后进行分析,比如什么东西买的人多,什么东西买的人少等等。

说到分析数据,我的老师还特意讲了讲数据分析的方法,比如算两班的平均分差距可以将所有值加起来再除以总人数,但这个方法很麻烦;还可以用最高分减去最低分算出差距,但这种方法往往不准确;如果用最高分加上最低分再除以二,这种方法也不准确。从上面可以看出来,每一种方法都有利弊,要看具体情况选择适当的方法。

光有方法可不行,还要实战演练。老师在课上给了我们一张表,上面是超市五名顾客购买东西的记录,进行分析后我发现尿布跟葡萄酒被同一个人买的几率很大,我很疑惑:这两样毫无关系的物品怎么会被同一个人购买呢?后来老师说,这是外国人做的一个调查:在国外,当他们有孩子后,年轻的爸爸们会去超市买孩子的尿布,往往也会买一些自己喝的啤酒,所以记录单上酒和尿布才会出现在一起。真是个有趣的调查!

大数据还体现在很多方面,比如当你打开手机淘宝,里面的推荐物品都是你想要的,那是计算机检测到你最近搜索一个东西很频繁,根据你的喜好设定的:再比如你看短视频时,给你推荐的视频也是系统根据你平时的爱好设定的……总之,大数据在我们的生活中随处可见,此时你看的手机里也有大数据存在,那你知道是什么吗?

大数据是一门非常有趣的课程,或许这个名字让你提不起兴趣,但当你真正走进去研究它时,你就会发现:“哦,原来分析数据是一件多么快乐的事!”你说“快乐”不对?那是因为你没有体验过分析出来一个数据的成就感。具体的感觉是什么呢?你试试吧!

一年四季,桃花只盛开一次;一年有三百六十五天,而春天只有短短的三个月……数字可以用来对比,可以用来表达世间所有美好的事物。它触摸不到却能让我们领略人间的温暖与冷漠。当我们走进数据时代,你会发现世间冷暖,尽收眼底。

数据虽是生冷的数字,但它能折射出人间的冷暖。漫步于天地,没有数据的世界一片茫然,它可以带给我们准确的度量,可以让我们知晓天下事。可以让我们的生活更加丰富多彩,充满生机。数据折射出人间冷暖。

数据提醒着人们过错的同时。也反映出时间的冷酷无情。到了上世纪九十年代。长江里仅剩二百余头白鳍豚,到了1997年,这种身长六英尺左右的动物只剩下了十七头。到了2004年,这种白鳍豚已经几乎消失在人们的视线。这一系列逐渐变少的数字无一不敲打着人们的警钟,提醒着人们保护环境的重要性,这些数据反映的不只是人们意识淡薄,更是对人间冷酷无情的极大反射!生命如此脆弱却被人类毫不留情地亲手扼杀。这些直击人心的数字是冷漠无情后付出的惨痛的代价,它时时刻刻都让我们为自己的所做所为感到羞耻。

数字也会如阳光般轻柔,带给我们温暖。当你考试得了满分,拿着卷子看至那鲜红的数字,你会感到无以言表的快乐与激动:当卖水果的老大爷今天顾客满员,多挣了一百元钱,看着那鲜红的钞票,就会感到幸福满满,生活幸福指数提高,经济发展的进步,每项数据都那么鼓舞人心,温暖心灵。数据有时就像乌云上的阳光,他会带你穿过层层阻碍,走向未知的世界。即使是很微小的事情,也会被数据折射幸福的光芒。

数据丰富着人们的生活,改变着我们的思维方式,仿佛离开了数据就会将自己陷入无边的黑暗。古人也常常用数据描述着事物的发展,曹刿论战中一鼓作气,再而衰,三而竭;登高中万里悲秋常作客,百年多病独登台。诗人们多运用数字夸张的手法表现内心情感,数字使他们的情感表达的更加淋漓尽致。作为新一届高三生,我们每天也会看到许多数字,距离高考仅剩二百余天,这将激励着我们去女里奋斗,为了明天的辉煌而放手一搏!

数字如微风吹过,激起阵阵涟漪;数字如阳光拂过,留下丝丝温暖,我们在这条数据时代的道路上走过,留下了我们的足迹,感受世间冷暖,感受着数据带给我们的幸福生活。

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

当然可以。大数据技术的应用已经深入到各个领域,包括历史学研究。利用大数据技术,历史学家可以从更广泛和深入的角度去探究历史事件和历史人物。因此,关于大数据对史学研究的影响,可以作为一篇论文的题目。这个话题非常有研究价值,你可以对大数据技术在历史学中的应用进行深入探讨,分析其优缺点,并提出改进建议。

大数据研究杂志

摘 要:大数据的产生给未来信息技术带来新的机遇与挑战。大数据对数据处理的有效性、实时性提出了更高要求,需要根据大数据的特点对当前数据处理技术实施变革,从而形成更有益于大数据采集、存储、处理、管理、分析、共享的新兴技术。本文从大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。

关键词 :大数据 物联网 信息处理 海量计算

一、大数据的产生与发展现状

随着物联网、云计算等信息技术的飞速发展,大数据技术(Big Data)也越发进入人们的视线。大数据是用传统方法或工具很难处理或分析的数据信息。目前,人们对大数据的理解还不够全面和深入,关于大数据的含义也没有一个统一的定义。亚马逊大数据科学家John Rauser认为:大数据是超过任何一台计算机处理能力的庞大数据量。Informatica 的中国区首席顾问但彬指出:大数据是海量数据与复杂类型的数据的结合。而维基百科则把大数据定义成诸多大而复杂的、难以用当前数据库处理的数据集合。

大数据研究受到国内外学术界和工业界的广泛关注,已成为当今信息时代全世界讨论的热点。2008年,Nature杂志就推出大数据专刊,计算社区联盟也在同一年发表了报告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,报告阐述了解决大数据问题所需的关键技术以及所面临的挑战。美国奥x政府于2012年3月在白宫网站发布了《大数据研究和发展倡议》,提出了通过收集、处理海量、复杂的数据信息,从而提升能力,加快科学和工程领域的创新步伐,转变学习教育模式,强化美国本土的安全”。2011年1月,微软公司同惠普公司合作开发了一系列能够提升生产力,同时提高决策速度的设备。此外,欧盟委员会也提出驾驳大数据浪潮的战略思路,日本发布的《面向 2020 的 ICT综合战略》也提出需要构造大量丰富的数据基础。

近年来,我国也积极开展对大数据的研究。2011年10月,工信部确认京沪深杭等 5 城市为“云计算中心”试点城市。2012年6月,中国计算机学会青年计算机科技论坛也举办了“大数据时代,智谋未来”学术报告研讨会。大数据及其科学研究方法涉及应用领域很广,并将与国计民生密切相关的科学决策、金融工程以及知识经济领域紧紧接合。

二、大数据的特点

目前,企业界和学术界都一致认为,大数据具有4个“V”特征,即:容量(Volume)、种类(Variety)、速度(Velocity)和至关重要的`价值(Value)。

(1) 容量(Volume)巨大。海量的数据集从TB 级别提升到PB 级别。

(2) 种类(Variety)繁多。大数据数据源有多种,数据格式和种类不同于以前所规定的结构化数据范畴。

(3)价值(Value)密度低。如视频的例子,在不间断连续监控的过程中,可能有意义的数据仅有一两秒。

(4)速度(Velocity)快。包含大量实时、在线数据处理分析的需求1秒钟定律。

三、大数据应用的领域

大数据产业的发展将推动全球经济由粗放型向集约型转变,这将对提升企业整体竞争力和政府监管能力具有意义深远的影响。

商业作为大数据的重要应用领域。沃尔玛公司通过对消费者购物行为等一系列非结构化数据的分析,了解不同顾客的购物习惯,公司从所销售的数据进行分析,从而选出适合在一起搭配出售的商品;淘宝也针对买家开设了大数据平台,为客户量身打造了一整套完善的网购体验产品。

大数据在金融业也起到了至关重要的作用。美国Equifax公司利用大数据技术,通过对其的数据库中与财务有关的记录海量信息进行索引处理和交叉分享,从而得到客户的个人信用等级,以推断出客户的支付需求与能力。

随着大数据在医疗与生命科学研究过程中的广泛应用和不断扩展。2010年,中国公布的《十二五规划》指出:要重点建设国家级、省级和地市级三级医疗卫生信息平台,建设电子病历和电子档案两个最为基础的数据库。各级医院也将在医疗信息仓库、数据中心等领域加大投入,医疗数据信息的存储将愈加被关注,医疗信息中心的关注焦点也将由传统的计算领域转为存储领域。

除此之外,大数据在制造业领域也有着广阔的应用。制造业企业积累了广泛的数据信息,在开展对业务数据进行技术管理的同时,企业需要通过大数据处理技术来帮助决策者从数据库储存的海量信息中找到有价值的信息,并且对其进行分析处理,从而增强决策的正确性、规避风险。

四、大数据所面临的挑战

大数据技术使人们能够更好地利用之前不能使用的各个数据类型,找出被忽略的信息,促进企业组织更加高效、智能。但随着对大数据研究的不断深入,人们也更加意识到当大数据技术向人们敞开“方便之门”的同时,也带来了众多的挑战:

(1)大数据需要更为专业化的管理技术人才。

(2) 大数据的合理利用需要解决容量大、类别多和时效性高的数据处理问题。

(3)大数据的利用对信息安全提出了更高要求。

(4)大数据的集成与管理问题。

这些挑战已成为关系到未来大数据发展的重要因素,同时也成为未来引领大数据发展的推动力。

五、结束语

大数据已经逐步渗透到人们工作生活的诸多领域中,对于大数据的研究也在不断的深化。本文针对大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。大数据的发展还处于初级阶段,还有更为广阔的空间需要人们不断开拓,如何合理地利用大数据、更加高效地处理大数据来为人们服务仍需要广大研究者不断地研究和探索。

参考文献:

[1]刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报,2014,46(6):957- 972.

[2]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,23(4):168-172.

[3]刘俊.基于大数据流的Multi-Agent系统模型研究[J].计算机技术与发展, 2007,17(5):166-169.

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

如果是以下这些领域,可以考虑汉斯出版社的《数据挖掘》期刊:数据结构、数据安全与计算机安全、数据库、数据处理、知识工程、计算机信息管理系统、计算机决策支持系统、计算机应用其他学科、模式识别、人工智能其他学科。

大数据的研究论文

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

浅谈基于大数据时代的机遇与挑战论文推荐

在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。

浅谈基于大数据时代的机遇与挑战论文

1、大数据的基本概况

大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。

2、大数据的时代影响

大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:

(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。

(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。

(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。

另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。

3、大数据的应对策略

布局关键技术研发创新。

目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。

提高软件产品发展水平。

一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。

加速推进大数据示范应用。

大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。

优化完善大数据发展环境。

信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。

大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。

结构

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

1、论文题目

要求准确、简练、醒目、新颖。

2、目录

目录是论文中主要段落的'简表。(短篇论文不必列目录)

3、内容提要

是文章主要内容的摘录,要求短、精、完整。

4、关键词定义

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。

5、论文正文

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出问题-论点;

b.分析问题-论据和论证;

c.解决问题-论证方法与步骤;

d.结论。

6、参考文献

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。

7、论文装订

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

大数据研究方面的论文有哪些

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,以下是我精心整理的大数据和人工智能论文的相关资料,希望对你有帮助!

基于大数据和人工智能的被保险人行为干预

【摘要】随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,则可以实现对被保险人行为的干预,降低给付发生的概率和额度,提高人民健康水平。基于此,文章介绍了利用大数据和人工智能技术对被保险人行为干预的优点及干预方式,并预期可能实现的干预结果,最后对保险公司进行被保险人行为干预提出了阶段建议。

【关键词】大数据 人工智能 行为干预

近年来随着大数据和人工智能技术的发展,越来越多的领域应用这些技术来提高自身的专业水平。保险作为基于大数法则进行风险管理的一种方式,对数据的处理和应用要求更高。目前大数据技术在保险业的应用主要是精准营销、保险产品开发和理赔服务等,但在保险中的防灾防损方面的应用还不够。如果能够深入挖掘大数据在被保险人行为方面的研究,再结合人工智能进行智能干预,则可以对被保险人实现有效的风险管理,提高被保险人的身体健康状况,从而极大程度的提升客户效用,提高社会整体福利水平。

一、被保险人行为干预简介

行为干预是通过对环境进行控制从而使个体产生特定行为的方式,目前主要在教育,医疗等方面发挥作用。但在被保险人管理方面,行为干预应用很少。现行的对被保险人的管理主要集中在投保审核的过程中,而在投保后提供的服务和干预很少,一般也就是提供健康体检等服务,而对被保险人投保后的日常生活行为方式,健康隐患则基本处于放任自流的状况。而被保险人行为干预则是通过对被保险人日常生活行为,饮食习惯等进行实时数据收集和分析,然后制定干预方式进行针对化管理的模式。

二、利用大数据和人工智能进行被保险人行为干预的优点

实现精准、良好的对被保险人的行为干预,需要利用大数据和人工智能技术。大数据相比传统数据具有海量、高速、多样等特点,它实现了对信息的全量分析而不是以前的抽样分析。在被保险人行为干预模式中,需要对每一个个体的日常生活作息,行为,饮食,身体健康指标的进行实时数据采集,然后进行分析,这用传统的数据统计方法是难以做到的。利用大数据技术进行分析能从海量信息中获取被保险人的风险状况,从而为精准干预提供基础。简单的干预难以实现特定的干预结果,而人工智能则让干预显得更加自然,让被保险人更加易于接受,从而很大程度上提高了干预效果。

三、如何利用大数据和人工智能进行被保险人行为干预

利用大数据和人工智能进行被保险人的行为干预主要有以下步骤:

首先利用人工智能设备进行被保险人数据收集,除了目前的手机APP,网络等软件和设备上的数据能够被收集外,未来人工智能家居能提供更多的被保险人信息。例如提供体重、坐姿等数据的椅子,提供饮食时间和品种的筷子,提供身体运动和健康数据的智能穿戴式设备等等。数据收集后,需要利用大数据技术对海量数据进行清洗,去噪等技术处理,然后对数据进行分析。第三步是根据数据分析结果,制定具体的行为干预方案。最后一步是根据制定的方法,利用人工智能进行干预,如智能椅子调整坐姿,智能厨具减少含油量,针对性的健康食谱推荐,锻炼提醒,智能家居辅助锻炼等等。与此同时,新一轮的数据收集又开始了,整个过程是连续进行,不断循环的。

四、利用大数据和人工智能进行被保险人行为干预的预期成果

对被保险人来说,这种干预方式能有效的进行健康管理。未来的健康保险将成为个人真正的健康管家,从日常生活行为,到身体机能都能提供很好的干预,并且让良好生活方式的养成更加容易,从而提高自身的健康状况,达到更好的生活状况。但另一方面,全面数据化,智能化的方式可能会带来很大的数据泄露风险,所以如果保护客户私密数据是另一个值得研究的问题。另外,对于投保前健康状况较差的客户,或者是对行为干预较为抵制,干预效果较差的客户,可能需要承担更多的保费。当然对于优质客户和乐于提升和改变的客户则可以享受到更加优惠的费率。也就是说在大数据和人工智能技术下,客户进行了进步一步细分。

对保险人来说,行为干预能够降低被保险人的风险,很多疾病能实现防范于未然,降低赔偿程度。另外,借助大数据和人工智能,保险人还能根据分析结果,被保险人对干预的反应等进行客户的进一步分类,从而实现区块化管理。但这对保险公司也提出了更高的技术要求,尤其在前期,可能会带来加大的成本。

五、保险公司推进被保险人行为干预的建议

对于保险公司来说,目前的一些人工智能技术还未能实现,或者成本高昂,难以普及。所以现阶段对保险公司来说首先是提高大数据能力。

具体来说,首先是利用大数据对公司已有客户信息进行数据挖掘,包括承保数据,理赔数据等,从而一定程度挖掘出客户的特征,并提供服务。如根据挖掘出的性别差异,地区差异,年龄差异等,提供不同的生活建议。

如果公司已经充分进行了自身客户已有数据的挖掘,则可以利用目前的手机APP,佩戴设备进行数据的进一步收集。例如,利用薄荷、饮食助手、微信运动、春雨掌上医生、血糖记录、小米手环等数据进行用户数据收集。同时可以针对被保险人开发专门的手机APP,集数据收集和服务于一身。

更进一步,保险公司可以尝试与其他高科技企业合作,开发一些智能穿戴式设备,智能家居等,逐步实现对被保险人的行为干预。

参考文献

[1]彼得・迪亚曼迪斯.将会被人工智能和大数据重塑的三个行业[J].中国青年,2015,23:41.

[2]王和,鞠松霖.基于大数据的保险商业模式[J].中国金融,2014,15:28-30.

[4]尹会岩.保险行业应用大数据的路径分析[J].上海保险,2014,12:10-16.

下一页分享更优秀的<<<大数据和人工智能论文

大数据论文研究方向

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

1、在大数据采集与预处理方向

这方向最常见的问题是数据的多源和多样性,导致数据的质量存在差异,严重影响到数据的可用性。针对这些问题,目前很多公司已经推出了多种数据清洗和质量控制工具(如IBM的Data Stage)。

2、在大数据存储与管理方向

这方向最常见的挑战是存储规模大,存储管理复杂,需要兼顾结构化、非结构化和半结构化的数据。分布式文件系统和分布式数据库相关技术的发展正在有效的解决这些方面的问题。在大数据存储和管理方向,尤其值得我们关注的是大数据索引和查询技术、实时及流式大数据存储与处理的发展。

3、大数据计算模式方向

由于大数据处理多样性的需求,目前出现了多种典型的计算模式,包括大数据查询分析计算(如Hive)、批处理计算(如Hadoop MapReduce)、流式计算(如Storm)、迭代计算(如HaLoop)、图计算(如Pregel)和内存计算(如Hana),而这些计算模式的混合计算模式将成为满足多样性大数据处理和应用需求的有效手段。

4、大数据分析与挖掘方向

在数据量迅速膨胀的同时,还要进行深度的数据深度分析和挖掘,并且对自动化分析要求越来越高,越来越多的大数据数据分析工具和产品应运而生,如用于大数据挖掘的R Hadoop版、基于MapReduce开发的数据挖掘算法等。

5、大数据可视化分析方向

通过可视化方式来帮助人们探索和解释复杂的数据,有利于决策者挖掘数据的商业价值,进而有助于大数据的发展。很多公司也在开展相应的研究,试图把可视化引入其不同的数据分析和展示的产品中,各种可能相关的商品也将会不断出现。可视化工具Tabealu的成功上市反映了大数据可视化的需求。

关于大数据技术的发展方向如何,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

2020高考志愿填报,大数据专业解读

学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融

相关百科

热门百科

首页
发表服务